orx_iterable/
iterable.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
use crate::transformations::{
    Chained, Cloned, Copied, Enumerated, FilterMapped, Filtered, FlatMapped, Flattened, Fused,
    Mapped, MappedWhile, Reversed, Skipped, SkippedWhile, SteppedBy, Taken, TakenWhile, Zipped,
};

/// An `Iterable` is any type which can return a new iterator that yields elements of the associated type [`Item`] every time [`iter`] method is called.
///
/// [`Item`]: crate::Iterable::Item
/// [`iter`]: crate::Iterable::iter
///
/// Notice that this is the least restrictive and most general iterable definition.
///
/// Three categories of types implement the Iterable trait:
///
/// * references of collections
/// * cloneable iterators
/// * lazy generators
///
/// # Auto Implementations
///
/// ## References of collections
///
/// First, consider a collection type `X` storing elements of type `T`.
/// Provided that the following implementation is provided:
///
/// * `&X: IntoIterator<Item = &T>`
///
/// Then, `&X` implements `Iterable<Item = &T>`.
///
/// In other words, a reference of a collection is an `Iterable`.
///
/// ## Cloneable iterators
///
/// Second, consider an iterator that can be cloned; i.e., `Iterator + Clone`.
/// This iterator can be converted into an `Iterable` which can be iterated over
/// repeatedly by calling `into_iterable` method.
///
/// ## Lazy Generators
///
/// Third, consider types iterators of which create values on the fly during the
/// iteration. One such example is the range.
/// Consider, for instance, the range 3..7.
/// Although it looks like a collection, it does not hold elements (3, 4, 5, 6) anywhere in memory. These elements are produced on the fly during the iteration.
/// `Iterable` trait implementations for the ranges are provided in this crate.
///
/// For similar custom types, the trait needs to be implemented explicitly.
///
/// # Examples
///
/// ```
/// use orx_iterable::*;
/// use arrayvec::ArrayVec;
/// use smallvec::{smallvec, SmallVec};
/// use std::collections::{BTreeSet, BinaryHeap, HashSet, LinkedList, VecDeque};
///
/// struct Stats {
///     count: usize,
///     mean: i64,
///     std_dev: i64,
/// }
///
/// /// we need multiple iterations over numbers to compute the stats
/// fn statistics(numbers: impl Iterable<Item = i64>) -> Stats {
///     let count = numbers.iter().count() as i64;
///     let sum = numbers.iter().sum::<i64>();
///     let mean = sum / count;
///     let sum_sq_errors: i64 = numbers.iter().map(|x| (x - mean) * (x - mean)).sum();
///     let std_dev = f64::sqrt(sum_sq_errors as f64 / (count - 1) as f64) as i64;
///     Stats {
///         count: count as usize,
///         mean,
///         std_dev,
///     }
/// }
///
/// // collections as Iterable
///
/// let x = [3, 5, 7];
/// statistics(x.copied()); // see Iterable's transformation methods such as copied, mapped, etc.
///
/// let x = vec![3, 5, 7];
/// statistics(x.copied());
///
/// let x = LinkedList::from_iter([3, 5, 7]);
/// statistics(x.copied());
///
/// let x = VecDeque::from_iter([3, 5, 7]);
/// statistics(x.copied());
///
/// let x = HashSet::<_>::from_iter([3, 5, 7]);
/// statistics(x.copied());
///
/// let x = BTreeSet::from_iter([3, 5, 7]);
/// statistics(x.copied());
///
/// let x = BinaryHeap::from_iter([3, 5, 7]);
/// statistics(x.copied());
///
/// let x: SmallVec<[_; 128]> = smallvec![3, 5, 7];
/// statistics(x.copied());
///
/// let mut x = ArrayVec::<_, 16>::new();
/// x.extend([3, 5, 7]);
/// statistics(x.copied());
///
/// // cloneable iterators as Iterable
///
/// let x = (0..10).map(|x| x * 2).into_iterable();
/// statistics(x);
///
/// let x = vec![1, 2, 3];
/// let y = x
///     .iter()
///     .copied()
///     .filter(|x| x % 2 == 1)
///     .flat_map(|x| [-x, x])
///     .into_iterable();
/// statistics(y);
///
/// // lazy generators as Iterable
///
/// statistics(7..21i64);
/// ```
///
/// The following example represents an explicit implementation of the Iterable
/// trait for a lazy generator, which generates a sequence of Fibonacci numbers
/// up to a set bound.
///
/// ```
/// use orx_iterable::*;
///
/// struct FibUntilIter {
///     curr: u32,
///     next: u32,
///     until: u32,
/// }
///
/// impl Iterator for FibUntilIter {
///     type Item = u32;
///
///     fn next(&mut self) -> Option<Self::Item> {
///         let current = self.curr;
///         self.curr = self.next;
///         self.next = current + self.next;
///         match current > self.until {
///             false => Some(current),
///             true => None,
///         }
///     }
/// }
///
/// struct FibUntil(u32);
///
/// impl Iterable for FibUntil {
///     type Item = u32;
///
///     type Iter = FibUntilIter;
///
///     fn iter(&self) -> Self::Iter {
///         FibUntilIter { curr: 0, next: 1, until: self.0 }
///     }
/// }
///
/// let fib = FibUntil(10); // Iterable
///
/// assert_eq!(fib.iter().count(), 7);
/// assert_eq!(fib.iter().max(), Some(8));
/// assert_eq!(fib.iter().collect::<Vec<_>>(), [0, 1, 1, 2, 3, 5, 8]);
/// ```
pub trait Iterable {
    /// Type of the item that the iterators created by the [`iter`] method yields.
    ///
    /// [`iter`]: crate::Iterable::iter
    type Item;

