1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
use crate::{mem::MemoryUtilization, node::LinkedListNode};
use orx_imp_vec::prelude::{ImpVec, PinnedVec, SplitVec};

/// The LinkedList allows pushing and popping elements at either end in constant time.
#[derive(Default)]
pub struct LinkedList<'a, T, P = SplitVec<LinkedListNode<'a, T>>>
where
    P: PinnedVec<LinkedListNode<'a, T>>,
{
    pub(crate) imp: ImpVec<LinkedListNode<'a, T>, P>,
    pub(crate) len: usize,
    /// Memory utilization strategy of the linked list allowing control over the tradeoff between
    /// memory efficiency and amortized time complexity of `pop_back`, `pop_front` or `remove` operations.
    ///
    /// See [MemoryUtilization] for details.
    pub memory_utilization: MemoryUtilization,
}

impl<'a, T, P> LinkedList<'a, T, P>
where
    P: PinnedVec<LinkedListNode<'a, T>> + 'a,
{
    /// Returns the length of the LinkedList.
    ///
    /// This operation should compute in O(1) time.
    ///
    /// # Examples
    ///
    /// ```
    /// use orx_linked_list::prelude::*;
    ///
    /// let mut list = LinkedList::with_exponential_growth(2, 1.5, Default::default());
    /// assert_eq!(0, list.len());
    ///
    /// list.push_front('a');
    /// list.push_front('b');
    /// assert_eq!(2, list.len());
    ///
    /// _ = list.pop_back();
    /// assert_eq!(1, list.len());
    ///
    /// _ = list.pop_front();
    /// assert_eq!(0, list.len());
    /// ```
    pub fn len(&self) -> usize {
        self.len
    }
    /// Returns true if the LinkedList is empty.
    ///
    /// This operation should compute in O(1) time.
    ///
    /// # Examples
    ///
    /// ```
    /// use orx_linked_list::prelude::*;
    ///
    /// let mut list = LinkedList::with_exponential_growth(2, 1.5, Default::default());
    /// assert!(list.is_empty());
    ///
    /// list.push_front('a');
    /// list.push_front('b');
    /// assert!(!list.is_empty());
    ///
    /// _ = list.pop_back();
    /// assert!(!list.is_empty());
    ///
    /// list.clear();
    /// assert!(list.is_empty());
    /// ```
    pub fn is_empty(&self) -> bool {
        self.len == 0
    }

    /// Provides a reference to the back element, or None if the list is empty.
    ///
    /// This operation should compute in O(1) time.
    ///
    /// # Examples
    ///
    /// ```
    /// use orx_linked_list::prelude::*;
    ///
    /// let mut list = LinkedList::with_doubling_growth(4, Default::default());
    /// assert_eq!(list.back(), None);
    ///
    /// list.push_back(42);
    /// assert_eq!(list.back(), Some(&42));
    ///
    /// list.push_front(1);
    /// assert_eq!(list.back(), Some(&42));
    ///
    /// list.push_back(7);
    /// assert_eq!(list.back(), Some(&7));
    /// ```
    pub fn back(&self) -> Option<&T> {
        self.back_node().and_then(|node| node.data.as_ref())
    }
    /// Provides a mutable reference to the back element, or None if the list is empty.
    ///
    /// This operation should compute in O(1) time.
    ///
    /// # Examples
    ///
    /// ```
    /// use orx_linked_list::prelude::*;
    ///
    /// let mut list = LinkedList::with_linear_growth(16, Default::default());
    /// assert_eq!(list.back(), None);
    ///
    /// list.push_back(42);
    /// assert_eq!(list.back(), Some(&42));
    ///
    /// match list.back_mut() {
    ///     None => {},
    ///     Some(x) => *x = 7,
    /// }
    /// assert_eq!(list.back(), Some(&7));
    /// ```
    pub fn back_mut(&mut self) -> Option<&mut T> {
        self.node_ind(self.back_node())
            .and_then(|ind| self.imp[ind].data.as_mut())
    }
    /// Provides a reference to the front element, or None if the list is empty.
    ///
    /// This operation should compute in O(1) time.
    ///
    /// # Examples
    ///
    /// ```
    /// use orx_linked_list::prelude::*;
    ///
    /// let mut list = LinkedList::with_doubling_growth(4, Default::default());
    /// assert_eq!(list.front(), None);
    ///
    /// list.push_front(42);
    /// assert_eq!(list.front(), Some(&42));
    ///
    /// list.push_back(1);
    /// assert_eq!(list.front(), Some(&42));
    ///
    /// list.push_front(7);
    /// assert_eq!(list.front(), Some(&7));
    /// ```
    pub fn front(&self) -> Option<&T> {
        self.front_node().and_then(|node| node.data.as_ref())
    }
    /// Provides a mutable reference to the front element, or None if the list is empty.
    ///
    /// This operation should compute in O(1) time.
    ///
    /// # Examples
    ///
    /// ```
    /// use orx_linked_list::prelude::*;
    ///
    /// let mut list = LinkedList::with_linear_growth(16, Default::default());
    /// assert_eq!(list.front(), None);
    ///
    /// list.push_front(42);
    /// assert_eq!(list.front(), Some(&42));
    ///
    /// match list.front_mut() {
    ///     None => {},
    ///     Some(x) => *x = 7,
    /// }
    /// assert_eq!(list.front(), Some(&7));
    /// ```
    pub fn front_mut(&mut self) -> Option<&mut T> {
        self.node_ind(self.front_node())
            .and_then(|ind| self.imp[ind].data.as_mut())
    }

