1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
use super::heap::Heap;
use crate::{
    positions::has_index::HeapPositionsHasIndex, HasIndex, PriorityQueue, PriorityQueueDecKey,
};

/// Type alias for `DaryHeapOfIndices<N, K, 2>`; see [`DaryHeapOfIndices`] for details.
pub type BinaryHeapOfIndices<N, K> = DaryHeapOfIndices<N, K, 2>;
/// Type alias for `DaryHeapOfIndices<N, K, 3>`; see [`DaryHeapOfIndices`] for details.
pub type TernaryHeapOfIndices<N, K> = DaryHeapOfIndices<N, K, 3>;
/// Type alias for `DaryHeapOfIndices<N, K, 4>`; see [`DaryHeapOfIndices`] for details.
pub type QuarternaryHeapOfIndices<N, K> = DaryHeapOfIndices<N, K, 4>;

/// A d-ary heap which implements both `PriorityQueue` and `PriorityQueueDecKey`.
///
/// See [`PriorityQueueDecKey`] for additional functionalities.
///
/// `DaryHeapOfIndices` achieves the additional features by making use of a fixed size position
/// array which allows to track the position of nodes on the heap.
///
/// It has the limitation that the nodes must implement [`HasIndex`].
/// This trait has a single simple method `fn index(&self) -> usize` which acts as a unique identifier
/// of the actual underlying node which is coming from a closed set.
///
/// Consider for instance the usage of the heap as the priority queue of Dijkstra's shortest path algorithm.
/// The nodes are actual nodes of the graph which is a closed set and can be identified by node indices from
/// zero to `N-1`, where `N` is the number of nodes. This heap fits very well such mathematical algorithms
/// due to the following:
/// * using a fixed size array could be considered as a fast `HashMap`.
/// * we often reuse such heaps many times to solve many problems on the same network,
/// compensating for the allocation of the positions array once.
/// * further, compared to a basic priority queue (or to `std::collections::BinaryHeap`),
/// it reduces the space complexity of the Dijkstra's
/// algorithm from *O(N^2)* to *O(N)* by enabling the `decrease_key` operation.
///
/// However, for situations where
/// * the number of nodes entering the queue is very sparse compared to the size of the set of nodes, or
/// * it is not convenient to index the sets,
///
/// `DaryHeapWithMap` provides a more flexible approach.
///
/// # Examples
///
/// ## Heap as a `PriorityQueue`
///
/// Usage of d-ary heap as a basic priority queue.
///
/// ```
/// use orx_priority_queue::*;
///
/// fn test_priority_queue<P>(mut pq: P)
/// where
///     P: PriorityQueue<usize, f64>
/// {
///     pq.clear();
///     
///     pq.push(0, 42.0);
///     assert_eq!(Some(&(0, 42.0)), pq.peek());
///
///     pq.push(1, 7.0);
///     assert_eq!(Some(&(1, 7.0)), pq.peek());
///
///     let popped = pq.pop();
///     assert_eq!(Some((1, 7.0)), popped);
///
///     let popped = pq.pop();
///     assert_eq!(Some((0, 42.0)), popped);
///
///     assert!(pq.is_empty());
/// }
///
/// // d-hap heap using id's to locate existing nodes (although decrease-key is not used here)
/// test_priority_queue(DaryHeapOfIndices::<_, _, 4>::with_upper_limit(32));
/// // using type aliases to simplify signatures
/// test_priority_queue(BinaryHeapOfIndices::with_upper_limit(16));
/// test_priority_queue(TernaryHeapOfIndices::with_upper_limit(16));
/// test_priority_queue(QuarternaryHeapOfIndices::with_upper_limit(16));
/// ```
///
/// ## Heap as a `PriorityQueueDecKey`
///
/// Usage of a d-ary heap as a priority queue with decrease key operation and its variants.
///
/// ```
/// use orx_priority_queue::*;
///
/// fn test_priority_queue_deckey<P>(mut pq: P)
/// where
///     P: PriorityQueueDecKey<usize, f64>
/// {
///     pq.clear();
///     
///     pq.push(0, 42.0);
///     assert_eq!(Some(&(0, 42.0)), pq.peek());
///
///     pq.push(1, 17.0);
///     assert_eq!(Some(&(1, 17.0)), pq.peek());
///
///     pq.decrease_key(&0, &7.0);
///     assert_eq!(Some(&(0, 7.0)), pq.peek());
///
///     let is_key_decreased = pq.try_decrease_key(&1, &20.0);
///     assert!(!is_key_decreased);
///
///     let popped = pq.pop();
///     assert_eq!(Some((0, 7.0)), popped);
///
///     let popped = pq.pop();
///     assert_eq!(Some((1, 17.0)), popped);
///
///     assert!(pq.is_empty());
/// }
/// // d-ary heap using id's to locate existing nodes
/// test_priority_queue_deckey(DaryHeapOfIndices::<_, _, 3>::with_upper_limit(32));
/// // using type aliases to simplify signatures
/// test_priority_queue_deckey(BinaryHeapOfIndices::with_upper_limit(16));
/// test_priority_queue_deckey(TernaryHeapOfIndices::with_upper_limit(16));
/// test_priority_queue_deckey(QuarternaryHeapOfIndices::with_upper_limit(16));
/// ```
#[derive(Clone, Debug)]
pub struct DaryHeapOfIndices<N, K, const D: usize = 2>
where
    N: HasIndex,
    K: PartialOrd + Clone,
{
    heap: Heap<N, K, HeapPositionsHasIndex<N>, D>,
}

