1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
use crate::{
nodes::index::NodeIndex,
variants::memory_reclaim::{MemoryReclaimPolicy, Reclaim},
Node, NodeData, NodeDataLazyClose, NodeIndexError, NodeRefs, NodeRefsArray, NodeRefsVec,
SelfRefCol, Variant,
};
use orx_split_vec::prelude::PinnedVec;
use std::ops::Deref;
/// Struct allowing to safely, conveniently and efficiently mutate a self referential collection.
///
/// # Safety
///
/// This struct holds a mutable reference to the underlying self referential collection.
/// Therefore, it allows to mutate the vector with immutable references, as in internal mutability of a refcell.
///
/// This struct cannot be created externally.
/// It is only constructed by `SelfRefCol`s methods such as `mutate` and `mutate_take` methods.
/// You may find corresponding safety guarantees in the documentation of these methods, which in brief, relies on careful encapsulation of mutation
/// preventing any reference to leak into the collection or any node reference to leak out.
///
/// # Convenience
///
/// The nodes of the self referential collection, `SelfRefNode`, has convenient methods to mutate the references, such as:
///
/// * `set_prev`
/// * `set_next`
/// * `clear_next`
/// * `clear_prev`
/// * `close_node_take_data`
///
/// In addition, `SelfRefColMut` provides the following vector methods:
///
/// * `push_get_ref`
/// * `set_ends`
///
/// These allow to easily and conveniently update the relations among the nodes without lifetime or ownership complexities.
///
/// # Example
///
/// For instance, the following example illustrates the `push_front` method in a doubly linked list.
/// The lambda argument `x` is a `SelfRefColMut`.
/// You might notice that the lambda body is close enough to the pseudocode of the method.
/// All complexity of the safety guarantees is hidden by the additional parameter or the key, `x`, passed into these mut methods.
///
/// ```rust ignore
/// pub fn push_front(&mut self, value: T) {
/// self.vec
/// .move_mutate(value, |x, value| match x.ends().front() {
/// None => {
/// let node = x.push_get_ref(value);
/// x.set_ends([Some(node), Some(node)]);
/// }
/// Some(prior_front) => {
/// let new_front = x.push_get_ref(value);
/// new_front.set_next(&x, prior_front);
/// prior_front.set_prev(&x, new_front);
/// x.set_ends([Some(new_front), x.ends().back()]);
/// }
/// });
/// self.len += 1;
/// }
/// ```
pub struct SelfRefColMut<'rf, 'a, V, T, P>
where
V: Variant<'a, T>,
P: PinnedVec<Node<'a, V, T>>,
'a: 'rf,
{
pub(crate) col: &'rf mut SelfRefCol<'a, V, T, P>,
}
impl<'rf, 'a, V, T, P> SelfRefColMut<'rf, 'a, V, T, P>
where
V: Variant<'a, T>,
P: PinnedVec<Node<'a, V, T>>,
{
pub(crate) fn new(vec: &'rf mut SelfRefCol<'a, V, T, P>) -> Self {
Self { col: vec }
}
#[inline(always)]
pub(crate) fn set_next_of(&self, node: &'a Node<'a, V, T>, next: V::Next) {
let node = std::hint::black_box(unsafe { into_mut(node) });
node.next = next;
}
#[inline(always)]
pub(crate) fn set_prev_of(&self, node: &'a Node<'a, V, T>, prev: V::Prev) {
let node = std::hint::black_box(unsafe { into_mut(node) });
node.prev = prev;
}
#[inline(always)]
pub(crate) fn clear_next_of(&self, node: &'a Node<'a, V, T>) {
let node = std::hint::black_box(unsafe { into_mut(node) });
node.next = V::Next::default();
}
#[inline(always)]
pub(crate) fn clear_prev_of(&self, node: &'a Node<'a, V, T>) {
let node = std::hint::black_box(unsafe { into_mut(node) });
node.prev = V::Prev::default();
}
#[inline(always)]
pub(crate) fn swap_data(&self, node: &'a Node<'a, V, T>, new_value: T) -> T {
let node = std::hint::black_box(unsafe { into_mut(node) });
node.data.swap_data(new_value)
}
#[allow(clippy::mut_from_ref)]
#[inline(always)]
fn ends_mut(&self) -> &mut V::Ends {
unsafe { into_mut(&self.col.ends) }
}
// index
/// ***O(1)*** Converts the `node_index` to `Some` of the valid reference to the node in this collection.