    /// Appends an element to the back of a list.
    ///
    /// This operation should compute in O(1) time.
    ///
    /// # Examples
    ///
    /// ```
    /// use orx_linked_list::prelude::*;
    ///
    /// let mut list = LinkedList::with_exponential_growth(2, 1.5, Default::default());
    ///
    /// list.push_back('a');
    /// assert_eq!('a', *list.back().unwrap());
    ///
    /// list.push_back('b');
    /// assert_eq!('b', *list.back().unwrap());
    ///
    /// list.push_front('x');
    /// assert_eq!('b', *list.back().unwrap());
    /// ```
    pub fn push_back(&mut self, value: T) {
        match self.back_node_ind() {
            None => self.push_first_node(value),
            Some(prior_back_ind) => {
                let ind = Some(self.imp.len());
                self.imp.push(LinkedListNode {
                    data: Some(value),
                    next: None,
                    prev: self.back_node(),
                });
                self.imp.set_next(prior_back_ind, ind);
                self.set_back(ind);
            }
        }
        self.len += 1;
    }
    /// Appends an element to the back of a list.
    ///
    /// This operation should compute in O(1) time.
    ///
    /// # Examples
    ///
    /// ```
    /// use orx_linked_list::prelude::*;
    ///
    /// let mut list = LinkedList::with_exponential_growth(2, 1.5, Default::default());
    ///
    /// list.push_front('a');
    /// assert_eq!('a', *list.front().unwrap());
    ///
    /// list.push_front('b');
    /// assert_eq!('b', *list.front().unwrap());
    ///
    /// list.push_back('x');
    /// assert_eq!('b', *list.front().unwrap());
    /// ```
    pub fn push_front(&mut self, value: T) {
        match self.front_node_ind() {
            None => self.push_first_node(value),
            Some(prior_front_ind) => {
                let ind = Some(self.imp.len());
                self.imp.push(LinkedListNode {
                    data: Some(value),
                    next: self.front_node(),
                    prev: None,
                });
                self.imp.set_prev(prior_front_ind, ind);
                self.set_front(ind);
            }
        }
        self.len += 1;
    }

