1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
use crate::{
nodes::{can_leak::CanLeak, node::Node},
selfref_col_mut::{into_mut, SelfRefColMut},
variants::{
memory_reclaim::{MemoryReclaimAlways, MemoryReclaimPolicy, Reclaim},
variant::Variant,
},
NodeDataLazyClose, SelfRefColVisit,
};
use orx_split_vec::{prelude::PinnedVec, Recursive, SplitVec};
use std::marker::PhantomData;
/// `SelfRefCol` is a core data structure to conveniently build safe and efficient self referential collections, such as linked lists and trees.
///
/// Note that this core structure is capable of representing a wide range of self referential collections, where the variant is conveniently defined by expressive trait type definitions.
///
/// The represented collections have the following features:
/// * Relations are represented by regular `&` references avoiding the need to use smart pointers such as `Box`, `Rc`, `Arc`, etc.
/// * The collection makes sure that these references are set only among elements of the collections.
/// In other words, no external references are allowed, or references of elements of the collection cannot leak out.
/// This constructs the safety guarantees.
/// * The elements of the collection are internally stored in a `PinnedVec` implementation, which is crucial for the correctness of the references.
/// Furthermore, in this way, elements of the collection are stored close to each other rather than being in arbitrary locations in memory.
/// This provides better cache locality when compared to such collections where elements are stored by arbitrary heap allocations.
///
/// The collection is defined by the following generic arguments:
/// * `T`: type of the elements stored in the collection.
/// * `V`: type of the `Variant` defining the structure of the collection with the following:
/// * `V::Storage`: defines how the elements of `T` will be stored:
/// * `NodeDataLazyClose`: elements are stored as `Option<T>` allowing lazy node closure or element removal;
/// * `NodeDataEagerClose`: elements are stored directly as `T`.
/// * `V::Prev`: defines how references to previous elements will be stored.
/// * `NodeRefNone`: there is no previous reference of elements.
/// * `NodeRefSingle`: there is either one or no previous reference of elements, stored as `Option<&Node>`.
/// * `NodeRefsArray`: there are multiple possible previous references up to a constant number `N`, stored as `[Option<&Node>; N]`.
/// * `NodeRefsVec`: there are multiple possible previous references, stored as `Vec<&Node>`.
/// * `V::Next`: defines how references to next elements will be stored:
/// * Similarly, represented as either one of `NodeRefNone` or `NodeRefSingle` or `NodeRefsArray` or `NodeRefsVec`.
/// * `V::Ends`: defines how references to ends of the collection will be stored:
/// * Similarly, represented as either one of `NodeRefNone` or `NodeRefSingle` or `NodeRefsArray` or `NodeRefsVec`.
/// * `V::MemoryReclaim`: defines how memory of closed nodes will be reclaimed:
/// * `MemoryReclaimNever` will never claim closed nodes.
/// * `MemoryReclaimOnThreshold<D>` will claim memory of closed nodes whenever the ratio of closed nodes exceeds one over `2^D`.
///
/// # Example
///
/// Consider the following four structs implementing `Variant` to define four different self referential collections.
/// Note that the definitions are expressive and concise leading to efficient implementations.
