1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
use crate::linked_list::LinkedList;
/// `LinkedList` holds all elements close to each other in a `PinnedVec`
/// aiming for better cache locality while using thin references rather
/// than wide pointers and to reduce heap allocations.
///
/// In order to achieve *O(1)* time complexity while avoiding smart pointers,
/// remove and pop operations are able to be `Lazy`.
/// In this case; i.e., when the strategy is set to `MemoryUtilization::Lazy`,
/// every `pop_back`, `pop_front` or `remove` method call leaves a gap in the
/// underlying vector. Status of utilization of the underlying vector can be
/// queried using the `memory_status` method and the gaps can completely be
/// reclaimed by manually calling the `memory_reclaim` method which has a time
/// complexity of *O(n)* where *n* is the length of the underlying vector.
///
/// Being able to be lazy, it is possible to define and use different
/// strategies which would be a better fit for different situations:
///
/// * `Lazy`: `memory_reclaim` is never called automatically:
/// * leads to the cheapest possible `pop_back`, `pop_front` or `remove` operations,
/// * however, the utilization of the vector can be low especially when
/// a large number of elements enter and exit the linked list.
/// * might be a better fit where keeping the time complexity of these operations
/// at *O(1)* is important; or when utilization is not expected to drop too low.
/// * `Eager`: every `pop_back`, `pop_front` or `remove` method call is followed
/// by a `memory_reclaim` call:
/// * this strategy keeps the vector without gaps at 100% utilization;
/// * however, abovementioned operations require *O(n)* time complexity;
/// * might be a better fit where memory is scarce and more important than
/// the increased time-complexity of these methods.
/// * `WithThreshold` (**recommended & default**): `pop_back`, `pop_front` or `remove` method call
/// is followed by a `memory_reclaim` call only if the memory utilization drops below a
/// pre-determined threshold:
/// * this strategy is a generalization of `Lazy` and `Eager` allowing to
/// select the required threshold level between memory utilization and amortized
/// time complexity of these methods. Note that setting the least memory utilization
/// to a value lower than 1.0 would still least to a constant amortized time complexity.
#[derive(Debug, Clone, Copy, PartialEq)]
pub enum MemoryUtilization {
/// With `Lazy` strategy, `memory_reclaim` is never called automatically:
/// * leads to the cheapest possible `pop_back`, `pop_front` or `remove_at` operations,
/// * however, the utilization of the vector can be low especially when
/// a large number of elements enter and exit the linked list.
/// * might be a better fit where keeping the time complexity of these operations
/// at *O(1)* is important; or when utilization is not expected to drop too low.
///
/// # Examples
///
/// ```
/// use orx_linked_list::*;
///
/// let mut list = LinkedList::new()
/// .with_memory_utilization(MemoryUtilization::Lazy);
///
/// // fill list with 4 elements
/// list.push_back('a');
/// list.push_back('b');
/// list.push_back('c');
/// list.push_back('d');
///
/// let util = list.memory_status();
/// assert_eq!(4, util.num_active_nodes);
/// assert_eq!(4, util.num_occupied_nodes);
/// assert_eq!(1.00, util.utilization());
///
/// // remove 1 of 4
/// _ = list.remove_at(2);
/// let util = list.memory_status();
/// assert_eq!(3, util.num_active_nodes);
/// assert_eq!(4, util.num_occupied_nodes);
/// assert_eq!(0.75, util.utilization());
///
/// // pop 2 more
/// _ = list.pop_back();
/// _ = list.pop_front();
/// let util = list.memory_status();
/// assert_eq!(1, util.num_active_nodes);
/// assert_eq!(4, util.num_occupied_nodes);
/// assert_eq!(0.25, util.utilization());
///
/// // remove the last element
/// _ = list.remove_at(0);
/// let util = list.memory_status();
/// assert_eq!(0, util.num_active_nodes);
/// assert_eq!(4, util.num_occupied_nodes);
/// assert_eq!(0.00, util.utilization());
/// ```
Lazy,
/// With `Eager` strategy, every `pop_back`, `pop_front` or `remove_at` method call is followed
/// by a `memory_reclaim` call:
/// * this strategy keeps the vector without gaps at 100% utilization;
/// * however, abovementioned operations require *O(n)* time complexity;
/// * might be a better fit where memory is scarce and more important than
/// the increased time-complexity of these methods.