    /// Removes the last element from a list and returns it, or None if it is empty.
    ///
    /// This operation should compute in O(1) time.
    ///
    /// # Examples
    ///
    /// ```
    /// use orx_linked_list::prelude::*;
    ///
    /// let mut list = LinkedList::with_exponential_growth(2, 1.5, Default::default());
    ///
    /// // build linked list: x <-> a <-> b <-> c
    /// list.push_back('a');
    /// list.push_back('b');
    /// list.push_front('x');
    /// list.push_back('c');
    ///
    /// assert_eq!(Some('c'), list.pop_back());
    /// assert_eq!(Some('b'), list.pop_back());
    /// assert_eq!(Some('a'), list.pop_back());
    /// assert_eq!(Some('x'), list.pop_back());
    /// assert_eq!(None, list.pop_back());
    /// assert_eq!(None, list.pop_front());
    /// ```
    pub fn pop_back(&mut self) -> Option<T> {
        let value = if let Some(old_back_ind) = self.back_node_ind() {
            let new_back_ind = self.node_ind(self.imp[old_back_ind].prev);
            self.set_back(new_back_ind);

            if let Some(new_back_ind) = new_back_ind {
                self.imp.set_next(new_back_ind, None);
            } else {
                self.set_front(None);
            }

            self.len -= 1;
            Some(self.remove_get_at(old_back_ind))
        } else {
            None
        };
        self.reclaim_memory_if_necessary(value.is_some());
        value
    }

    /// Removes the last element from a list and returns it, or None if it is empty.
    ///
    /// This operation should compute in O(1) time.
    ///
    /// # Examples
    ///
    /// ```
    /// use orx_linked_list::prelude::*;
    ///
    /// let mut list = LinkedList::with_exponential_growth(2, 1.5, Default::default());
    ///
    /// // build linked list: c <-> b <-> a <-> x
    /// list.push_front('a');
    /// list.push_front('b');
    /// list.push_back('x');
    /// list.push_front('c');
    ///
    /// assert_eq!(Some('c'), list.pop_front());
    /// assert_eq!(Some('b'), list.pop_front());
    /// assert_eq!(Some('a'), list.pop_front());
    /// assert_eq!(Some('x'), list.pop_front());
    /// assert_eq!(None, list.pop_front());
    /// assert_eq!(None, list.pop_back());
    /// ```
    pub fn pop_front(&mut self) -> Option<T> {
        let value = if let Some(old_front_ind) = self.front_node_ind() {
            let new_front_ind = self.node_ind(self.imp[old_front_ind].next);
            self.set_front(new_front_ind);

            if let Some(new_front_ind) = new_front_ind {
                self.imp.set_prev(new_front_ind, None);
            } else {
                self.set_back(None);
            }

            self.len -= 1;
            Some(self.remove_get_at(old_front_ind))
        } else {
            None
        };
        self.reclaim_memory_if_necessary(value.is_some());
        value
    }

    /// Removes all elements from the LinkedList.
    ///
    /// This operation should compute in O(n) time.
    ///
    /// # Examples
    ///
    /// ```
    /// use orx_linked_list::prelude::*;
    ///
    /// let mut list = LinkedList::with_exponential_growth(2, 1.5, Default::default());
    ///
    /// // build linked list: x <-> a <-> b <-> c
    /// list.push_front('a');
    /// list.push_front('b');
    /// list.push_back('x');
    /// list.push_front('c');
    ///
    /// assert_eq!(4, list.len());
    /// assert_eq!(Some(&'c'), list.front());
    /// assert_eq!(Some(&'x'), list.back());
    ///
    /// list.clear();
    ///
    /// assert!(list.is_empty());
    /// assert_eq!(None, list.front());
    /// assert_eq!(None, list.back());
    /// ```
    pub fn clear(&mut self) {
        self.imp.clear();
        self.imp.push(LinkedListNode::back_front_node());
        self.len = 0;
    }

    /// Removes the element at the given index and returns it.
    ///
    /// This operation should compute in *O*(*n*) time
    /// to access the `at`-th element and constant time to remove.
    ///
    /// # Panics
    /// Panics if at >= len
    ///
    /// # Examples
    ///
    /// ```
    /// use orx_linked_list::prelude::*;
    ///
    /// let mut list = LinkedList::with_linear_growth(8, Default::default());
    ///
    /// // build linked list: x <-> a <-> b <-> c
    /// list.push_back('a');
    /// list.push_back('b');
    /// list.push_front('x');
    /// list.push_back('c');
    ///
    /// assert_eq!(list.remove(1), 'a');
    /// assert_eq!(list.remove(0), 'x');
    /// assert_eq!(list.remove(1), 'c');
    /// assert_eq!(list.remove(0), 'b');
    /// ```
    pub fn remove(&mut self, at: usize) -> T {
        let len = self.len();
        assert!(
            at < len,
            "Cannot remove at an index outside of the list bounds"
        );

        let mut curr = self.imp[0].prev.expect(IS_SOME);
        for _ in 0..at {
            curr = curr.next.expect(IS_SOME);
        }
        let imp_at = self.node_ind(Some(curr)).expect(IS_SOME);