///
/// ```rust
/// use orx_selfref_col::*;
///
/// #[derive(Clone, Copy)]
/// struct SinglyListVariant;
///
/// impl<'a, T: 'a> Variant<'a, T> for SinglyListVariant {
/// type Storage = NodeDataLazyClose<T>; // lazy close
/// type MemoryReclaim = MemoryReclaimOnThreshold<2>; // closed nodes will be reclaimed when utilization drops below 75%
/// type Prev = NodeRefNone; // previous nodes are not stored
/// type Next = NodeRefSingle<'a, Self, T>; // there is only one next node, if any
/// type Ends = NodeRefSingle<'a, Self, T>; // there is only one end, namely the front of the list
/// }
///
/// #[derive(Clone, Copy)]
/// struct DoublyListVariant;
///
/// impl<'a, T: 'a> Variant<'a, T> for DoublyListVariant {
/// type Storage = NodeDataLazyClose<T>; // lazy close
/// type MemoryReclaim = MemoryReclaimOnThreshold<3>; // closed nodes will be reclaimed when utilization drops below 87.5%
/// type Prev = NodeRefSingle<'a, Self, T>; // there is only one previous node, if any
/// type Next = NodeRefSingle<'a, Self, T>; // there is only one next node, if any
/// type Ends = NodeRefsArray<'a, 2, Self, T>; // there are two ends, namely the front and back of the list
/// }
///
/// #[derive(Clone, Copy)]
/// struct BinaryTreeVariant;
///
/// impl<'a, T: 'a> Variant<'a, T> for BinaryTreeVariant {
/// type Storage = NodeDataLazyClose<T>; // lazy close
/// type MemoryReclaim = MemoryReclaimOnThreshold<1>; // closed nodes will be reclaimed when utilization drops below 50%
/// type Prev = NodeRefSingle<'a, Self, T>; // there is only one previous node, namely parent node, if any
/// type Next = NodeRefsArray<'a, 2, Self, T>; // there are 0, 1 or 2 next or children nodes
/// type Ends = NodeRefSingle<'a, Self, T>; // there is only one end, namely the root of the tree
/// }
///
/// #[derive(Clone, Copy)]
/// struct DynamicTreeVariant;
///
/// impl<'a, T: 'a> Variant<'a, T> for DynamicTreeVariant {
/// type Storage = NodeDataLazyClose<T>; // lazy close
/// type MemoryReclaim = MemoryReclaimNever; // closed nodes will be left as holes
/// type Prev = NodeRefSingle<'a, Self, T>; // there is only one previous node, namely parent node, if any
/// type Next = NodeRefsVec<'a, Self, T>; // there might be any number of next nodes, namely children nodes
/// type Ends = NodeRefSingle<'a, Self, T>; // there is only one end, namely the root of the tree
/// }
/// ```
///
/// # Crates using `SelfRefCol`
///
/// The following crates use `SelfRefCol` to conveniently build the corresponding data structure:
/// * [https://crates.io/crates/orx-linked-list](https://crates.io/crates/orx-linked-list): implements singly and doubly linked lists.
pub struct SelfRefCol<'a, V, T, P = SplitVec<Node<'a, V, T>, Recursive>>
where
V: Variant<'a, T>,
P: PinnedVec<Node<'a, V, T>>,
{
pub(crate) ends: V::Ends,
pub(crate) pinned_vec: P,
pub(crate) len: usize,
pub(crate) memory_reclaim_policy: V::MemoryReclaim,
pub(crate) phantom: PhantomData<&'a V>,
}
impl<'a, V, T, P> SelfRefCol<'a, V, T, P>
where
V: Variant<'a, T>,
P: PinnedVec<Node<'a, V, T>>,
{
/// Creates a new empty self referential collection.
pub fn new() -> Self
where
P: Default,
{
Self {
ends: V::Ends::default(),
pinned_vec: Default::default(),
len: 0,
memory_reclaim_policy: Default::default(),
phantom: Default::default(),
}
}
/// Returns a reference to the ends of the self referential collection.
///
/// Ends represent special references of the self referential structure.
/// It can be nothing; i.e., `NodeRefNone`; however, they are common in such structures.
/// For instance,
/// * ends of a singly linked list is the **front** of the list which can be represented as a `NodeRefSingle` reference;
/// * ends of a doubly linked list contains two references, **front** and **back** of the list which can be represented by a `NodeRefsArray<2, _, _>`;
/// * ends of a tree is the **root** which can again be represented as a `NodeRefSingle` reference.
///
/// Ends of a `SelfRefCol` is generic over `NodeRefs` trait which can be decided on the structure's requirement.
pub fn ends(&self) -> &V::Ends {
&self.ends
}
/// Returns length of the self referential collection.
pub fn len(&self) -> usize {
self.len
}
/// Returns whether or not the self referential collection is empty.
pub fn is_empty(&self) -> bool {
self.len == 0
}
// mut
/// Clears the collection: clears all elements and the ends of the collection.
pub fn clear(&mut self) {
self.ends = V::Ends::default();
self.pinned_vec.clear();
self.len = 0;
}
/// Manually attempts to reclaim closed nodes.
///
/// # Safety
///
/// Note that reclaiming closed nodes invalidates node indices (`NodeIndex`) which are already stored outside of this collection.
///
/// * when `MemoryReclaim` policy is set to **`MemoryReclaimOnThreshold`**, there is no safety concern:
/// * In this policy, memory reclaim operations automatically happen whenever utilization is below a threshold.
/// * Therefore, manually triggering the reclaim operation is no different.