impl<N, K, const D: usize> DaryHeapOfIndices<N, K, D>
where
    N: HasIndex,
    K: PartialOrd + Clone,
{
    /// As explained in [`DaryHeapOfIndices`],
    /// this heap is useful when the nodes come from a closed set with a known size.
    /// Therefore, the heap has a strict `upper_limit` on the index of a node which can enter the heap.
    ///
    /// The upper limit of the queue can be obtained by the `upper_limit` method.
    ///
    /// # Examples
    ///
    /// ```
    /// use orx_priority_queue::*;
    ///
    /// // set of possible nodes which can enter the heap is closed and has 16 elements
    /// let mut pq = DaryHeapOfIndices::<usize, _, 3>::with_upper_limit(16);
    ///
    /// assert_eq!(16, pq.upper_limit());
    ///
    /// // 8-th node enters the queue with key of 100.0
    /// pq.push(7, 100.0);
    ///
    /// // third node enters
    /// pq.push(2, 42.0);
    ///
    /// // the following line would've panicked since there exist no 17-th node in the closed set
    /// // pq.push(16, 7.0);
    /// ```
    pub fn with_upper_limit(upper_limit: usize) -> Self {
        Self {
            heap: Heap::new(
                Some(upper_limit),
                HeapPositionsHasIndex::with_upper_limit(upper_limit),
            ),
        }
    }

    /// Cardinality of the closed set which the nodes are sampled from.
    ///
    /// # Panics
    ///
    /// Panics if a node with an index greater than or equal to the `upper_limit` is pushed to the queue.
    pub fn upper_limit(&self) -> usize {
        self.heap.positions().upper_limit()
    }
}

impl<N, K, const D: usize> PriorityQueue<N, K> for DaryHeapOfIndices<N, K, D>
where
    N: HasIndex,
    K: PartialOrd + Clone,
{
    fn len(&self) -> usize {
        self.heap.len()
    }
    fn as_slice(&self) -> &[(N, K)] {
        self.heap.as_slice()
    }
    fn peek(&self) -> Option<&(N, K)> {
        self.heap.peek()
    }
    fn clear(&mut self) {
        self.heap.clear()
    }
    fn pop(&mut self) -> Option<(N, K)> {
        self.heap.pop()
    }
    fn pop_node(&mut self) -> Option<N> {
        self.heap.pop_node()
    }
    fn pop_key(&mut self) -> Option<K> {
        self.heap.pop_key()
    }
    /// Pushes the given (`node`, `key`) pair to the queue.
    ///
    /// # Panics
    ///
    /// Panics if `node.index()` is greater than the upper limit of the heap.
    fn push(&mut self, node: N, key: K) {
        self.heap.push(node, key)
    }
    /// Performs the push with given (`node`, `key`) followed by the pop operation.
    ///
    /// Since the queue cannot be empty after the push, the return type is not optional.
    ///
    /// The reason of merging the calls is that handling two instructions at once
    /// is more efficient for certain implementations, such as for the binary heap.
    ///
    /// # Panics
    ///
    /// Panics if `node.index()` is greater than the upper limit of the heap.
    fn push_then_pop(&mut self, node: N, key: K) -> (N, K) {
        self.heap.push_then_pop(node, key)
    }

    #[cfg(test)]
    fn is_valid(&self) -> bool {
        self.heap.is_valid()
    }
}
impl<N, K, const D: usize> PriorityQueueDecKey<N, K> for DaryHeapOfIndices<N, K, D>
where
    N: HasIndex,
    K: PartialOrd + Clone,
{
    fn contains(&self, node: &N) -> bool {
        self.heap.contains(node)
    }
    fn key_of(&self, node: &N) -> Option<K> {
        self.heap.key_of(node)
    }
    fn decrease_key(&mut self, node: &N, decreased_key: &K) {
        self.heap.decrease_key(node, decreased_key)
    }
    fn update_key(&mut self, node: &N, new_key: &K) -> bool {
        self.heap.update_key(node, new_key)
    }
    fn remove(&mut self, node: &N) -> K {
        self.heap.remove(node)
    }
}