1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
//! # orx-priority-queue
//!
//! [![orx-priority-queue crate](https://img.shields.io/crates/v/orx-priority-queue.svg)](https://crates.io/crates/orx-priority-queue)
//! [![orx-priority-queue documentation](https://docs.rs/orx-priority-queue/badge.svg)](https://docs.rs/orx-priority-queue)
//!
//!
//! Priority queue traits and high performance d-ary heap implementations.
//!
//! ## A. Priority Queue Traits
//!
//! This crate aims to provide algorithms with the abstraction over priority queues. In order to achieve this, two traits are defined: **`PriorityQueue<N, K>`** and **`PriorityQueueDecKey<N, K>`**. The prior is a simple queue while the latter extends it by providing additional methods to change priorities of the items that already exist in the queue.
//!
//! The separation is important since additional operations often requires the implementors to allocate internal memory for bookkeeping. Therefore, we would prefer `PriorityQueueDecKey<N, K>` only when we need to change the priorities.
//!
//! See [DecreaseKey](https://github.com/orxfun/orx-priority-queue/blob/main/docs/DecreaseKey.md) section for a discussion on when decrease-key operations are required and why they are important.
//!
//! ## B. d-ary Heap Implementations
//!
//! Three categories of d-ary heap implementations are provided.
//!
//! All the heap types have a constant generic parameter `D` which defines the maximum number of children of a node in the tree. Note that d-ary heap is a generalization of the binary heap for which d=2:
//! * With a large d: number of per level comparisons increases while the tree depth becomes smaller.
//! * With a small d: each level requires fewer comparisons while the tree gets deeper.
//!
//! There is no dominating variant for all use cases. Binary heap is often the preferred choice due to its simplicity of implementation. However, the d-ary implementations in this crate, taking benefit of the **const generics**, provide a generalization, making it easy to switch between the variants. The motivation is to allow for tuning the heap to the algorithms and relevant input sets for performance critical methods.
//!
//! ### `DaryHeap`
//!
//! This is the basic d-ary heap implementing `PriorityQueue<N, K>`. It is to be the default choice unless priority updates or decrease-key operations are required.
//!
//! ### `DaryHeapOfIndices`
//!
//! This is a d-ary heap paired up with a positions array and implements `PriorityQueueDecKey<N, K>`.
//!
//! * It requires the nodes to implement `HasIndex` trait which is nothing but `fn index(&self) -> usize`. Note that `usize`, `u64`, etc., already implements `HasIndex`.
//! * Further, it requires to know the maximum index that is expected to enter the queue (candidates coming from a closed set).
//!
//! Once these conditions are satisfied, it performs **significantly faster** than the alternative decrease key queues. Although the closed set requirement might sound strong, it is often naturally satisfied in mathematical algorithms. For instance, for most network traversal algorithms, the candidates set is the nodes of the graph, or indices in `0..num_nodes`.
//!
//! This is the default decrease-key queue provided that the requirements are satisfied.
//!
//! ### `DaryHeapWithMap`
//!
//! This is a d-ary heap paired up with a positions map (`HashMap` or `BTreeMap` when no-std) and implements `PriorityQueueDecKey<N, K>`.
//!
//! This is the most general decrease-key queue that provides the open-set flexibility and fits to almost all cases.
//!
//! ### Other Queues
//!
//! In addition, queue implementations are provided in this crate for the following external data structures:
//!
//! * `std::collections::BinaryHeap<(N, K)>` implements only `PriorityQueue<N, K>`,
//! * `priority_queue:PriorityQueue<N, K>` implements both `PriorityQueue<N, K>` and `PriorityQueueDecKey<N, K>`
//!   * requires `--features impl_priority_queue`
//!
//! This allows to use all the queue implementations interchangeably and measure performance.
//!
//! ### Performance & Benchmarks
//!
//! In scenarios in tested "src/benches":
//! * `DaryHeap` performs slightly faster than `std::collections::BinaryHeap` for simple queue operations; and
//! * `DaryHeapOfIndices` performs significantly faster than queues implementing PriorityQueueDecKey for scenarios requiring decrease key operations.
//!
//! See [Benchmarks](https://github.com/orxfun/orx-priority-queue/blob/main/docs/Benchmarks.md) section to see the experiments and observations.
//!
//! ## C. Examples
//!
//! ### C.1. Basic Usage
//!
//! ```rust
//! use orx_priority_queue::*;
//!
//! // generic over simple priority queues
//! fn test_priority_queue<P>(mut pq: P)
//! where
//!     P: PriorityQueue<usize, f64>,
//! {
//!     pq.clear();
//!
//!     pq.push(0, 42.0);
//!     assert_eq!(Some(&0), pq.peek().map(|x| x.node()));
//!     assert_eq!(Some(&42.0), pq.peek().map(|x| x.key()));
//!
//!     let popped = pq.pop();
//!     assert_eq!(Some((0, 42.0)), popped);
//!     assert!(pq.is_empty());
//!