/// * `NodeIndex` compares the memory state of the collection and:
/// * `NodeIndex::get_ref` returns `None` in such a case, or
/// * `NodeIndex::as_ref` panics (equivalent to unwrapping the result of `get_ref`).
/// * when `MemoryReclaim` policy is set to **`MemoryReclaimNever`**; however, the caller takes responsibility:
/// * In this policy, memory reclaim operations never happen implicitly.
/// * This can be considered as a performance optimization for cases where removals are rare.
/// * This further gives the luxury to keep size of the `NodeIndex` equal to one pointer (rather than two pointers as in the `MemoryReclaimOnThreshold` case).
/// * However, this means that `NodeIndex` is not able to detect the memory reclaims. The safety rule is then as follows:
/// * Node indices will never be invalid due to implicit memory reclaim operations.
/// * Node indices will be invalidated and must not be used whenever `SelfRefCol::reclaim_closed_nodes(&mut self)` is manually called.
/// * Importantly, note that this will not lead to UB.
/// * The safety concern is more around correctness of the reference rather than memory read violations.
/// * `SelfRefCol` will never allow to read outside its memory.
pub fn reclaim_closed_nodes(&mut self)
where
P: 'a,
T: 'a,
V: Variant<'a, T, Storage = NodeDataLazyClose<T>>,
for<'rf> SelfRefColMut<'rf, 'a, V, T, P>: Reclaim<V::Prev, V::Next>,
{
let mut vecmut = SelfRefColMut::new(self);
MemoryReclaimAlways::reclaim_closed_nodes(&mut vecmut);
}
// visit
/// Method allowing to visit nodes of the collection and return values from the collection.
///
/// This method can only return types which implement `CanLeak`.
/// Note that only `T` and `NodeIndex`, and types wrapping these two types, such as `Option` or `Vec`, implement `CanLeak`.
/// This ensures the safety guarantees ara maintained.
///
/// This method takes two arguments:
/// * **`value_to_move`** is, as the name suggests, a value to be moved to the visit lambda.
/// * `visit_take_lambda` is the expression defining the search inside the collection.
/// * The lambda takes two parameters:
/// * the first parameter is the `SelfRefColVisit` type which is the key for constant-time node access methods **without mutation**;
/// * the second parameter is the value moved into the lambda, which is exactly the `value_to_move` parameter of this method.
/// * And it returns a type implementing `CanLeak` to make sure that safety guarantees of `SelfRefCol` are maintained.
/// * Note that the lambda is of a function pointer type; i.e., `fn`, rather than a function trait such as `FnOnce`.
/// This is intentional and critical in terms of the safety guarantees.
/// Its purpose is to prevent capturing data from the environment, as well as, prevent leaking vector references to outside of the lambda.
///
/// # Examples
///
/// ## Example - Take out Value
///
/// The following code block demonstrates the use of the `visit_take` function to define the index_of method of a singly, or doubly, linked list.
/// Note that `self.col` below is a `SelfRefVisit`.
/// We can easily access the nodes and traverse through the references among them inside the lambda.
/// In this example, we move inside a value to search.
/// Once we reach a node with the given value, we return the node index which implements `CanLeak`.
///
/// ```rust ignore
/// pub fn index_of(&self, value: &T) -> Option<NodeIndex<'a, V, T>>
/// where
/// T: PartialEq,
/// {
/// self.col.visit_take(value, |x, value| {
/// let mut current = x.ends().front();
/// while let Some(node) = current {
/// match node.data() {
/// Some(data) if value == data => return Some(node.index(&x)),
/// _ => current = *node.next().get(),
/// }
/// }
/// None
/// })
/// }
/// ```
pub fn visit_take<Move, Take>(
&self,
value_to_move: Move,
visit_take_lambda: fn(SelfRefColVisit<'_, 'a, V, T, P>, Move) -> Take,
) -> Take
where
Take: CanLeak<'a, V, T, P>,
{
let vecmut = SelfRefColVisit::new(self);
visit_take_lambda(vecmut, value_to_move)
}
// mutate
/// Method allowing to mutate the collection.
///
/// This method takes the following arguments:
/// * **`value_to_move`** is, as the name suggests, a value to be moved to the mutation lambda.
/// Two common use cases to move this value to the lambda are:
/// * to add moved element(s) of `T` to the self referential collection,
/// * to use moved `NodeIndex` (indices) to access elements in constant time.
/// * **`move_mutate_lambda`** is the expression defining the mutation.
