1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
use crate::errors::{ERR_FAILED_TO_GROW, ERR_FAILED_TO_PUSH};
use orx_fixed_vec::FixedVec;
use orx_split_vec::{Doubling, Linear, PinnedVec, Recursive, SplitVec};
use std::cell::UnsafeCell;
use std::marker::PhantomData;
use std::sync::atomic::{AtomicUsize, Ordering};

/// An efficient, convenient and lightweight grow-only concurrent collection, ideal for collecting results concurrently.
///
/// The vec preserves the order of elements with respect to the order the `push` method is called.
///
/// # Examples
///
/// Safety guarantees to push to the vec with an immutable reference makes it easy to share the vec among threads.
///
/// ## Using `std::sync::Arc`
///
/// We can share our vec among threads using `Arc` and collect results concurrently.
///
/// ```rust
/// use orx_concurrent_vec::*;
/// use std::{sync::Arc, thread};
///
/// let (num_threads, num_items_per_thread) = (4, 8);
///
/// let con_vec = Arc::new(ConcurrentVec::new());
/// let mut thread_vec: Vec<thread::JoinHandle<()>> = Vec::new();
///
/// for i in 0..num_threads {
///     let con_vec = con_vec.clone();
///     thread_vec.push(thread::spawn(move || {
///         for j in 0..num_items_per_thread {
///             // concurrently collect results simply by calling `push`
///             con_vec.push(i * 1000 + j);
///         }
///     }));
/// }
///
/// for handle in thread_vec {
///     handle.join().unwrap();
/// }
///
/// let mut vec_from_con_vec: Vec<_> = con_vec.iter().copied().collect();
/// vec_from_con_vec.sort();
/// let mut expected: Vec<_> = (0..num_threads).flat_map(|i| (0..num_items_per_thread).map(move |j| i * 1000 + j)).collect();
/// expected.sort();
/// assert_eq!(vec_from_con_vec, expected);
/// ```
///
/// ## Using `std::thread::scope`
///
/// An even more convenient approach would be to use thread scopes. This allows to use shared reference of the vec across threads, instead of `Arc`.
///
/// ```rust
/// use orx_concurrent_vec::*;
///
/// let (num_threads, num_items_per_thread) = (4, 8);
///
/// let con_vec = ConcurrentVec::new();
/// let con_vec_ref = &con_vec; // just take a reference
/// std::thread::scope(|s| {
///     for i in 0..num_threads {
///         s.spawn(move || {
///             for j in 0..num_items_per_thread {
///                 // concurrently collect results simply by calling `push`
///                 con_vec_ref.push(i * 1000 + j);
///             }
///         });
///     }
/// });
///
/// let mut vec_from_con_vec: Vec<_> = con_vec.iter().copied().collect();
/// vec_from_con_vec.sort();
/// let mut expected: Vec<_> = (0..num_threads).flat_map(|i| (0..num_items_per_thread).map(move |j| i * 1000 + j)).collect();
/// expected.sort();
/// assert_eq!(vec_from_con_vec, expected);
/// ```
///
/// # Safety
///
/// `ConcurrentVec` uses a [`PinnedVec`](https://crates.io/crates/orx-pinned-vec) implementation as the underlying storage (see [`SplitVec`](https://crates.io/crates/orx-split-vec) and [`Fixed`](https://crates.io/crates/orx-fixed-vec)).
/// `PinnedVec` guarantees that elements which are already pushed to the vector stay pinned to their memory locations unless explicitly changed due to removals, which is not the case here since `ConcurrentVec` is a grow-only collection.
/// This feature makes it safe to grow with a shared reference on a single thread, as implemented by [`ImpVec`](https://crates.io/crates/orx-imp-vec).
///
/// In order to achieve this feature in a concurrent program, `ConcurrentVec` pairs the `PinnedVec` with an `AtomicUsize`.
/// * `len: AtomicSize`: fixes the target memory location of each element to be pushed at the time the `push` method is called. Regardless of whether or not writing to memory completes before another element is pushed, every pushed element receives a unique position reserved for it.