///
/// If the node index is invalid, the method returns `None`.
///
/// Note that the validity of the node index can also be queried by `node_index::is_valid_for_collection` method.
///
/// `get_node_ref(collection)` returns `Some` if all of of the following safety and correctness conditions hold:
/// * this index is created from the given `collection`,
/// * the node this index is created for still belongs to the `collection`; i.e., is not removed,
/// * the node positions in the `collection` are not reorganized to reclaim memory.
#[inline(always)]
pub fn get_node_ref(&self, node_index: NodeIndex<'a, V, T>) -> Option<&'a Node<'a, V, T>> {
match node_index.is_valid_for_collection(self.col) {
true => Some(node_index.node_key),
false => None,
}
}
/// ***O(1)*** Converts the `node_index` to a `Ok` of the valid reference to the node in this collection.
///
/// If the node index is invalid, the method returns `Err` of the corresponding `NodeIndexError` depending on the reason of invalidity.
///
/// Note that the corresponding error can also be queried by `node_index::invalidity_reason_for_collection` method.
///
/// `get_node_ref_or_error(collection)` returns `Ok` if all of of the following safety and correctness conditions hold:
/// * this index is created from the given `collection`,
/// * the node this index is created for still belongs to the `collection`; i.e., is not removed,
/// * the node positions in the `collection` are not reorganized to reclaim memory.
#[inline(always)]
pub fn get_node_ref_or_error(
&self,
node_index: NodeIndex<'a, V, T>,
) -> Result<&'a Node<'a, V, T>, NodeIndexError>
where
P: PinnedVec<Node<'a, V, T>>,
{
match node_index.invalidity_reason_for_collection(self.col) {
None => Ok(node_index.node_key),
Some(error) => Err(error),
}
}
/// ***O(1)*** Converts the `node_index` to a reference to the node in this collection.
/// The call panics if `node_index.is_valid_for_collection(collection)` is false; i.e., if this node index is not valid for this collection.
///
/// # Panics
///
/// Panics if the node index is invalid; i.e., if `node_index.is_valid_for_collection` returns false.
///
/// Note that `is_valid_for_collection` returns true if all of of the following safety and correctness conditions hold:
/// * this index is created from the given `collection`,
/// * the node this index is created for still belongs to the `collection`; i.e., is not removed,
/// * the node positions in the `collection` are not reorganized to reclaim memory.
#[inline(always)]
pub fn as_node_ref(&self, node_index: NodeIndex<'a, V, T>) -> &'a Node<'a, V, T> {
assert!(node_index.is_valid_for_collection(self.col));
node_index.node_key
}
// nodes
/// Returns a reference to the first node of the collection.
pub fn first_node<'b>(&self) -> Option<&'b Node<'a, V, T>> {
self.col.pinned_vec.first().map(|x| unsafe { into_ref(x) })
}
/// Returns a reference to the last node of the collection.
pub fn last_node<'b>(&self) -> Option<&'b Node<'a, V, T>> {
self.col.pinned_vec.last().map(|x| unsafe { into_ref(x) })
}
/// Returns a reference to the `at`-th node of the collection.