/// * The lambda takes two parameters:
/// * the first parameter is the `SelfRefColMut` type which is the key for all `SelfRefNode` mutation and constant-time access methods;
/// * the second parameter is the value moved into the lambda, which is exactly the `value_to_move` parameter of this method.
/// * Note that the lambda is of a function pointer type; i.e., `fn`, rather than a function trait such as `FnOnce`.
/// This is intentional and critical for safety guarantees of the collection.
/// This prevents capturing data from the environment, as well as, prevents leaking references outside of the lambda.
///
/// This design allows to conveniently mutate the references within the vector without the complexity of lifetimes and borrow checker.
/// Prior references can be broken, references can be rearranged or new references can be built easily.
/// Furthermore, references by `NodeIndex` can be used for direct constant-time access to elements.
/// This convenience is achieved by the encapsulation of all mutations within a non-capturing lambda.
///
/// # Example
///
/// The following code block demonstrates the use of the `mutate` function to define the push-front method of a singly linked list.
/// Note that `self.col` below is a `SelfRefCol`.
/// The pushed `value` is moved to the lambda.
/// Inside the lambda, this value is pushed to the list, which is stored inside a linked list node.
/// Links and ends (front of the singly linked list) are updated by using the reference to the newly pushed node.
///
/// ```rust ignore
/// pub fn push_front(&mut self, value: T) {
/// self.col.mutate(value, |x, value| match x.ends().front() {
/// Some(prior_front) => {
/// let new_front = x.push_get_ref(value);
/// new_front.set_next(&x, prior_front);
/// x.set_ends(new_front);
/// }
/// None => {
/// let node = x.push_get_ref(value);
/// x.set_ends([Some(node), Some(node)]);
/// }
/// });
/// }
/// ```
pub fn mutate<Move>(
&mut self,
value_to_move: Move,
move_mutate_lambda: fn(SelfRefColMut<'_, 'a, V, T, P>, Move),
) {
let vecmut = SelfRefColMut::new(self);
move_mutate_lambda(vecmut, value_to_move);
}
/// Method allowing to mutate the collection and return values from the collection.
///
/// This method can only return types which implement `CanLeak`.
/// Note that only `T` and `NodeIndex`, and types wrapping these two types, such as `Option` or `Vec`, implement `CanLeak`.
/// This ensures the safety guarantees ara maintained.
///
/// This method takes two arguments:
/// * **`value_to_move`** is, as the name suggests, a value to be moved to the mutation lambda.
/// Two common use cases to move this value to the lambda are:
/// * to add moved element(s) of `T` to the self referential collection,
/// * to use moved `NodeIndex` (indices) to access elements in constant time.
/// * `mutate_get_lambda` is the expression defining the mutation.
/// * The lambda takes two parameters:
/// * the first parameter is the `SelfRefColMut` type which is the key for all `SelfRefNode` mutation and constant-time access methods;
/// * the second parameter is the value moved into the lambda, which is exactly the `value_to_move` parameter of this method.
/// * And it returns a type implementing `CanLeak` to make sure that safety guarantees of `SelfRefCol` are maintained.
/// * Note that the lambda is of a function pointer type; i.e., `fn`, rather than a function trait such as `FnOnce`.
/// This is intentional and critical in terms of the safety guarantees.
/// Its purpose is to prevent capturing data from the environment, as well as, prevent leaking vector references to outside of the lambda.
///
/// This design allows to conveniently mutate the references within the vector without the complexity of lifetimes and borrow checker.
/// Prior references can be broken, references can be rearranged or new references can be built easily.
/// Furthermore, references by `NodeIndex` can be used for direct constant-time access to elements.
/// This convenience is achieved by the encapsulation of all mutations within a non-capturing lambda.
///
/// # Examples
///
/// ## Example - Take out Value
///
/// The following code block demonstrates the use of the `mutate_take` function to define the pop-front method of a singly linked list.
/// Note that `self.vec` below is a `SelfRefCol`.
/// Mutations are applied only if the vector is non-empty; i.e., there exists a **front**.
/// When this is the case, the ends reference (front of the list) is updated.
/// Furthermore, the prior-front's underlying data is taken out and returned from the lambda.
/// This, in turn, is returned from the `pop_front` method, demonstrating safely removing elements from the self referential collection.