//!     pq.push(0, 42.0);
//!     pq.push(1, 7.0);
//!     pq.push(2, 24.0);
//!     pq.push(10, 3.0);
//!
//!     while let Some(popped) = pq.pop() {
//!         println!("pop {:?}", popped);
//!     }
//! }
//!
//! // generic over decrease-key priority queues
//! fn test_priority_queue_deckey<P>(mut pq: P)
//! where
//!     P: PriorityQueueDecKey<usize, f64>,
//! {
//!     pq.clear();
//!
//!     pq.push(0, 42.0);
//!     assert_eq!(Some(&0), pq.peek().map(|x| x.node()));
//!     assert_eq!(Some(&42.0), pq.peek().map(|x| x.key()));
//!
//!     let popped = pq.pop();
//!     assert_eq!(Some((0, 42.0)), popped);
//!     assert!(pq.is_empty());
//!
//!     pq.push(0, 42.0);
//!     assert!(pq.contains(&0));
//!
//!     pq.decrease_key(&0, 7.0);
//!     assert_eq!(Some(&0), pq.peek().map(|x| x.node()));
//!     assert_eq!(Some(&7.0), pq.peek().map(|x| x.key()));
//!
//!     let deckey_result = pq.try_decrease_key(&0, 10.0);
//!     assert!(matches!(ResTryDecreaseKey::Unchanged, deckey_result));
//!     assert_eq!(Some(&0), pq.peek().map(|x| x.node()));
//!     assert_eq!(Some(&7.0), pq.peek().map(|x| x.key()));
//!
//!     while let Some(popped) = pq.pop() {
//!         println!("pop {:?}", popped);
//!     }
//! }
//!
//! // d-ary heap generic over const d
//! const D: usize = 4;
//!
//! test_priority_queue(DaryHeap::<usize, f64, D>::default());
//! test_priority_queue(DaryHeapWithMap::<usize, f64, D>::default());
//! test_priority_queue(DaryHeapOfIndices::<usize, f64, D>::with_index_bound(100));
//!
//! test_priority_queue_deckey(DaryHeapWithMap::<usize, f64, D>::default());
//! test_priority_queue_deckey(DaryHeapOfIndices::<usize, f64, D>::with_index_bound(100));
//!
//! // or type aliases for common heaps to simplify signature
//! // Binary or Quarternary to fix d of d-ary
//! test_priority_queue(BinaryHeap::default());
//! test_priority_queue(BinaryHeapWithMap::default());
//! test_priority_queue(BinaryHeapOfIndices::with_index_bound(100));
//! test_priority_queue_deckey(QuarternaryHeapOfIndices::with_index_bound(100));
//! ```
//!
//! ### C.2. Usage in Dijkstra's Shortest Path
//!
//! You may see below two implementations one using a `PriorityQueue` and the other with a `PriorityQueueDecKey`. Please note the following:
//!
//! * `PriorityQueue` and `PriorityQueueDecKey` traits enable algorithm implementations for generic queue types. Therefore we are able to implement the shortest path algorithm once that works for any queue implementation. This allows to benchmark and tune specific queues for specific algorithms or input families.
//! * The second implementation with a decrease key queue pushes a great portion of complexity, or bookkeeping, to the queue and leads to a cleaner algorithm implementation.
//!
//! ```rust
//! use orx_priority_queue::*;
//!
//! // Some additional types to set up the example
//!
//! type Weight = u32;
//!
//! pub struct Edge {
//!     head: usize,
//!     weight: Weight,
//! }
//!
//! pub struct Graph(Vec<Vec<Edge>>);
//!
//! impl Graph {
//!     fn num_nodes(&self) -> usize {
//!         self.0.len()
//!     }
//!
//!     fn out_edges(&self, node: usize) -> impl Iterator<Item = &Edge> {
//!         self.0[node].iter()
//!     }
//! }
//!
//! // Implementation using a PriorityQueue
//!
//! fn dijkstras_with_basic_pq<Q: PriorityQueue<usize, Weight>>(
//!     graph: &Graph,
//!     queue: &mut Q,
//!     source: usize,
//!     sink: usize,
//! ) -> Option<Weight> {
//!     // reset
//!     queue.clear();
//!     let mut dist = vec![Weight::MAX; graph.num_nodes()];
//!
//!     // init
//!     dist[source] = 0;
//!     queue.push(source, 0);
//!
//!     // iterate
//!     while let Some((node, cost)) = queue.pop() {
//!         if node == sink {
//!             return Some(cost);
//!         } else if cost > dist[node] {
//!             continue;
//!         }
//!
//!         let out_edges = graph.out_edges(node);
//!         for Edge { head, weight } in out_edges {
//!             let next_cost = cost + weight;
//!             if next_cost < dist[*head] {
//!                 queue.push(*head, next_cost);
//!                 dist[*head] = next_cost;
//!             }
//!         }
//!     }
//!