/// * `PinnedVec` guarantees that already pushed elements are not moved around in memory during growth. This also enables the following mode of concurrency:
///   * one thread might allocate new memory in order to grow when capacity is reached,
///   * while another thread might concurrently be writing to any of the already allocation memory locations.
///
/// The approach guarantees that
/// * only one thread can write to the memory location of an element being pushed to the vec,
/// * at any point in time, only one thread is responsible for the allocation of memory if the vec requires new memory,
/// * no thread reads any of the written elements (reading happens after converting the vec `into_inner`),
/// * hence, there exists no race condition.
///
/// # Construction
///
/// As explained above, `ConcurrentVec` is simply a tuple of a `PinnedVec` and an `AtomicUsize`.
/// Therefore, it can be constructed by wrapping any pinned vector; i.e., `ConcurrentVec<T>` implements `From<P: PinnedVec<T>>`.
/// Further, there exist `with_` methods to directly construct the concurrent vec with common pinned vector implementations.
///
/// ```rust
/// use orx_concurrent_vec::*;
///
/// // default pinned vector -> SplitVec<T, Doubling>
/// let con_vec: ConcurrentVec<char> = ConcurrentVec::new();
/// let con_vec: ConcurrentVec<char> = Default::default();
/// let con_vec: ConcurrentVec<char> = ConcurrentVec::with_doubling_growth();
/// let con_vec: ConcurrentVec<char, SplitVec<Option<char>, Doubling>> = ConcurrentVec::with_doubling_growth();
///
/// let con_vec: ConcurrentVec<char> = SplitVec::new().into();
/// let con_vec: ConcurrentVec<char, SplitVec<Option<char>, Doubling>> = SplitVec::new().into();
///
/// // SplitVec with [Recursive](https://docs.rs/orx-split-vec/latest/orx_split_vec/struct.Recursive.html) growth
/// let con_vec: ConcurrentVec<char, SplitVec<Option<char>, Recursive>> =
///     ConcurrentVec::with_recursive_growth();
/// let con_vec: ConcurrentVec<char, SplitVec<Option<char>, Recursive>> =
///     SplitVec::with_recursive_growth().into();
///
/// // SplitVec with [Linear](https://docs.rs/orx-split-vec/latest/orx_split_vec/struct.Linear.html) growth
/// // each fragment will have capacity 2^10 = 1024
/// let con_vec: ConcurrentVec<char, SplitVec<Option<char>, Linear>> = ConcurrentVec::with_linear_growth(10);
/// let con_vec: ConcurrentVec<char, SplitVec<Option<char>, Linear>> = SplitVec::with_linear_growth(10).into();
///
/// // [FixedVec](https://docs.rs/orx-fixed-vec/latest/orx_fixed_vec/) with fixed capacity.
/// // Fixed vector cannot grow; hence, pushing the 1025-th element to this vec will cause a panic!
/// let con_vec: ConcurrentVec<char, FixedVec<Option<char>>> = ConcurrentVec::with_fixed_capacity(1024);
/// let con_vec: ConcurrentVec<char, FixedVec<Option<char>>> = FixedVec::new(1024).into();
/// ```
///
/// Of course, the pinned vector to be wrapped does not need to be empty.
///
/// ```rust
/// use orx_concurrent_vec::*;
///
/// let split_vec: SplitVec<Option<i32>> = (0..1024).map(Some).collect();
/// let con_vec: ConcurrentVec<_> = split_vec.into();
/// ```
///
/// # Write-Only vs Read-Write
///
/// The concurrent vec is read and write & grow-only vector which is convenient and efficient for collecting elements.
/// It guarantees that threads can only read elements which are already written and can never change.
/// This flexibility has the minor additional cost of values being wrapped by an `Option`.
///
/// See [`ConcurrentBag`](https://crates.io/crates/orx-concurrent-bag) for a read-only variant which stores values directly as `T`.
pub struct ConcurrentVec<T, P = SplitVec<Option<T>, Doubling>>
where
    P: PinnedVec<Option<T>>,
{
    pinned: UnsafeCell<P>,
    len: AtomicUsize,
    capacity: AtomicUsize,
    phantom: PhantomData<T>,
}

