orx_linked_list/list/
mut_doubly.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
use super::{helper_traits::HasDoublyEnds, List};
use crate::{
    type_aliases::{DoublyIdx, BACK_IDX, FRONT_IDX},
    variant::Doubly,
    ListSliceMut,
};
use core::ops::RangeBounds;
use orx_pinned_vec::PinnedVec;
use orx_selfref_col::{MemoryPolicy, Node, NodeIdx, Refs};

impl<T, M, P> List<Doubly<T>, M, P>
where
    M: MemoryPolicy<Doubly<T>>,
    P: PinnedVec<Node<Doubly<T>>>,
{
    /// ***O(1)*** Sets value of `front` of the list as `new_front` and:
    /// * returns value of the front element;
    /// * returns None if the list was empty.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use orx_linked_list::*;
    ///
    /// let mut list = DoublyList::new();
    ///
    /// assert_eq!(0, list.len());
    ///
    /// let prior_front = list.swap_front('a');
    /// assert!(prior_front.is_none());
    /// assert_eq!(Some(&'a'), list.front());
    ///
    /// let prior_front = list.swap_front('z');
    /// assert_eq!(Some('a'), prior_front);
    /// assert_eq!(Some(&'z'), list.front());
    /// ```
    pub fn swap_front(&mut self, new_front: T) -> Option<T> {
        match self.0.ends().get(FRONT_IDX) {
            Some(p) => Some(self.0.swap_data(&p, new_front)),
            None => {
                self.push_front(new_front);
                None
            }
        }
    }

    /// ***O(1)*** Sets value of `back` of the list as `new_back` and:
    /// * returns value of the back element;
    /// * returns None if the list was empty.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use orx_linked_list::*;
    ///
    /// let mut list = DoublyList::new();
    ///
    /// assert_eq!(0, list.len());
    ///
    /// let prior_back = list.swap_back('a');
    /// assert!(prior_back.is_none());
    /// assert_eq!(Some(&'a'), list.back());
    ///
    /// let prior_back = list.swap_back('z');
    /// assert_eq!(Some('a'), prior_back);
    /// assert_eq!(Some(&'z'), list.back());
    /// ```
    pub fn swap_back(&mut self, new_back: T) -> Option<T> {
        match self.0.ends().get(BACK_IDX) {
            Some(p) => Some(self.0.swap_data(&p, new_back)),
            None => {
                self.push_back(new_back);
                None
            }
        }
    }

    /// ***O(1)*** Pushes the `value` to the `front` of the list.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use orx_linked_list::*;
    ///
    /// let mut list = DoublyList::new();
    ///
    /// list.push_front('a');
    /// list.push_front('b');
    ///
    /// assert_eq!(Some(&'b'), list.front());
    /// assert_eq!(Some(&'a'), list.back());
    ///
    /// let popped = list.pop_front();
    /// assert_eq!(Some('b'), popped);
    /// ```
    pub fn push_front(&mut self, value: T) -> DoublyIdx<T> {
        let idx = self.0.push(value);

        match self.0.ends().get(FRONT_IDX) {
            Some(front) => {
                self.0.node_mut(&front).prev_mut().set_some(&idx);
                self.0.node_mut(&idx).next_mut().set_some(&front);
                self.0.ends_mut().set_some(FRONT_IDX, &idx);
            }
            None => {
                self.0.ends_mut().set_some(FRONT_IDX, &idx);
                self.0.ends_mut().set_some(BACK_IDX, &idx);
            }
        }

        NodeIdx::new(self.0.memory_state(), &idx)
    }

    /// ***O(1)*** Pushes the `value` to the `back` of the list.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use orx_linked_list::*;
    ///
    /// let mut list = DoublyList::new();
    ///
    /// list.push_back('a');
    /// list.push_back('b');
    ///
    /// assert_eq!(Some(&'b'), list.back());
    /// assert_eq!(Some(&'a'), list.front());
    ///
    /// let popped = list.pop_back();
    /// assert_eq!(Some('b'), popped);
    /// ```
    pub fn push_back(&mut self, value: T) -> DoublyIdx<T> {
        let idx = self.0.push(value);

        match self.0.ends().get(BACK_IDX) {
            Some(back) => {
                self.0.node_mut(&back).next_mut().set_some(&idx);
                self.0.node_mut(&idx).prev_mut().set_some(&back);
                self.0.ends_mut().set_some(BACK_IDX, &idx);
            }
            None => {
                self.0.ends_mut().set_some(FRONT_IDX, &idx);
                self.0.ends_mut().set_some(BACK_IDX, &idx);
            }
        }