    /// Type of the iterator created by the [`iter`] method.
    ///
    /// [`iter`]: crate::Iterable::iter
    type Iter: Iterator<Item = Self::Item>;

    /// Creates a new iterator from this iterable yielding elements of type `Iterable::Item`.
    fn iter(&self) -> Self::Iter;

    // provided

    /// Takes two iterables and creates a new iterable over both in sequence.
    ///
    /// In other words, it links two iterators together, in a chain.
    ///
    /// [`once`] is commonly used to adapt a single value into a chain of other kinds of iteration.
    ///
    /// [`once`]: crate::once
    ///
    /// # Examples
    ///
    /// ```
    /// use orx_iterable::*;
    ///
    /// let a = vec!['a', 'b'];
    /// let b = ['c', 'd', 'e'];
    ///
    /// let it = a.chained(&b).copied();
    /// assert_eq!(it.iter().count(), 5);
    /// assert_eq!(it.iter().collect::<Vec<_>>(), vec!['a', 'b', 'c', 'd', 'e']);
    /// ```
    fn chained<I>(self, other: I) -> Chained<Self, I>
    where
        Self: Sized,
        I: Iterable<Item = Self::Item>,
    {
        Chained {
            it1: self,
            it2: other,
        }
    }

    /// Creates an iterable, iterators of which clone all of its elements.
    ///
    /// This is useful when you have an iterable over &T, but you need an iterable over T.
    ///
    /// # Examples
    ///
    /// ```
    /// use orx_iterable::*;
    ///
    /// fn count_and_sum(data: impl Iterable<Item = i32>) -> (usize, i32) {
    ///     (data.iter().count(), data.iter().sum())
    /// }
    ///
    /// let a = vec![1, 3, 7, 15];
    ///
    /// assert_eq!((4, 26), count_and_sum(a.cloned()));
    ///
    /// assert_eq!((3, 11), count_and_sum(a.filtered(|x| **x < 10).cloned()));
    /// ```
    fn cloned<'a, T>(self) -> Cloned<'a, T, Self>
    where
        Self: Sized + Iterable<Item = &'a T>,
        T: Clone,
    {
        Cloned { it: self }
    }

    /// Creates an iterable, iterators of which copy all of its elements.
    ///
    /// This is useful when you have an iterable over &T, but you need an iterable over T.
    ///
    /// # Examples
    ///
    /// ```
    /// use orx_iterable::*;
    ///
    /// fn count_and_sum(data: impl Iterable<Item = i32>) -> (usize, i32) {
    ///     (data.iter().count(), data.iter().sum())
    /// }
    ///
    /// let a = vec![1, 3, 7, 15];
    ///
    /// assert_eq!((4, 26), count_and_sum(a.copied()));
    ///
    /// assert_eq!((3, 11), count_and_sum(a.filtered(|x| **x < 10).copied()));
    /// ```
    fn copied<'a, T>(self) -> Copied<'a, T, Self>
    where
        Self: Sized + Iterable<Item = &'a T>,
        T: Copy,
    {
        Copied { it: self }
    }