///
/// ```rust ignore
/// pub fn pop_front(&mut self) -> Option<T> {
/// self.col.mutate_take(|x| {
/// x.ends().front().map(|prior_front| {
/// let new_front = *prior_front.next().get();
/// let new_back = some_only_if(new_front.is_some(), x.ends().back());
/// x.set_ends([new_front, new_back]);
///
/// if let Some(new_front) = new_front {
/// new_front.clear_prev(&x);
/// }
///
/// prior_front.close_node_take_data(&x)
/// })
/// })
/// }
/// ```
///
/// ## Example - Take out `NodeIndex`
///
/// The following is exactly the same `push_front` example given in `mutate` example.
/// However, we return an index, `NodeIndex`, to the pushed element this time.
/// This index can later be used to have a constant time access to the element.
///
/// ```rust ignore
/// pub fn push_front(&mut self, value: T) -> NodeIndex<'_, V, T> {
/// self.col.mutate(value, |x, value| match x.ends().front() {
/// Some(prior_front) => {
/// let new_front = x.push_get_ref(value);
/// new_front.set_next(&x, prior_front);
/// x.set_ends(new_front);
/// new_front.index(&x)
/// }
/// None => {
/// let node = x.push_get_ref(value);
/// x.set_ends([Some(node), Some(node)]);
/// node.index(&x)
/// }
/// });
/// }
/// ```
pub fn mutate_take<Move, Take>(
&mut self,
value_to_move: Move,
move_mutate_take_lambda: fn(SelfRefColMut<'_, 'a, V, T, P>, Move) -> Take,
) -> Take
where
Take: CanLeak<'a, V, T, P>,
{
let vecmut = SelfRefColMut::new(self);
move_mutate_take_lambda(vecmut, value_to_move)
}
/// This method takes three arguments:
/// * `predicate` is the function to be used to select elements to be kept.
/// * `collect` is the closure to collect the elements which does not satisfy the predicate and will be removed from this collection.
/// * `mutate_filter_collect_lambda` is the expression defining the retain together with the mutation.
/// * In addition to `predicate` and `collect`, the lambda takes `SelfRefColMut` type which is the key for all `SelfRefNode` mutation methods to provide safety guarantees.
/// * Note that the lambda is of a function pointer type; i.e., `fn`, rather than a function trait such as `FnOnce`.
/// This is intentional and critical in terms of the safety guarantees.
/// Its purpose is to prevent capturing data from the environment, as well as, prevent leaking vector references to outside of the lambda.
///
/// This method is a generalization of `mutate_take` which returns the element removed from the collection.
/// In this method `collect(T)` is called on removed elements.
/// This method might be doing nothing to drop the removed values, or might be pushing them to a captured collection such as a vector.
/// Note that the signature of `Collect` is `FnMut(T)`; this makes sure that the function is called with removed/owned element values making sure that no references can leak out.
///
/// This design allows to conveniently mutate the references within the vector without the complexity of lifetimes and borrow checker.
/// Prior references can be broken, references can be rearranged or new references can be built easily and all in one function.
/// This convenience while being safe is achieved by the encapsulation of all mutations within a non-capturing lambda.
///
/// # Examples
///
/// ```rust
/// use orx_selfref_col::*;
///
/// #[derive(Debug, Clone, Copy)]
/// struct Var;
/// impl<'a> Variant<'a, String> for Var {
/// type Storage = NodeDataLazyClose<String>;
/// type Prev = NodeRefSingle<'a, Self, String>;
/// type Next = NodeRefsVec<'a, Self, String>;
/// type Ends = NodeRefsArray<'a, 2, Self, String>;
/// type MemoryReclaim = MemoryReclaimNever;
/// }
///
/// // build up collection
/// let mut col = SelfRefCol::<Var, _>::new();
/// let values = ['a', 'b', 'c', 'd', 'e'];
/// col.mutate(values.map(|x| x.to_string()), |x, vals| {
/// for value in vals {