        NodeIdx::new(self.0.memory_state(), &idx)
    }

    /// ***O(1)*** Pops and returns the value at the `front` of the list; returns None if the list is empty.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use orx_linked_list::*;
    ///
    /// let mut list = DoublyList::new();
    ///
    /// let popped = list.pop_front();
    /// assert!(popped.is_none());
    ///
    /// list.push_front('a');
    /// assert_eq!(Some(&'a'), list.front());
    ///
    /// let popped = list.pop_front();
    /// assert_eq!(Some('a'), popped);
    /// assert!(list.is_empty());
    /// ```
    pub fn pop_front(&mut self) -> Option<T> {
        self.0.ends().get(FRONT_IDX).map(|front| {
            match self.0.node(&front).next().get() {
                Some(new_front) => {
                    self.0.node_mut(&new_front).prev_mut().clear();
                    self.0.ends_mut().set_some(FRONT_IDX, &new_front);
                }
                None => self.0.ends_mut().clear(),
            }
            self.0.close_and_reclaim(&front)
        })
    }

    /// ***O(1)*** Pops and returns the value at the `back` of the list; returns None if the list is empty.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use orx_linked_list::*;
    ///
    /// let mut list = DoublyList::new();
    ///
    /// let popped = list.pop_back();
    /// assert!(popped.is_none());
    ///
    /// list.push_front('a');
    /// assert_eq!(Some(&'a'), list.front());
    ///
    /// let popped = list.pop_back();
    /// assert_eq!(Some('a'), popped);
    /// assert!(list.is_empty());
    /// ```
    pub fn pop_back(&mut self) -> Option<T> {
        self.0.ends().get(BACK_IDX).map(|back| {
            match self.0.node(&back).prev().get() {
                Some(new_back) => {
                    self.0.node_mut(&new_back).next_mut().clear();
                    self.0.ends_mut().set_some(BACK_IDX, &new_back);
                }
                None => self.0.ends_mut().clear(),
            }
            self.0.close_and_reclaim(&back)
        })
    }

    /// Creates and returns a slice of the list between the given `range` of indices.
    ///
    /// Note that a linked list slice itself also behaves like a linked list,
    /// reflecting the recursive nature of the data type.
    /// However, it does not own the data.
    /// It is rather a view, like a slice is a view to a vec.
    ///
    /// Note that slicing might be useful in various ways.
    /// For instance, we can keep indices of several critical elements of the list.
    /// We can then get all elements before, after or between any pair of these indices.
    /// Or we can combine the list with an indices vector, which provides the linked list
    /// a vec-like usage
    /// * with the disadvantage of using more memory, and
    /// * with the advantage of constant time insertions, removals or moves.
    ///
    /// # Panics
    ///
    /// Panics if any of indices of the range bounds is invalid.
    ///
    /// # Example
    ///
    /// ```rust
    /// use orx_linked_list::*;
    ///
    /// let mut list = DoublyList::new();
    ///
    /// list.push_back(3);
    /// list.push_front(1);
    /// list.push_front(7);
    /// list.push_back(4);
    /// list.push_front(9);
    ///
    /// let expected_values = vec![9, 7, 1, 3, 4];
    ///
    /// assert!(list.eq_to_iter_refs(&expected_values));
    /// assert!(list.slice(..).eq_to_iter_refs(&expected_values));
    ///
    /// let idx: Vec<_> = list.indices().collect();
    ///
    /// let slice = list.slice(&idx[1]..=&idx[3]);
    /// assert_eq!(slice.front(), Some(&7));
    /// assert_eq!(slice.back(), Some(&3));
    /// assert!(slice.eq_to_iter_vals([7, 1, 3]));
    ///
    /// let sum: usize = slice.iter().sum();
    /// assert_eq!(sum, 11);
    /// ```
    ///
    /// Note that the linked list and its slices are directed.
    /// In other words, it does not by default have a cyclic behavior.
    /// Therefore, if the end of the `range` is before the beginning,
    /// the slice will stop at the `back` of the list.
    /// See the following example for clarification.
    ///
    /// Currently, cyclic or ring behavior can be achieved by `ring_iter` method.
    ///
    /// ```rust
    /// use orx_linked_list::*;
    ///
    /// let mut list: DoublyList<_> = (0..10).collect();
    /// let idx: Vec<_> = list.indices().collect();
    ///
    /// // a..b where b comes later, hence, we get the slice a..b
    /// let slice = list.slice_mut(&idx[1]..&idx[4]);
    /// assert!(slice.eq_to_iter_vals([1, 2, 3]));
    ///
    /// // a..b where b comes earlier, then, we get the slice a..back
    /// let slice = list.slice_mut(&idx[4]..&idx[1]);
    /// assert!(slice.eq_to_iter_vals([4, 5, 6, 7, 8, 9]));
    /// ```
    pub fn slice_mut<'a, R>(&mut self, range: R) -> ListSliceMut<Doubly<T>, M, P>
    where
        R: RangeBounds<&'a DoublyIdx<T>>,
        T: 'a,
    {
        let ends = self.slice_ends(range).expect("invalid indices in range");
        ListSliceMut { list: self, ends }
    }
}