    /// Creates an iterable which gives the current iteration count as well as the next value.
    ///
    /// The iterators created by enumerated iterable yields pairs `(i, val)`,
    /// where `i` is the current index of iteration and `val` is the value returned by the iterator.
    ///
    /// # Examples
    ///
    /// ```
    /// use orx_iterable::*;
    ///
    /// let a = ['a', 'b', 'c'];
    /// let it = a.enumerated();
    ///
    /// assert_eq!(it.iter().count(), 3);
    /// assert_eq!(it.iter().collect::<Vec<_>>(), vec![(0, &'a'), (1, &'b'), (2, &'c')]);
    /// ```
    fn enumerated(self) -> Enumerated<Self>
    where
        Self: Sized,
    {
        Enumerated { it: self }
    }

    /// Creates an iterable that both filters and maps.
    ///
    /// Iterators of the returned iterable yields only the values for which the supplied closure returns `Some(value)`.
    ///
    /// `filter_mapped` can be used to make chains of `filtered` and `mapped` more concise.
    /// The example below shows how a `mapped().filtered().mapped()` can be shortened to a single call
    /// to `filter_mapped`.
    ///
    /// # Examples
    ///
    /// ```
    /// use orx_iterable::*;
    ///
    /// let a = ["1", "two", "NaN", "four", "5"];
    ///
    /// let it = a.filter_mapped(|s| s.parse::<u32>().ok());
    ///
    /// assert_eq!(it.iter().count(), 2);
    /// assert_eq!(it.iter().collect::<Vec<_>>(), vec![1, 5]);
    /// ```
    fn filter_mapped<M, U>(self, filter_map: M) -> FilterMapped<Self, M, U>
    where
        Self: Sized,
        M: Fn(Self::Item) -> Option<U> + Copy,
    {
        FilterMapped {
            it: self,
            filter_map,
        }
    }

    /// Creates an iterable which uses a closure to determine if an element should be yielded.
    ///
    /// Given an element the closure must return true or false. Iterators of the returned iterable
    /// will yield only the elements for which the closure returns true.
    ///
    /// # Examples
    ///
    /// ```
    /// use orx_iterable::*;
    ///
    /// let a = [0i32, 1, 2];
    ///
    /// let it = a.filtered(|x| x.is_positive());
    ///
    /// assert_eq!(it.iter().count(), 2);
    /// assert_eq!(it.iter().collect::<Vec<_>>(), [&1, &2]);
    /// ```
    fn filtered<P>(self, filter: P) -> Filtered<Self, P>
    where
        Self: Sized,
        P: Fn(&Self::Item) -> bool + Copy,
    {
        Filtered { it: self, filter }
    }

    /// Creates an iterable that works like map, but flattens nested structure.
    ///
    /// You can think of `flat_mapped(f)` as the semantic equivalent of mapping,
    /// and then flattening as in `mapped(f).flattened()`.
    ///
    /// Another way of thinking about `flat_mapped()`:
    ///
    /// * `mapped`’s closure returns one item for each element, and
    /// * `flat_map()`’s closure returns an iterator for each element.
    ///
    /// # Examples
    ///
    /// ```
    /// use orx_iterable::*;
    ///
    /// let words = ["al", "p", "ha"];
    ///
    /// let it = words.flat_mapped(|s| s.chars());
    ///
    /// assert_eq!(it.iter().count(), 5);
    /// assert_eq!(it.iter().collect::<String>().as_str(), "alpha");
    /// ```
    fn flat_mapped<M, U>(self, flat_map: M) -> FlatMapped<Self, M, U>
    where
        Self: Sized,
        U: IntoIterator,
        M: Fn(Self::Item) -> U + Copy,
    {
        FlatMapped { it: self, flat_map }
    }

    /// Creates an iterable that flattens nested structure.
    ///
    /// This is useful when you have an iterable of iterators or an iterable of things that can be
    /// turned into iterators and you want to remove one level of indirection.
    ///
    /// # Examples
    ///
    /// ```
    /// use orx_iterable::*;
    ///
    /// let data = vec![vec![1, 2, 3, 4], vec![5, 6]];
    ///
    /// let it = data.flattened();
    ///
    /// assert_eq!(it.iter().count(), 6);
    /// assert_eq!(it.iter().sum::<u32>(), 21);
    /// ```
    fn flattened(self) -> Flattened<Self>
    where
        Self: Sized,
        Self::Item: IntoIterator,
    {
        Flattened { it: self }
    }