/// let _ = x.push_get_ref(value);
/// }
/// });
///
/// let taboo_list = ['a', 's', 'd', 'f'];
/// let taboo_list = taboo_list.map(|x| x.to_string());
/// let is_allowed = |c: &String| !taboo_list.contains(c);
///
/// let mut collected = vec![];
/// let mut collect = |c| collected.push(c);
///
/// col.mutate_filter_collect(&is_allowed, &mut collect, |x, predicate, collect| {
/// for i in 0..x.len() {
/// let node = x.get_node(i).expect("is-some");
/// if let Some(value) = node.data() {
/// if !predicate(value) {
/// collect(node.close_node_take_data(&x));
/// }
/// }
/// }
/// });
///
/// assert_eq!(3, col.len());
/// assert_eq!(&['a'.to_string(), 'd'.to_string()], collected.as_slice());
/// ```
pub fn mutate_filter_collect<Predicate, Collect>(
&mut self,
predicate: &Predicate,
collect: &mut Collect,
mutate_filter_collect_lambda: fn(SelfRefColMut<'_, 'a, V, T, P>, &Predicate, &mut Collect),
) where
Predicate: Fn(&T) -> bool,
Collect: FnMut(T),
{
let vecmut = SelfRefColMut::new(self);
mutate_filter_collect_lambda(vecmut, predicate, collect);
}
// helpers
pub(crate) fn memory_reclaimed(&mut self) {
self.memory_reclaim_policy = self.memory_reclaim_policy.successor_state();
}
}
type RecursiveSplitVec<'a, V, T> = SplitVec<Node<'a, V, T>, Recursive>;
type RecursiveSelfRefColMut<'rf, 'a, V, T> =
SelfRefColMut<'rf, 'a, V, T, RecursiveSplitVec<'a, V, T>>;
impl<'a, V, T> SelfRefCol<'a, V, T, SplitVec<Node<'a, V, T>, Recursive>>
where
V: Variant<'a, T>,
{
/// This method appends another self collection to this collection.
/// Note that this method is available in self referential collections using an underlying pinned vector with
/// [`orx_split_vec::Recursive`](https://docs.rs/orx-split-vec/latest/orx_split_vec/struct.Recursive.html) growth.
/// This allows appending underlying vectors in constant time.
///
/// This method takes the following arguments:
/// * `other` is the other self referential collection to be appended to this collection.
/// * `value_to_move` is, as the name suggests, a value to be moved to the mutation lambda.
/// * `append_mutate_lambda` is the expression defining the mutation.
/// * The lambda takes three parameters.
/// * The first parameter is the `SelfRefColMut` type which is the mutation key for this collection.
/// * The second parameter is the `SelfRefColMut` key of the `other` collection.
/// * The third parameter is the value moved into the lambda, which is exactly the `value_to_move` parameter of this method.
/// * Note that the lambda is of a function pointer type; i.e., `fn`, rather than a function trait such as `FnOnce`.
/// This is intentional and critical in terms of the safety guarantees.
/// Its purpose is to prevent capturing data from the environment, as well as, prevent leaking vector references to outside of the lambda.
///
/// This design allows to conveniently mutate the references within the vector without the complexity of lifetimes and borrow checker.
/// Prior references can be broken, references can be rearranged or new references can be built easily.
/// Furthermore, references by `NodeIndex` can be used for direct constant-time access to elements.
/// This convenience is achieved by the encapsulation of all mutations within a non-capturing lambda.
///
/// # Example
///
/// The following code block demonstrates the use of the `move_append_mutate` function to define the append-front method of a singly linked list.
/// The method appends the `other` list to the front of the `self` list in ***O(1)*** time complexity.
///
/// Note that appending the underlying storages are handled automatically by `SelfRefCol`.
/// The lambda, taking mutation keys of both collections being merged, is responsible for fixing references.
/// In this example, one next-relation is established and ends (front and back) of the list are updated.