//!     None
//! }
//!
//! // Implementation using a PriorityQueueDecKey
//!
//! fn dijkstras_with_deckey_pq<Q: PriorityQueueDecKey<usize, Weight>>(
//!     graph: &Graph,
//!     queue: &mut Q,
//!     source: usize,
//!     sink: usize,
//! ) -> Option<Weight> {
//!     // reset
//!     queue.clear();
//!     let mut visited = vec![false; graph.num_nodes()];
//!
//!     // init
//!     visited[source] = true;
//!     queue.push(source, 0);
//!
//!     // iterate
//!     while let Some((node, cost)) = queue.pop() {
//!         if node == sink {
//!             return Some(cost);
//!         }
//!
//!         let out_edges = graph.out_edges(node);
//!         for Edge { head, weight } in out_edges {
//!             if !visited[*head] {
//!                 queue.try_decrease_key_or_push(&head, cost + weight);
//!             }
//!         }
//!         visited[node] = true;
//!     }
//!
//!     None
//! }
//!
//! // TESTS: basic priority queues
//!
//! let e = |head: usize, weight: Weight| Edge { head, weight };
//! let graph = Graph(vec![
//!     vec![e(1, 4), e(2, 5)],
//!     vec![e(0, 3), e(2, 6), e(3, 1)],
//!     vec![e(1, 3), e(3, 9)],
//!     vec![],
//! ]);
//!
//! let mut pq = BinaryHeap::new();
//! assert_eq!(Some(5), dijkstras_with_basic_pq(&graph, &mut pq, 0, 3));
//! assert_eq!(None, dijkstras_with_basic_pq(&graph, &mut pq, 3, 1));
//!
//! let mut pq = QuarternaryHeap::new();
//! assert_eq!(Some(5), dijkstras_with_basic_pq(&graph, &mut pq, 0, 3));
//! assert_eq!(None, dijkstras_with_basic_pq(&graph, &mut pq, 3, 1));
//!
//! let mut pq = DaryHeap::<_, _, 8>::new();
//! assert_eq!(Some(5), dijkstras_with_basic_pq(&graph, &mut pq, 0, 3));
//! assert_eq!(None, dijkstras_with_basic_pq(&graph, &mut pq, 3, 1));
//!
//! // TESTS: decrease key priority queues
//!
//! let mut pq = BinaryHeapOfIndices::with_index_bound(graph.num_nodes());
//! assert_eq!(Some(5), dijkstras_with_deckey_pq(&graph, &mut pq, 0, 3));
//! assert_eq!(None, dijkstras_with_deckey_pq(&graph, &mut pq, 3, 1));
//!
//! let mut pq = DaryHeapOfIndices::<_, _, 8>::with_index_bound(graph.num_nodes());
//! assert_eq!(Some(5), dijkstras_with_deckey_pq(&graph, &mut pq, 0, 3));
//! assert_eq!(None, dijkstras_with_deckey_pq(&graph, &mut pq, 3, 1));
//!
//! let mut pq = BinaryHeapWithMap::new();
//! assert_eq!(Some(5), dijkstras_with_deckey_pq(&graph, &mut pq, 0, 3));
//! assert_eq!(None, dijkstras_with_deckey_pq(&graph, &mut pq, 3, 1));
//! ```
//!
//! ## Contributing
//!
//! Contributions are welcome! If you notice an error, have a question or think something could be improved, please open an [issue](https://github.com/orxfun/orx-priority-queue/issues/new) or create a PR.
//!
//! ## License
//!
//! This library is licensed under MIT license. See LICENSE for details.

#![warn(
    missing_docs,
    clippy::unwrap_in_result,
    clippy::unwrap_used,
    clippy::panic,
    clippy::panic_in_result_fn,
    clippy::float_cmp,
    clippy::float_cmp_const,
    clippy::missing_panics_doc,
    clippy::todo
)]
#![cfg_attr(not(feature = "std"), no_std)]

extern crate alloc;

mod dary;
mod has_index;
mod impl_queues;
mod node_key_ref;
mod positions;
mod priority_queue;
mod priority_queue_deckey;

pub use crate::priority_queue::PriorityQueue;
pub use dary::daryheap::{BinaryHeap, DaryHeap, QuarternaryHeap};
pub use dary::daryheap_index::{BinaryHeapOfIndices, DaryHeapOfIndices, QuarternaryHeapOfIndices};
pub use dary::daryheap_map::{BinaryHeapWithMap, DaryHeapWithMap, QuarternaryHeapWithMap};
pub use has_index::HasIndex;
pub use node_key_ref::NodeKeyRef;
pub use priority_queue_deckey::{
    PriorityQueueDecKey, ResDecreaseKeyOrPush, ResTryDecreaseKey, ResTryDecreaseKeyOrPush,
    ResUpdateKey, ResUpdateKeyOrPush,
};