///
/// # Examples
///
/// ```
/// use orx_linked_list::*;
///
/// let mut list = LinkedList::new().with_memory_utilization(MemoryUtilization::Eager);
///
/// // fill list with 4 elements
/// list.push_back('a');
/// list.push_back('b');
/// list.push_back('c');
/// list.push_back('d');
///
/// let util = list.memory_status();
/// assert_eq!(4, util.num_active_nodes);
/// assert_eq!(4, util.num_occupied_nodes);
/// assert_eq!(1.00, util.utilization());
///
/// // remove 1 of 4
/// _ = list.remove_at(2);
/// let util = list.memory_status();
/// assert_eq!(3, util.num_active_nodes);
/// assert_eq!(3, util.num_occupied_nodes);
/// assert_eq!(1.00, util.utilization());
///
/// // pop 2 more
/// _ = list.pop_back();
/// _ = list.pop_front();
/// let util = list.memory_status();
/// assert_eq!(1, util.num_active_nodes);
/// assert_eq!(1, util.num_occupied_nodes);
/// assert_eq!(1.00, util.utilization());
///
/// // remove the last element
/// _ = list.remove_at(0);
/// let util = list.memory_status();
/// assert_eq!(0, util.num_active_nodes);
/// assert_eq!(0, util.num_occupied_nodes);
/// assert_eq!(1.00, util.utilization());
/// ```
Eager,
/// With `WithThreshold`strategy, `pop_back`, `pop_front` or `remove_at` method call
/// is followed by a `memory_reclaim` call only if the memory utilization drops below the
/// pre-determined threshold:
/// * this strategy is a generalization of `Lazy` and `Eager` allowing to
/// select the required threshold level between memory utilization and amortized
/// time complexity of these methods. Note that setting the least memory utilization
/// to a value lower than 1.0 would still least to a constant amortized time complexity.
///
/// # Examples
///
/// ```
/// use orx_linked_list::*;
///
/// let mut list = LinkedList::new()
/// .with_memory_utilization(MemoryUtilization::WithThreshold(0.51));
///
/// // fill list with 4 elements
/// list.push_back('a');
/// list.push_back('b');
/// list.push_back('c');
/// list.push_back('d');
///
/// let util = list.memory_status();
/// assert_eq!(4, util.num_active_nodes);
/// assert_eq!(4, util.num_occupied_nodes);
/// assert_eq!(1.00, util.utilization());
///
/// // remove 1 of 4; utilization remains above the threshold
/// _ = list.remove_at(2);
/// let util = list.memory_status();
/// assert_eq!(3, util.num_active_nodes);
/// assert_eq!(4, util.num_occupied_nodes);
/// assert_eq!(0.75, util.utilization());
///
/// // pop 1 more which would reduce utilization to 0.50
/// // since it is below the treshold; the memory will be reclaimed immediately
/// _ = list.pop_back();
/// let util = list.memory_status();
/// assert_eq!(2, util.num_active_nodes);
/// assert_eq!(2, util.num_occupied_nodes);
/// assert_eq!(1.00, util.utilization());
/// ```
WithThreshold(f32),
}
impl Default for MemoryUtilization {
fn default() -> Self {
Self::WithThreshold(0.75)
}
}
impl MemoryUtilization {
#[inline(always)]
fn will_auto_reclaim(self, list_len: usize, storage_len: usize) -> bool {
match self {
MemoryUtilization::Eager => storage_len > list_len,
MemoryUtilization::Lazy => false,
MemoryUtilization::WithThreshold(threshold) => {
storage_len > list_len && {
let utilization = list_len as f32 / storage_len as f32;
utilization < threshold
}
}
}
}
pub(crate) fn reclaim<T>(self, list: &mut LinkedList<'_, T>, storage_len: usize) {
if self.will_auto_reclaim(list.len(), storage_len) {
reclaim_memory(list, storage_len)
}
}
}
/// Utilization of the underlying vector of the linked list.
///
/// `LinkedList` holds all elements close to each other in a `PinnedVec`
/// aiming for better cache locality while using thin references rather
/// than wide pointers and to reduce heap allocations.
///
/// In order to achieve *O(1)* time complexity while avoiding smart pointers,
/// remove and pop operations are designed to be lazy:
///
/// * the links are immediately adjusted; however,
/// * the memory is not immediately reclaimed leaving a gap in the underlying vector.
///
/// This method reveals the memory utilization of the underlying pinned vector
/// at any given time as the fraction of active linked list nodes to total
/// spaces used by the pinned vector.