// new
impl<T> ConcurrentVec<T, SplitVec<Option<T>, Doubling>> {
    /// Creates a new concurrent vector by creating and wrapping up a new `SplitVec<T, Doubling>` as the underlying storage.
    pub fn with_doubling_growth() -> Self {
        Self::new_from_pinned(SplitVec::with_doubling_growth())
    }

    /// Creates a new concurrent vector by creating and wrapping up a new `SplitVec<T, Doubling>` as the underlying storage.
    pub fn new() -> Self {
        Self::new_from_pinned(SplitVec::new())
    }
}

impl<T> Default for ConcurrentVec<T, SplitVec<Option<T>, Doubling>> {
    /// Creates a new concurrent vector by creating and wrapping up a new `SplitVec<T, Doubling>` as the underlying storage.
    fn default() -> Self {
        Self::with_doubling_growth()
    }
}

impl<T> ConcurrentVec<T, SplitVec<Option<T>, Recursive>> {
    /// Creates a new concurrent vector by creating and wrapping up a new `SplitVec<T, Recursive>` as the underlying storage.
    pub fn with_recursive_growth() -> Self {
        Self::new_from_pinned(SplitVec::with_recursive_growth())
    }
}

impl<T> ConcurrentVec<T, SplitVec<Option<T>, Linear>> {
    /// Creates a new concurrent vector by creating and wrapping up a new `SplitVec<T, Linear>` as the underlying storage.
    ///
    /// Note that choosing a small `constant_fragment_capacity_exponent` for a large vec to be filled might lead to too many growth calls which might be computationally costly.
    pub fn with_linear_growth(constant_fragment_capacity_exponent: usize) -> Self {
        Self::new_from_pinned(SplitVec::with_linear_growth(
            constant_fragment_capacity_exponent,
        ))
    }
}

impl<T> ConcurrentVec<T, FixedVec<Option<T>>> {
    /// Creates a new concurrent vector by creating and wrapping up a new `FixedVec<T>` as the underlying storage.
    ///
    /// # Safety
    ///
    /// Note that a `FixedVec` cannot grow.
    /// Therefore, pushing the `(fixed_capacity + 1)`-th element to the vec will lead to a panic.
    pub fn with_fixed_capacity(fixed_capacity: usize) -> Self {
        Self::new_from_pinned(FixedVec::new(fixed_capacity))
    }
}

impl<T, P> From<P> for ConcurrentVec<T, P>
where
    P: PinnedVec<Option<T>>,
{
    fn from(value: P) -> Self {
        Self::new_from_pinned(value)
    }
}

// impl
impl<T, P> ConcurrentVec<T, P>
where
    P: PinnedVec<Option<T>>,
{
    /// Consumes the concurrent vector and returns the underlying pinned vector.
    ///
    /// Note that
    /// * it is cheap to wrap a `SplitVec` as a `ConcurrentVec` using thee `From` trait;
    /// * and similarly to convert a `ConcurrentVec` to the underlying `SplitVec` using `into_inner` method.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use orx_concurrent_vec::*;
    ///
    /// let con_vec = ConcurrentVec::new();
    ///
    /// con_vec.push('a');
    /// con_vec.push('b');
    /// con_vec.push('c');
    /// con_vec.push('d');
    /// assert_eq!(vec!['a', 'b', 'c', 'd'], con_vec.iter().copied().collect::<Vec<_>>());
    ///
    /// let mut split = con_vec.into_inner();
    /// assert_eq!(vec![Some('a'), Some('b'), Some('c'), Some('d')], split.iter().copied().collect::<Vec<_>>());
    ///
    /// split.push(Some('e'));
    /// *split.get_mut(0).expect("exists") = Some('x');
    ///
    /// assert_eq!(vec![Some('x'), Some('b'), Some('c'), Some('d'), Some('e')], split.iter().copied().collect::<Vec<_>>());
    ///
    /// let mut con_vec: ConcurrentVec<_> = split.into();
    /// assert_eq!(vec!['x', 'b', 'c', 'd', 'e'], con_vec.iter().copied().collect::<Vec<_>>());
    ///
    /// con_vec.clear();
    /// assert!(con_vec.is_empty());
    ///
    /// let split = con_vec.into_inner();
    /// assert!(split.is_empty());
    pub fn into_inner(self) -> P {
        let (len, mut pinned) = (self.len(), self.pinned.into_inner());
        unsafe { pinned.set_len(len) };
        pinned
    }