pub fn get_node<'b>(&self, at: usize) -> Option<&'b Node<'a, V, T>> {
self.col.pinned_vec.get(at).map(|x| unsafe { into_ref(x) })
}
// NodeRefsVec
#[inline(always)]
#[allow(clippy::mut_from_ref)]
pub(crate) fn get_prev_vec_mut<'b>(
&self,
node: &'a Node<'a, V, T>,
) -> &'b mut Vec<&'a Node<'a, V, T>>
where
V: Variant<'a, T, Prev = NodeRefsVec<'a, V, T>>,
{
let node = std::hint::black_box(unsafe { into_mut(node) });
node.prev.get_mut()
}
#[inline(always)]
#[allow(clippy::mut_from_ref)]
pub(crate) fn get_next_vec_mut<'b>(
&self,
node: &'a Node<'a, V, T>,
) -> &'b mut Vec<&'a Node<'a, V, T>>
where
V: Variant<'a, T, Next = NodeRefsVec<'a, V, T>>,
{
let node = std::hint::black_box(unsafe { into_mut(node) });
node.next.get_mut()
}
// NodeRefsArray
#[inline(always)]
#[allow(clippy::mut_from_ref)]
pub(crate) fn get_prev_array_mut<'b, const N: usize>(
&self,
node: &'a Node<'a, V, T>,
) -> &'b mut [Option<&'a Node<'a, V, T>>; N]
where
V: Variant<'a, T, Prev = NodeRefsArray<'a, N, V, T>>,
{
let node = std::hint::black_box(unsafe { into_mut(node) });
node.prev.get_mut()
}
#[inline(always)]
#[allow(clippy::mut_from_ref)]
pub(crate) fn get_next_array_mut<'b, const N: usize>(
&self,
node: &'a Node<'a, V, T>,
) -> &'b mut [Option<&'a Node<'a, V, T>>; N]
where
V: Variant<'a, T, Next = NodeRefsArray<'a, N, V, T>>,
{
let node = std::hint::black_box(unsafe { into_mut(node) });
node.next.get_mut()
}
// pub
/// Pushes the `value` to the vector and returns a reference to the created node.
///
/// # Example
///
/// The following code block demonstrates the push-front operation of a singly linked list.
/// The code is branched depending on whether or not there already exists a front; i.e., the list is not empty.
/// In either case,
/// * the new value is pushed to the self referential collection;
/// * and a reference to the new list node containing this value is received right after by the `push_get_ref` method;
/// * this reference is then used to establish singly linked list relations.
///
/// ```rust ignore
/// pub fn push_front(&mut self, value: T) {
/// self.col
/// .move_mutate(value, |x, value| match x.ends().front() {
/// Some(prior_front) => {
/// let new_front = x.push_get_ref(value);
/// new_front.set_next(&x, prior_front);
/// x.set_ends(new_front);
/// }
/// None => {
/// let node = x.push_get_ref(value);
/// x.set_ends(node);
/// }
/// });
/// }
/// ```
pub fn push_get_ref<'b>(&self, value: T) -> &'b Node<'a, V, T> {
let node = Node::new_free_node(value);
let vec = unsafe { into_mut(self.col) };
vec.pinned_vec.push(node);
vec.len += 1;
unsafe { into_ref(self.col.pinned_vec.last_unchecked()) }
}
/// Sets the ends of the self referential collection to the given `ends`.
///
/// Ends represent special references of the self referential structure.
/// It can be nothing; i.e., `NodeRefNone`; however, they are common in such structures.
/// For instance,
/// * ends of a singly linked list is the **front** of the list which can be represented as a `NodeRefSingle` reference;
/// * ends of a doubly linked list contains two references, **front** and **back** of the list which can be represented by a `NodeRefsArray<2, _, _>`;
/// * ends of a tree is the **root** which can again be represented as a `NodeRefSingle` reference.
///
/// Ends of a `SelfRefCol` is generic over `NodeRefs` trait which can be decided on the structure's requirement.
#[inline(always)]
pub fn set_ends_refs(&self, ends: V::Ends) {
*self.ends_mut() = ends;
}
/// Sets the ends of the self referential collection to the given `ends`.
///
/// Ends represent special references of the self referential structure.
/// It can be nothing; i.e., `NodeRefNone`; however, they are common in such structures.
/// For instance,
/// * ends of a singly linked list is the **front** of the list which can be represented as a `NodeRefSingle` reference;
/// * ends of a doubly linked list contains two references, **front** and **back** of the list which can be represented by a `NodeRefsArray<2, _, _>`;
/// * ends of a tree is the **root** which can again be represented as a `NodeRefSingle` reference.
///
/// Ends of a `SelfRefCol` is generic over `NodeRefs` trait which can be decided on the structure's requirement.