    /// Creates an iterable which ends after the first `None`.
    ///
    /// After an iterator returns `None`, future calls may or may not yield `Some(T)` again.
    /// fuse() adapts an iterator, ensuring that after a `None` is given, it will always return `None` forever.
    ///
    /// Note that the Fuse wrapper is a no-op on iterators that implement the FusedIterator trait.
    /// fuse() may therefore behave incorrectly if the FusedIterator trait is improperly implemented.
    fn fused(self) -> Fused<Self>
    where
        Self: Sized,
    {
        Fused { it: self }
    }

    /// Creates an iterable that both yields elements based on a predicate and maps.
    ///
    /// `map_while()` takes a closure as an argument. It will call this closure on each element
    /// of the iterator, and yield elements while it returns `Some(_)`.
    ///
    /// # Examples
    ///
    /// ```
    /// use orx_iterable::*;
    ///
    /// let a = [0, 1, 2, -3, 4, 5, -6];
    ///
    /// let it = a.mapped_while(|x| u32::try_from(*x).ok());
    ///
    /// assert_eq!(it.iter().count(), 3);
    /// assert_eq!(it.iter().collect::<Vec<_>>(), [0, 1, 2]);
    /// ```
    fn mapped_while<M, U>(self, map_while: M) -> MappedWhile<Self, M, U>
    where
        Self: Sized,
        M: Fn(Self::Item) -> Option<U> + Copy,
    {
        MappedWhile {
            it: self,
            map_while,
        }
    }

    /// Takes a closure and creates an iterable which calls that closure on each element.
    ///
    /// map() transforms one iterator into another, by means of its argument `map`.
    /// It produces a new iterable, iterators of which calls this closure on each element of
    /// the original iterable.
    ///
    /// # Example
    ///
    /// ```
    /// use orx_iterable::*;
    ///
    /// let a = [1, 3, 6];
    ///
    /// let it = a.mapped(|x| 2 * x);
    ///
    /// assert_eq!(it.iter().sum::<i32>(), 20);
    /// assert_eq!(it.iter().collect::<Vec<_>>(), [2, 6, 12]);
    /// ```
    fn mapped<M, U>(self, map: M) -> Mapped<Self, M, U>
    where
        Self: Sized,
        M: Fn(Self::Item) -> U + Copy,
    {
        Mapped { it: self, map }
    }

    /// Creates an iterable iterators of which reverses the traversal direction.
    ///
    /// This is only possible if the iterable's iterator type has an end,
    /// so `reversed()` only works when `Iterable::Iter` is a `DoubleEndedIterator`.
    ///
    /// # Example
    ///
    /// ```
    /// use orx_iterable::*;
    ///
    /// let a = [1, 2, 3];
    ///
    /// let it = a.reversed();
    /// assert_eq!(it.iter().collect::<Vec<_>>(), [&3, &2, &1]);
    ///
    /// let it = it.reversed();
    /// assert_eq!(it.iter().collect::<Vec<_>>(), [&1, &2, &3]);
    /// ```
    fn reversed(self) -> Reversed<Self>
    where
        Self: Sized,
        Self::Iter: DoubleEndedIterator,
    {
        Reversed { it: self }
    }

    /// Creates an iterable, iterators of which skip the first `n` elements.
    ///
    /// Created iterators skip elements until n elements are skipped or the end of the iterator
    /// is reached (whichever happens first).
    /// After that, all the remaining elements are yielded. In particular, if the original iterator
    /// is too short, then the returned iterator is empty.
    ///
    /// # Examples
    ///
    /// ```
    /// use orx_iterable::*;
    ///
    /// let a = [1, 2, 3];
    ///
    /// let it = a.skipped(2);
    ///
    /// assert_eq!(it.iter().count(), 1);
    /// assert_eq!(it.iter().next(), Some(&3));
    /// ```
    fn skipped(self, n: usize) -> Skipped<Self>
    where
        Self: Sized,
    {
        Skipped { it: self, n }
    }