    /// ***O(1)*** Returns the number of elements which are pushed to the vector, including the elements which received their reserved locations and are currently being pushed.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use orx_concurrent_vec::ConcurrentVec;
    ///
    /// let con_vec = ConcurrentVec::new();
    /// con_vec.push('a');
    /// con_vec.push('b');
    ///
    /// assert_eq!(2, con_vec.len());
    /// ```
    #[inline(always)]
    pub fn len(&self) -> usize {
        self.len.load(Ordering::SeqCst)
    }

    /// ***O(n)*** Returns the number of elements which are completely pushed to the vector, excluding elements which received their reserved locations and currently being pushed.
    ///
    /// In order to get number of elements for which the `push` method is called, including elements that are currently being pushed, you may use
    /// `convec.len()` with ***O(1)*** time complexity.
    ///
    ///
    /// # Examples
    ///
    /// ```rust
    /// use orx_concurrent_vec::ConcurrentVec;
    ///
    /// let convec = ConcurrentVec::new();
    /// convec.push('a');
    /// convec.push('b');
    ///
    /// assert_eq!(2, convec.len_exact());
    /// assert_eq!(2, convec.iter().count());
    /// ```
    #[inline(always)]
    pub fn len_exact(&self) -> usize {
        self.iter().count()
    }

    /// ***O(1)*** Returns the current capacity of the concurrent vec; i.e., the underlying pinned vector storage.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use orx_concurrent_vec::ConcurrentVec;
    ///
    /// let con_vec = ConcurrentVec::new();
    /// con_vec.push('a');
    /// con_vec.push('b');
    ///
    /// assert_eq!(4, con_vec.capacity());
    ///
    /// con_vec.push('c');
    /// con_vec.push('d');
    /// con_vec.push('e');
    ///
    /// assert_eq!(12, con_vec.capacity());
    /// ```
    #[inline(always)]
    pub fn capacity(&self) -> usize {
        self.capacity.load(Ordering::Relaxed)
    }

    /// ***O(1)*** Returns whether the con_vec is empty (`len() == 0`) or not.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use orx_concurrent_vec::ConcurrentVec;
    ///
    /// let mut con_vec = ConcurrentVec::new();
    ///
    /// assert!(con_vec.is_empty());
    ///
    /// con_vec.push('a');
    /// con_vec.push('b');
    /// assert!(!con_vec.is_empty());
    ///
    /// con_vec.clear();
    /// assert!(con_vec.is_empty());
    /// ```
    #[inline(always)]
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Returns an iterator to elements of the vector.
    ///
    /// Iteration of elements is in the order the push method is called.
    ///
    /// Note that the iterator skips elements which are currently being written; safely yields only the elements which are completely written.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use orx_concurrent_vec::ConcurrentVec;
    ///
    /// let convec = ConcurrentVec::new();
    /// convec.push('a');
    /// convec.push('b');
    ///
    /// let mut iter = convec.iter();
    /// assert_eq!(iter.next(), Some(&'a'));
    /// assert_eq!(iter.next(), Some(&'b'));
    /// assert_eq!(iter.next(), None);
    /// ```
    pub fn iter(&self) -> impl Iterator<Item = &T> {
        unsafe {
            self.correct_pinned_len();
            let pinned = &*self.pinned.get() as &P;
            pinned.iter().take(self.len()).flatten()
        }
    }