///
/// Some extreme examples are as follows:
///
/// * in an push-only situation, memory utilization is equal to 1.0:
/// * `num_active_nodes == num_occupied_nodes`
/// * in a situation where each push is followed by a pop,
/// memory utilization is 0.0:
/// * `num_active_nodes == 0`
/// * `num_occupied_nodes == n`, where `n` is the number of items pushed.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct MemoryStatus {
/// Number of active nodes in the linked list which is equal to `len` of the list.
pub num_active_nodes: usize,
/// Number of total node capacity used by the underlying data structure to store
/// the active nodes together with the gaps due to `pop_back`, `pop_front` and
/// `remove` calls.
pub num_occupied_nodes: usize,
}
impl MemoryStatus {
/// Returns `num_active_nodes / num_occupied_nodes` as a measure of utilization of the memory used by the linked list.
pub fn utilization(&self) -> f32 {
if self.num_occupied_nodes == 0 {
debug_assert_eq!(0, self.num_active_nodes);
1.0
} else {
self.num_active_nodes as f32 / self.num_occupied_nodes as f32
}
}
pub(crate) fn of_list(list_len: usize, storage_len: usize) -> Self {
let num_active_nodes = list_len;
let num_occupied_nodes = storage_len;
Self {
num_active_nodes,
num_occupied_nodes,
}
}
}
pub(crate) fn reclaim_memory<T>(list: &mut LinkedList<'_, T>, storage_len: usize) {
let mut last_occupied_idx = storage_len;
for i in 0..storage_len {
if list.is_vacant(i) {
let vacant_idx = i;
let occupied_idx = get_last_occupied_idx(list, vacant_idx + 1, last_occupied_idx);
if let Some(occupied_idx) = occupied_idx {
last_occupied_idx = occupied_idx;
list.move_to_vacant_node(occupied_idx, vacant_idx);
} else {
break;
}
}
}
list.truncate_vec();
}
fn get_last_occupied_idx<T>(list: &LinkedList<'_, T>, start: usize, end: usize) -> Option<usize> {
(start..end).rev().find(|&i| !list.is_vacant(i))
}
#[cfg(test)]
mod tests {
#![allow(clippy::unwrap_used)]
use super::*;
use crate::linked_list::{tests::storage_to_datavec, LinkedList};
use std::fmt::Debug;
type List<'a, T> = LinkedList<'a, T>;
fn status_of<T>(storage: &[Option<T>]) -> MemoryStatus {
MemoryStatus {
num_active_nodes: storage.iter().filter(|x| x.is_some()).count(),
num_occupied_nodes: storage.len(),
}
}
fn assert_storage<T>(list: &List<T>, expected_storage: &[Option<T>])
where
T: Debug + Clone + PartialEq,
{
assert_eq!(expected_storage, storage_to_datavec(list).as_slice());
assert_eq!(status_of(expected_storage), list.memory_status());
}
#[test]
fn will_auto_reclaim() {
let eager = MemoryUtilization::Eager;
assert!(!eager.will_auto_reclaim(0, 0));
assert!(!eager.will_auto_reclaim(10, 10));
assert!(eager.will_auto_reclaim(0, 1));
assert!(eager.will_auto_reclaim(10, 11));
let lazy = MemoryUtilization::Lazy;
assert!(!lazy.will_auto_reclaim(0, 0));
assert!(!lazy.will_auto_reclaim(10, 10));
assert!(!lazy.will_auto_reclaim(0, 1));
assert!(!lazy.will_auto_reclaim(10, 11));
let threashold_eager = MemoryUtilization::WithThreshold(1.0);
assert!(!threashold_eager.will_auto_reclaim(0, 0));
assert!(!threashold_eager.will_auto_reclaim(10, 10));
assert!(threashold_eager.will_auto_reclaim(0, 1));
assert!(threashold_eager.will_auto_reclaim(10, 11));
let threashold_lazy = MemoryUtilization::WithThreshold(0.0);
assert!(!threashold_lazy.will_auto_reclaim(0, 0));
assert!(!threashold_lazy.will_auto_reclaim(10, 10));
assert!(!threashold_lazy.will_auto_reclaim(0, 1));
assert!(!threashold_lazy.will_auto_reclaim(10, 11));
let threashold_eager = MemoryUtilization::WithThreshold(0.25);
assert!(!threashold_eager.will_auto_reclaim(0, 0));