#[inline(always)]
pub fn set_ends<Ends: Into<V::Ends>>(&self, ends: Ends) {
*self.ends_mut() = ends.into();
}
}
impl<'rf, 'a, V, T, P> SelfRefColMut<'rf, 'a, V, T, P>
where
V: Variant<'a, T, Storage = NodeDataLazyClose<T>>,
P: PinnedVec<Node<'a, V, T>> + 'a,
SelfRefColMut<'rf, 'a, V, T, P>: Reclaim<V::Prev, V::Next>,
{
pub(crate) fn close_node_take_data_no_reclaim(&self, node: &'a Node<'a, V, T>) -> T {
debug_assert!(node.data.is_active());
let vec_mut = unsafe { into_mut(self) };
vec_mut.col.len -= 1;
let node = std::hint::black_box(unsafe { into_mut(node) });
node.prev = V::Prev::empty();
node.next = V::Next::empty();
node.data.close().expect("node is active")
}
pub(crate) fn close_node_take_data(&self, node: &'a Node<'a, V, T>) -> T {
debug_assert!(node.data.is_active());
let vec_mut = unsafe { into_mut(self) };
vec_mut.col.len -= 1;
let node = std::hint::black_box(unsafe { into_mut(node) });
node.prev = V::Prev::empty();
node.next = V::Next::empty();
let data = node.data.close().expect("node is active");
V::MemoryReclaim::reclaim_closed_nodes(vec_mut);
data
}
}
impl<'rf, 'a, V, T, P> Deref for SelfRefColMut<'rf, 'a, V, T, P>
where
V: Variant<'a, T>,
P: PinnedVec<Node<'a, V, T>>,
{
type Target = SelfRefCol<'a, V, T, P>;
fn deref(&self) -> &Self::Target {
self.col
}
}
#[allow(invalid_reference_casting)]
#[inline(always)]
pub(crate) unsafe fn into_mut<'a, T>(reference: &T) -> &'a mut T {
&mut *(reference as *const T as *mut T)
}
#[inline(always)]
pub(crate) unsafe fn into_ref<'a, T>(reference: &T) -> &'a T {
&*(reference as *const T)
}
#[cfg(test)]
#[allow(clippy::unwrap_used)]
mod tests {
use super::*;
use crate::{MemoryReclaimNever, NodeRefSingle, NodeRefs, NodeRefsArray, NodeRefsVec};
#[derive(Debug, Clone, Copy)]
struct Var;
impl<'a> Variant<'a, char> for Var {
type Storage = NodeDataLazyClose<char>;
type Prev = NodeRefSingle<'a, Self, char>;
type Next = NodeRefsVec<'a, Self, char>;
type Ends = NodeRefsArray<'a, 2, Self, char>;
type MemoryReclaim = MemoryReclaimNever;
}
#[test]
fn push_get_ref() {
let mut vec = SelfRefCol::<Var, _>::new();
assert!(vec.pinned_vec.is_empty());
{
let x = SelfRefColMut::new(&mut vec);
let a = x.push_get_ref('a'); // 'a' cannot leak the scope
assert_eq!(vec.pinned_vec.len(), 1);
assert!(a.ref_eq(&vec.pinned_vec[0]));
assert_eq!(vec.pinned_vec[0].data().unwrap(), &'a');
assert!(vec.pinned_vec[0].prev().get().is_none());
assert!(vec.pinned_vec[0].next().get().is_empty());
}
for _ in 1..1000 {
vec.pinned_vec.push(Node::new_free_node('b'));
}
assert_eq!(vec.pinned_vec[0].data().unwrap(), &'a');
}
#[test]
fn set_ends() {
let mut vec = SelfRefCol::<Var, _>::new();
assert!(vec.pinned_vec.is_empty());
assert!(vec.ends().get()[0].is_none());
assert!(vec.ends().get()[1].is_none());
{
let x = SelfRefColMut::new(&mut vec);
let a = x.push_get_ref('a');
let b = x.push_get_ref('b');
x.set_ends_refs(NodeRefsArray::new([Some(b), Some(a)]));
assert!(b.ref_eq(x.ends().get()[0].unwrap()));
assert!(a.ref_eq(x.ends().get()[1].unwrap()));
x.set_ends([Some(a), Some(b)]);
assert!(a.ref_eq(x.ends().get()[0].unwrap()));
assert!(b.ref_eq(x.ends().get()[1].unwrap()));
}
for _ in 1..1000 {
vec.pinned_vec.push(Node::new_free_node('b'));
}
assert_eq!(Some(&'a'), vec.ends().get()[0].unwrap().data());
assert_eq!(Some(&'b'), vec.ends().get()[1].unwrap().data());
}
}