    /// Returns the element at the `index`-th position of the concurrent vector.
    ///
    /// Returns `None` if:
    /// * the `index` is out of bounds,
    /// * or the element is currently being written to the `index`-th position; however, writing process is not completed yet.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use orx_concurrent_vec::ConcurrentVec;
    ///
    /// let convec = ConcurrentVec::new();
    /// convec.push('a');
    /// convec.push('b');
    ///
    /// assert_eq!(convec.get(0), Some(&'a'));
    /// assert_eq!(convec.get(1), Some(&'b'));
    /// assert_eq!(convec.get(2), None);
    /// ```
    #[allow(clippy::missing_panics_doc, clippy::unwrap_in_result)]
    pub fn get(&self, index: usize) -> Option<&T> {
        if index < self.len() && index < self.capacity() {
            unsafe {
                self.correct_pinned_len();
                let pinned = &*self.pinned.get() as &P;
                pinned.get(index).and_then(|x| x.as_ref())
            }
        } else {
            None
        }
    }

    /// Concurrent & thread-safe method to push the given `value` to the back of the vec.
    ///
    /// It preserves the order of elements with respect to the order the `push` method is called.
    ///
    /// # Examples
    ///
    /// Allowing to safely push to the vec with an immutable reference, it is trivial to share the vec among threads.
    ///
    /// ## Using `std::sync::Arc`
    ///
    /// We can share our vec among threads using `Arc` and collect results concurrently.
    ///
    /// ```rust
    /// use orx_concurrent_vec::*;
    /// use std::{sync::Arc, thread};
    ///
    /// let (num_threads, num_items_per_thread) = (4, 8);
    ///
    /// let con_vec = Arc::new(ConcurrentVec::new());
    /// let mut thread_vec: Vec<thread::JoinHandle<()>> = Vec::new();
    ///
    /// for i in 0..num_threads {
    ///     let con_vec = con_vec.clone();
    ///     thread_vec.push(thread::spawn(move || {
    ///         for j in 0..num_items_per_thread {
    ///             // concurrently collect results simply by calling `push`
    ///             con_vec.push(i * 1000 + j);
    ///         }
    ///     }));
    /// }
    ///
    /// for handle in thread_vec {
    ///     handle.join().unwrap();
    /// }
    ///
    /// let mut vec_from_con_vec: Vec<_> = con_vec.iter().copied().collect();
    /// vec_from_con_vec.sort();
    /// let mut expected: Vec<_> = (0..num_threads).flat_map(|i| (0..num_items_per_thread).map(move |j| i * 1000 + j)).collect();
    /// expected.sort();
    /// assert_eq!(vec_from_con_vec, expected);
    /// ```
    ///
    /// ## Using `std::thread::scope`
    ///
    /// An even more convenient approach would be to use thread scopes. This allows to use shared reference of the vec across threads, instead of `Arc`.
    ///
    /// ```rust
    /// use orx_concurrent_vec::*;
    /// use std::thread;
    ///
    /// let (num_threads, num_items_per_thread) = (4, 8);
    ///
    /// let con_vec = ConcurrentVec::new();
    /// let con_vec_ref = &con_vec; // just take a reference
    /// std::thread::scope(|s| {
    ///     for i in 0..num_threads {
    ///         s.spawn(move || {
    ///             for j in 0..num_items_per_thread {
    ///                 // concurrently collect results simply by calling `push`
    ///                 con_vec_ref.push(i * 1000 + j);
    ///             }
    ///         });
    ///     }
    /// });
    ///
    /// let mut vec_from_con_vec: Vec<_> = con_vec.iter().copied().collect();
    /// vec_from_con_vec.sort();
    /// let mut expected: Vec<_> = (0..num_threads).flat_map(|i| (0..num_items_per_thread).map(move |j| i * 1000 + j)).collect();
    /// expected.sort();
    /// assert_eq!(vec_from_con_vec, expected);
    /// ```
    ///
    /// # Safety
    ///
    /// `ConcurrentVec` uses a [`PinnedVec`](https://crates.io/crates/orx-pinned-vec) implementation as the underlying storage (see [`SplitVec`](https://crates.io/crates/orx-split-vec) and [`Fixed`](https://crates.io/crates/orx-fixed-vec)).
    /// `PinnedVec` guarantees that elements which are already pushed to the vector stay pinned to their memory locations unless explicitly changed due to removals, which is not the case here since `ConcurrentVec` is a grow-only collection.
    /// This feature makes it safe to grow with a shared reference on a single thread, as implemented by [`ImpVec`](https://crates.io/crates/orx-imp-vec).
    ///
    /// In order to achieve this feature in a concurrent program, `ConcurrentVec` pairs the `PinnedVec` with an `AtomicUsize`.
    /// * `len: AtomicSize`: fixes the target memory location of each element to be pushed at the time the `push` method is called. Regardless of whether or not writing to memory completes before another element is pushed, every pushed element receives a unique position reserved for it.
    /// * `PinnedVec` guarantees that already pushed elements are not moved around in memory during growth. This also enables the following mode of concurrency:
    ///   * one thread might allocate new memory in order to grow when capacity is reached,
    ///   * while another thread might concurrently be writing to any of the already allocation memory locations.
    ///
    /// The approach guarantees that
    /// * only one thread can write to the memory location of an element being pushed to the vec,
    /// * at any point in time, only one thread is responsible for the allocation of memory if the vec requires new memory,
    /// * no thread reads any of the written elements (reading happens after converting the vec `into_inner`),
    /// * hence, there exists no race condition.
    ///
    /// # Panics
    ///
    /// Panics if the underlying pinned vector fails to grow.
    /// * Note that `FixedVec` cannot grow beyond its fixed capacity;
    /// * `SplitVec`, on the other hand, can grow without dynamically.
    pub fn push(&self, value: T) {
        let idx = self.len.fetch_add(1, Ordering::SeqCst);

