1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
use super::heap::Heap;
use crate::{positions::none::HeapPositionsNone, PriorityQueue};

/// Type alias for `DaryHeap<N, K, 2>`; see [`DaryHeap`] for details.
pub type BinaryHeap<N, K> = DaryHeap<N, K, 2>;
/// Type alias for `DaryHeap<N, K, 3>`; see [`DaryHeap`] for details.
pub type TernaryHeap<N, K> = DaryHeap<N, K, 3>;
/// Type alias for `DaryHeap<N, K, 4>`; see [`DaryHeap`] for details.
pub type QuarternaryHeap<N, K> = DaryHeap<N, K, 4>;

/// A d-ary heap which implements `PriorityQueue`, but not `PriorityQueueDecKey`.
///
/// *Its interface is similar to `std::collections:BinaryHeap; however, provides a generalization by allowing different d values.
/// `DaryHeapMap` and DaryHeapOfIndices` on the other hand, provides the additonal functionality of `PriorityQueueDecKey`
/// which are crucial for providing better space complexity in algorithms such as the Dijkstra's shortest path algorithm.*
///
/// # Examples
///
/// ## Heap as a `PriorityQueue`
///
/// Usage of d-ary heap as a basic priority queue.
///
/// ```
/// use orx_priority_queue::*;
///
/// fn test_priority_queue<P>(mut pq: P)
/// where
///     P: PriorityQueue<usize, f64>
/// {
///     pq.clear();
///     
///     pq.push(0, 42.0);
///     assert_eq!(Some(&(0, 42.0)), pq.peek());
///
///     pq.push(1, 7.0);
///     assert_eq!(Some(&(1, 7.0)), pq.peek());
///
///     let popped = pq.pop();
///     assert_eq!(Some((1, 7.0)), popped);
///
///     let popped = pq.pop();
///     assert_eq!(Some((0, 42.0)), popped);
///
///     assert!(pq.is_empty());
/// }
///
/// // basic d-heap without any means to located existing nodes
/// test_priority_queue(DaryHeap::<_, _, 4>::default());
/// test_priority_queue(DaryHeap::<_, _, 3>::with_capacity(16));
/// // using type aliases to simplify signatures
/// test_priority_queue(BinaryHeap::default());
/// test_priority_queue(BinaryHeap::with_capacity(16));
/// test_priority_queue(TernaryHeap::default());
/// test_priority_queue(TernaryHeap::with_capacity(16));
/// test_priority_queue(QuarternaryHeap::default());
/// test_priority_queue(QuarternaryHeap::with_capacity(16));
/// ```
#[derive(Clone, Debug)]
pub struct DaryHeap<N, K, const D: usize = 2>
where
    N: Clone,
    K: PartialOrd + Clone,
{
    heap: Heap<N, K, HeapPositionsNone, D>,
}

impl<N, K, const D: usize> Default for DaryHeap<N, K, D>
where
    N: Clone,
    K: PartialOrd + Clone,
{
    fn default() -> Self {
        Self {
            heap: Heap::new(None, HeapPositionsNone),
        }
    }
}
impl<N, K, const D: usize> DaryHeap<N, K, D>
where
    N: Clone,
    K: PartialOrd + Clone,
{
    /// Creates a new d-ary heap with the given initial `capacity` on the number of nodes to simultaneously exist on the heap.
    ///
    /// # Examples
    ///
    /// ```
    /// use orx_priority_queue::*;
    ///
    /// // create a queue with an expected space complexity of 4
    /// let mut queue = DaryHeap::<_, _, 4>::with_capacity(4);
    /// queue.push('a', 4);
    /// assert_eq!(Some('a'), queue.pop_node());
    /// ```
    pub fn with_capacity(capacity: usize) -> Self {
        Self {
            heap: Heap::new(Some(capacity), HeapPositionsNone),
        }
    }
    /// Returns the 'd' of the d-ary heap.
    /// In other words, it represents the maximum number of children that each node on the heap can have.
    pub const fn d() -> usize {
        D
    }
}

impl<N, K, const D: usize> PriorityQueue<N, K> for DaryHeap<N, K, D>
where
    N: Clone,
    K: PartialOrd + Clone,
{
    #[inline(always)]
    fn len(&self) -> usize {
        self.heap.len()
    }
    #[inline(always)]
    fn capacity(&self) -> usize {
        self.heap.capacity()
    }
    fn as_slice(&self) -> &[(N, K)] {
        self.heap.as_slice()
    }
    fn peek(&self) -> Option<&(N, K)> {
        self.heap.peek()
    }
    fn clear(&mut self) {
        self.heap.clear()
    }
    #[inline(always)]
    fn pop(&mut self) -> Option<(N, K)> {
        self.heap.pop()
    }
    #[inline(always)]
    fn pop_node(&mut self) -> Option<N> {
        self.heap.pop_node()
    }
    #[inline(always)]
    fn pop_key(&mut self) -> Option<K> {
        self.heap.pop_key()
    }
    #[inline(always)]
    fn push(&mut self, node: N, key: K) {
        self.heap.push(node, key)
    }
    #[inline(always)]
    fn push_then_pop(&mut self, node: N, key: K) -> (N, K) {
        self.heap.push_then_pop(node, key)
    }
    #[cfg(test)]
    fn is_valid(&self) -> bool {
        self.heap.is_valid()
    }
}