    /// Creates an iterable, iterators of which skip elements based on a predicate.
    ///
    /// `skipped_while()` takes a closure as an argument. It will call this closure on each element
    /// of the iterator, and ignore elements until it returns false.
    ///
    /// After false is returned, `skip_while`’s job is over, and the rest of the elements are yielded.
    ///
    /// # Examples
    ///
    /// ```
    /// use orx_iterable::*;
    ///
    /// let a = [-1i32, 0, 1];
    ///
    /// let it = a.skipped_while(|x| x.is_negative());
    ///
    /// assert_eq!(it.iter().collect::<Vec<_>>(), [&0, &1]);
    /// ```
    fn skipped_while<P>(self, skip_while: P) -> SkippedWhile<Self, P>
    where
        Self: Sized,
        P: Fn(&Self::Item) -> bool + Copy,
    {
        SkippedWhile {
            it: self,
            skip_while,
        }
    }

    /// Creates an iterable starting at the same point, but stepping by the given amount at each iteration.
    ///
    /// The first element of the iterator will always be returned, regardless of the step given.
    ///
    /// # Examples
    ///
    /// ```
    /// use orx_iterable::*;
    ///
    /// let a = [0, 1, 2, 3, 4, 5];
    ///
    /// let it = a.stepped_by(2);
    ///
    /// assert_eq!(it.iter().collect::<Vec<_>>(), [&0, &2, &4]);
    /// ```
    fn stepped_by(self, step: usize) -> SteppedBy<Self>
    where
        Self: Sized,
    {
        SteppedBy { it: self, step }
    }

    /// Creates an iterable whose iterators yield the first `n` elements, or fewer if the underlying iterator ends sooner.
    ///
    /// # Examples
    ///
    /// ```
    /// use orx_iterable::*;
    ///
    /// let a = [1, 2, 3];
    ///
    /// let it = a.taken(2);
    ///
    /// assert_eq!(it.iter().collect::<Vec<_>>(), [&1, &2]);
    /// ```
    fn taken(self, n: usize) -> Taken<Self>
    where
        Self: Sized,
    {
        Taken { it: self, n }
    }

    /// Creates an iterable, iterators of which yield elements based on a predicate.
    ///
    /// `taken_while()` takes a closure as an argument.
    /// It will call this closure on each element of the iterator, and yield elements while it returns true.
    ///
    /// After false is returned, the rest of the elements are ignored.
    ///
    /// # Examples
    ///
    /// ```
    /// use orx_iterable::*;
    ///
    /// let a = [-1i32, 0, 1];
    ///
    /// let it = a.taken_while(|x| x.is_negative());
    ///
    /// assert_eq!(it.iter().count(), 1);
    /// assert_eq!(it.iter().next(), Some(&-1));
    /// ```
    fn taken_while<P>(self, take_while: P) -> TakenWhile<Self, P>
    where
        Self: Sized,
        P: Fn(&Self::Item) -> bool + Copy,
    {
        TakenWhile {
            it: self,
            take_while,
        }
    }

    /// ‘Zips up’ two iterables into a single iterable of pairs.
    ///
    /// The zipped iterable creates zipped iterators.
    ///
    /// If either iterator returns None, next from the zipped iterator will return None.
    /// If the zipped iterator has no more elements to return then each further attempt to advance it will first try to
    /// advance the first iterator at most one time and if it still yielded an item try to advance the second iterator
    /// at most one time.
    ///
    /// # Examples
    ///
    /// ```
    /// use orx_iterable::*;
    ///
    /// let a1 = [1, 2, 3];
    /// let b1 = [4, 5, 6, 7];
    ///
    /// let it = a1.zipped(&b1);
    ///
    /// assert_eq!(it.iter().count(), 3);
    /// assert_eq!(it.iter().collect::<Vec<_>>(), [(&1, &4), (&2, &5), (&3, &6)]);
    /// ```
    fn zipped<I>(self, other: I) -> Zipped<Self, I>
    where
        Self: Sized,
        I: Iterable,
    {
        Zipped {
            it1: self,
            it2: other,
        }
    }
}

// impl

impl<'a, X> Iterable for &'a X
where
    &'a X: IntoIterator,
{
    type Item = <&'a X as IntoIterator>::Item;

    type Iter = <&'a X as IntoIterator>::IntoIter;

    fn iter(&self) -> Self::Iter {
        self.into_iter()
    }
}

impl<'a, X> Iterable for &'a [X] {
    type Item = &'a X;

    type Iter = core::slice::Iter<'a, X>;

    fn iter(&self) -> Self::Iter {
        <[X]>::iter(self)
    }
}