///
/// ```rust ignore
/// pub fn append_front(&mut self, other: Self) {
/// self.col.move_append_mutate(other.col, (), |x, y, _| {
/// match (x.ends().front(), y.ends().back()) {
/// (Some(a), Some(b)) => {
/// b.set_next(&x, a);
/// x.set_ends([y.ends().front(), x.ends().back()]);
/// }
/// (None, Some(_)) => {
/// x.set_ends([y.ends().front(), y.ends().back()]);
/// }
/// _ => {}
/// };
/// None
/// });
/// }
/// ```
pub fn append_mutate<Move>(
&mut self,
other: Self,
value_to_move: Move,
append_mutate_lambda: fn(
RecursiveSelfRefColMut<'_, 'a, V, T>,
RecursiveSelfRefColMut<'_, 'a, V, T>,
Move,
),
) {
self.len += other.len;
let mut_other = unsafe { into_mut(&other) };
self.pinned_vec.append(other.pinned_vec);
let x = SelfRefColMut::new(self);
let y = SelfRefColMut::new(mut_other);
append_mutate_lambda(x, y, value_to_move);
}
}
impl<'a, V, T, P> Default for SelfRefCol<'a, V, T, P>
where
V: Variant<'a, T>,
P: PinnedVec<Node<'a, V, T>> + Default,
{
fn default() -> Self {
Self::new()
}
}
#[cfg(test)]
#[allow(clippy::unwrap_used)]
mod tests {
use super::*;
use crate::{
MemoryReclaimNever, NodeData, NodeDataLazyClose, NodeRefSingle, NodeRefs, NodeRefsArray,
NodeRefsVec,
};
use float_cmp::approx_eq;
#[derive(Debug, Clone, Copy)]
struct Var;
impl<'a> Variant<'a, String> for Var {
type Storage = NodeDataLazyClose<String>;
type Prev = NodeRefSingle<'a, Self, String>;
type Next = NodeRefsVec<'a, Self, String>;
type Ends = NodeRefsArray<'a, 2, Self, String>;
type MemoryReclaim = MemoryReclaimNever;
}
#[test]
fn new_default() {
let vec = SelfRefCol::<Var, _>::new();
assert!(vec.pinned_vec.is_empty());
assert!(vec.ends().get()[0].is_none());
assert!(vec.ends().get()[1].is_none());
let vec = SelfRefCol::<Var, _>::default();
assert!(vec.pinned_vec.is_empty());
assert!(vec.ends().get()[0].is_none());
assert!(vec.ends().get()[1].is_none());
}
#[test]
fn clear() {
let mut col = SelfRefCol::<Var, _>::new();
let values = ["a", "b", "c", "d"].map(|x| x.to_string());
col.mutate(values, |x, values| {
for val in values {
let rf = x.push_get_ref(val);
x.set_ends([Some(rf), Some(rf)]);
}
});
assert_eq!(col.pinned_vec.len(), 4);
col.clear();
assert!(col.pinned_vec.is_empty());
assert!(col.ends().get()[0].is_none());
assert!(col.ends().get()[1].is_none());
assert!(col.is_empty());
assert_eq!(0, col.len());
}
#[test]
fn mutate() {
let mut vec = SelfRefCol::<Var, _>::new();
let text = String::from("a");
vec.mutate(text, |x, a| {
let _ = x.push_get_ref(a);
});
assert_eq!(vec.pinned_vec.len(), 1);
assert_eq!(vec.pinned_vec[0].data.get().unwrap(), "a");
vec.mutate(String::from("b"), |x, b| {
let _ = x.push_get_ref(b);
});
assert_eq!(vec.pinned_vec.len(), 2);
assert_eq!(vec.pinned_vec[0].data.get().unwrap(), "a");
assert_eq!(vec.pinned_vec[1].data.get().unwrap(), "b");
}
#[test]
fn mutate_take() {
let mut vec = SelfRefCol::<Var, _>::new();
let text = String::from("a");
vec.mutate(text.clone(), |x, a| {
let ref_a = x.push_get_ref(a);
x.set_ends([Some(ref_a), None]);
});
let text_back = vec.mutate_take((), |x, _| {
let first = x.ends().get()[0];
let data = first.map(|n| n.close_node_take_data(&x));
x.set_ends([None, None]);
data
});
assert_eq!(Some(text), text_back);
}
#[test]
fn move_mutate_take() {
let mut vec = SelfRefCol::<Var, _>::new();
// when empty
let taken: Option<String> = vec.mutate_take("a".to_string(), |x, a| {
let _ = x.push_get_ref(a);
None
});
assert!(taken.is_none());
// with some taken value
let taken = vec.mutate_take(["b".to_string(), "c".to_string()], |x, vals| match vals {
[b, c] => {
let ref_b = x.push_get_ref(b);
Some(x.swap_data(ref_b, c))
}
});
assert_eq!(taken, Some("b".to_string()));
}
#[test]
fn mutate_filter_collect() {
let taboo_list = ['a', 's', 'd', 'f'];