        // update vec ends
        if at == 0 {
            // prev | front
            self.imp[0].prev = curr.next;
        }
        if at == len - 1 {
            // next | back
            self.imp[0].next = curr.prev;
        }

        // update links
        if let Some(prev_ind) = self.node_ind(curr.prev) {
            self.imp.set_next(prev_ind, self.node_ind(curr.next));
        }
        if let Some(next_ind) = self.node_ind(curr.next) {
            self.imp.set_prev(next_ind, self.node_ind(curr.prev));
        }

        let value = self.remove_get_at(imp_at);
        self.reclaim_memory_if_necessary(true);
        self.len -= 1;
        value
    }

    // helpers
    fn reclaim_memory_if_necessary(&mut self, condition_to_reclaim: bool)
    where
        P: PinnedVec<LinkedListNode<'a, T>> + 'a,
    {
        if condition_to_reclaim {
            match &self.memory_utilization {
                MemoryUtilization::Eager => _ = self.memory_reclaim(),
                MemoryUtilization::Lazy => {}
                MemoryUtilization::WithThreshold(threshold) => {
                    if self.len > 0 {
                        let utilization = self.len as f32 / (self.imp.len() - 1) as f32;
                        if utilization < *threshold {
                            _ = self.memory_reclaim()
                        }
                    }
                }
            }
        }
    }
    /// Returns index of the referenced node:
    ///
    /// * might return None only if `node.is_none()`;
    /// * when `node.is_some()` it is expected to be a valid reference;
    /// hence, the method panics if not.
    ///
    /// # Safety
    ///
    /// Since this method, as well as the `LinkedListNode` struct are internal
    /// to this crate; it is never expected to receive an argument where the
    /// Some variant of the reference does not belong to the underlying imp
    /// vector.
    /// Therefore, `expect` call in the method body will never panic.
    pub(crate) fn node_ind(&self, node: Option<&'a LinkedListNode<'a, T>>) -> Option<usize> {
        node.map(|node_ref| self.imp.index_of(node_ref).expect(IS_SOME))
    }
    #[inline(always)]
    pub(crate) fn back_node(&self) -> Option<&'a LinkedListNode<'a, T>> {
        self.imp[0].next
    }
    #[inline(always)]
    pub(crate) fn front_node(&self) -> Option<&'a LinkedListNode<'a, T>> {
        self.imp[0].prev
    }
    #[inline(always)]
    pub(crate) fn back_node_ind(&self) -> Option<usize> {
        self.node_ind(self.back_node())
    }
    #[inline(always)]
    pub(crate) fn front_node_ind(&self) -> Option<usize> {
        self.node_ind(self.front_node())
    }
    #[inline(always)]
    pub(crate) fn set_back(&mut self, back_idx: Option<usize>) {
        self.imp.set_next(0, back_idx);
    }
    #[inline(always)]
    pub(crate) fn set_front(&mut self, front_idx: Option<usize>) {
        self.imp.set_prev(0, front_idx);
    }
    fn push_first_node(&mut self, value: T) {
        debug_assert!(self.imp[0].prev.is_none());
        debug_assert!(self.imp[0].next.is_none());
        let ind = Some(self.imp.len());
        self.imp.push(LinkedListNode {
            data: Some(value),
            prev: None,
            next: None,
        });
        self.imp.set_prev(0, ind);
        self.imp.set_next(0, ind);
    }
    fn remove_get_at(&mut self, imp_at: usize) -> T {
        std::mem::replace(&mut self.imp[imp_at], LinkedListNode::closed_node())
            .data
            .expect(IS_SOME)
    }
}

const IS_SOME: &str = "the data of an active node must be Some variant";