assert!(!threashold_eager.will_auto_reclaim(10, 10));
assert!(threashold_eager.will_auto_reclaim(0, 1));
assert!(!threashold_eager.will_auto_reclaim(5, 16));
assert!(!threashold_eager.will_auto_reclaim(4, 16));
assert!(threashold_eager.will_auto_reclaim(3, 16));
let threashold_eager = MemoryUtilization::WithThreshold(0.75);
assert!(!threashold_eager.will_auto_reclaim(0, 0));
assert!(!threashold_eager.will_auto_reclaim(10, 10));
assert!(threashold_eager.will_auto_reclaim(0, 1));
assert!(!threashold_eager.will_auto_reclaim(13, 16));
assert!(!threashold_eager.will_auto_reclaim(12, 16));
assert!(threashold_eager.will_auto_reclaim(11, 16));
}
#[test]
fn reclaim_when_no_holes() {
let mut list = List::new().with_memory_utilization(MemoryUtilization::Lazy);
list.push_back('a');
list.push_back('b');
list.push_back('c');
assert_storage(&list, &[Some('a'), Some('b'), Some('c')]);
reclaim_memory(&mut list, 3);
assert_storage(&list, &[Some('a'), Some('b'), Some('c')]);
}
#[test]
fn reclaim_after_pop_back() {
let mut list = List::new().with_memory_utilization(MemoryUtilization::Lazy);
list.push_back('a');
list.push_back('b');
list.push_back('c');
assert_storage(&list, &[Some('a'), Some('b'), Some('c')]);
list.push_back('d');
_ = list.pop_back();
assert_storage(&list, &[Some('a'), Some('b'), Some('c'), None]);
reclaim_memory(&mut list, 4);
assert_storage(&list, &[Some('a'), Some('b'), Some('c')]);
list.push_back('d');
list.push_back('e');
_ = list.pop_back();
_ = list.pop_back();
assert_storage(&list, &[Some('a'), Some('b'), Some('c'), None, None]);
reclaim_memory(&mut list, 5);
assert_storage(&list, &[Some('a'), Some('b'), Some('c')]);
}
#[test]
fn reclaim_after_pop_front() {
let mut list = List::new().with_memory_utilization(MemoryUtilization::Lazy);
list.push_back('a');
list.push_back('b');
list.push_back('c');
_ = list.pop_front();
assert_storage(&list, &[None, Some('b'), Some('c')]);
reclaim_memory(&mut list, 3);
assert_storage(&list, &[Some('c'), Some('b')]);
reclaim_memory(&mut list, 2);
assert_storage(&list, &[Some('c'), Some('b')]);
let mut list = List::new().with_memory_utilization(MemoryUtilization::Lazy);
list.push_back('a');
list.push_back('b');
list.push_back('c');
_ = list.pop_front();
_ = list.pop_front();
assert_storage(&list, &[None, None, Some('c')]);
reclaim_memory(&mut list, 3);
assert_storage(&list, &[Some('c')]);
reclaim_memory(&mut list, 1);
assert_storage(&list, &[Some('c')]);
}
#[test]
fn reclaim_after_pop_back_front() {
let mut list = List::new().with_memory_utilization(MemoryUtilization::Lazy);
list.push_back('a');
list.push_back('b');
list.push_back('c');
_ = list.pop_front();
assert_storage(&list, &[None, Some('b'), Some('c')]);
_ = list.pop_back();
assert_storage(&list, &[None, Some('b'), None]);
reclaim_memory(&mut list, 3);
assert_storage(&list, &[Some('b')]);
reclaim_memory(&mut list, 1);
assert_storage(&list, &[Some('b')]);
}
#[test]
fn reclaim_after_remove() {
let mut list = List::new().with_memory_utilization(MemoryUtilization::Lazy);
list.push_back('a');
list.push_back('b');
list.push_back('c');
_ = list.remove_at(1);
assert_storage(&list, &[Some('a'), None, Some('c')]);
reclaim_memory(&mut list, 3);
assert_storage(&list, &[Some('a'), Some('c')]);
let mut list = List::new().with_memory_utilization(MemoryUtilization::Lazy);
list.push_back('a');
list.push_back('b');
list.push_back('c');
list.push_back('d');
list.push_back('e');
_ = list.remove_at(3);
_ = list.remove_at(1);
assert_storage(&list, &[Some('a'), None, Some('c'), None, Some('e')]);
reclaim_memory(&mut list, 5);
assert_storage(&list, &[Some('a'), Some('e'), Some('c')]);
}
}