let taboo_list = taboo_list.map(|x| x.to_string());
let is_allowed = |c: &String| !taboo_list.contains(c);
// when empty
let mut col = SelfRefCol::<Var, _>::new();
let mut vec = vec![];
let mut collect = |c| vec.push(c);
col.mutate_filter_collect(&is_allowed, &mut collect, |x, predicate, collect| {
for i in 0..x.len() {
let node = x.get_node(i).expect("is-some");
if let Some(value) = node.data() {
if !predicate(value) {
collect(node.close_node_take_data(&x));
}
}
}
});
assert!(col.is_empty());
assert!(vec.is_empty());
// when single item
let mut col = SelfRefCol::<Var, _>::new();
col.mutate("a".to_string(), |x, a| {
let _ = x.push_get_ref(a);
});
let mut vec = vec![];
let mut collect = |c| vec.push(c);
col.mutate_filter_collect(&is_allowed, &mut collect, |x, predicate, collect| {
for i in 0..x.len() {
let node = x.get_node(i).expect("is-some");
if let Some(value) = node.data() {
if !predicate(value) {
collect(node.close_node_take_data(&x));
}
}
}
});
assert!(col.is_empty());
assert_eq!(&['a'.to_string()], vec.as_slice());
// when multiple items
let mut col = SelfRefCol::<Var, _>::new();
let values = ['a', 'b', 'c', 'd', 'e'];
col.mutate(values.map(|x| x.to_string()), |x, vals| {
for value in vals {
let _ = x.push_get_ref(value);
}
});
let mut vec = vec![];
let mut collect = |c| vec.push(c);
col.mutate_filter_collect(&is_allowed, &mut collect, |x, predicate, collect| {
for i in 0..x.len() {
let node = x.get_node(i).expect("is-some");
if let Some(value) = node.data() {
if !predicate(value) {
collect(node.close_node_take_data(&x));
}
}
}
});
assert_eq!(3, col.len());
assert_eq!(
&['b'.to_string(), 'c'.to_string(), 'e'.to_string()],
col.pinned_vec
.iter()
.filter_map(|x| x.data())
.cloned()
.collect::<Vec<_>>()
.as_slice()
);
assert_eq!(&['a'.to_string(), 'd'.to_string()], vec.as_slice());
}
#[test]
fn move_append_mutate() {
let mut col = SelfRefCol::<Var, _>::new();
col.mutate(["a", "b", "c"].map(|x| x.to_string()), |x, values| {
for val in values {
let _ = x.push_get_ref(val);
}
x.set_ends([x.first_node(), x.last_node()]);
});
let mut other = SelfRefCol::<Var, _>::new();
other.mutate(["d", "e"].map(|x| x.to_string()), |x, values| {
for val in values {
let _ = x.push_get_ref(val);
}
x.set_ends([x.first_node(), x.last_node()]);
});
col.append_mutate(other, (), |x, y, _| {
x.set_ends([x.first_node(), y.last_node()]);
});
assert_eq!(col.pinned_vec.len(), 5);
assert_eq!(col.pinned_vec[0].data.get().unwrap(), "a");
assert_eq!(col.pinned_vec[1].data.get().unwrap(), "b");
assert_eq!(col.pinned_vec[2].data.get().unwrap(), "c");
assert_eq!(col.pinned_vec[3].data.get().unwrap(), "d");
assert_eq!(col.pinned_vec[4].data.get().unwrap(), "e");
assert_eq!(
col.ends().get()[0].map(|x| x.data().unwrap().as_str()),
Some(&"a").copied()
);
assert_eq!(
col.ends().get()[1].map(|x| x.data().unwrap().as_str()),
Some(&"e").copied()
);
}
#[test]
fn reclaim_closed_nodes() {
let mut col = SelfRefCol::<Var, _>::new();
let values = ['a', 'b', 'c', 'd', 'e', 'f'].map(|x| x.to_string());
let [a, b, c, _, _, _] = col.mutate_take(values, |x, values| {
values.map(|val| x.push_get_ref(val).index(&x))
});
assert!(approx_eq!(f32, col.node_utilization(), 6.0 / 6.0, ulps = 2));
col.mutate_take(a, |x, a| x.as_node_ref(a).close_node_take_data(&x));
assert!(approx_eq!(f32, col.node_utilization(), 5.0 / 6.0, ulps = 2));
col.mutate_take(b, |x, b| x.as_node_ref(b).close_node_take_data(&x));
assert!(approx_eq!(f32, col.node_utilization(), 4.0 / 6.0, ulps = 2));
col.mutate_take(c, |x, c| x.as_node_ref(c).close_node_take_data(&x));
assert!(approx_eq!(f32, col.node_utilization(), 3.0 / 6.0, ulps = 2));
col.reclaim_closed_nodes();
dbg!(col.node_utilization());
assert!(approx_eq!(f32, col.node_utilization(), 3.0 / 3.0, ulps = 2));
}
}