        loop {
            let capacity = self.capacity.load(Ordering::SeqCst);

            match idx.cmp(&capacity) {
                std::cmp::Ordering::Less => {
                    // no need to grow, just push
                    let pinned = unsafe { &mut *self.pinned.get() };
                    let ptr = unsafe { pinned.get_ptr_mut(idx) }.expect(ERR_FAILED_TO_PUSH);
                    unsafe { *ptr = Some(value) };
                    break;
                }
                std::cmp::Ordering::Equal => {
                    // we are responsible for growth

                    let pinned = unsafe { &mut *self.pinned.get() };

                    let new_capacity =
                        unsafe { pinned.grow_to(capacity + 1) }.expect(ERR_FAILED_TO_GROW);

                    let ptr = unsafe { pinned.get_ptr_mut(idx) }.expect(ERR_FAILED_TO_PUSH);
                    unsafe { *ptr = Some(value) };

                    self.capacity.store(new_capacity, Ordering::SeqCst);

                    break;
                }

                std::cmp::Ordering::Greater => { /* wait for thread responsible for growth */ }
            }
        }
    }

    /// Clears the vec removing all already pushed elements.
    ///
    /// # Safety
    ///
    /// This method requires a mutually exclusive reference.
    /// This guarantees that there might not be any continuing writing process of a `push` operation.
    /// Therefore, the elements can safely be cleared.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use orx_concurrent_vec::ConcurrentVec;
    ///
    /// let mut con_vec = ConcurrentVec::new();
    ///
    /// con_vec.push('a');
    /// con_vec.push('b');
    ///
    /// con_vec.clear();
    /// assert!(con_vec.is_empty());
    /// ```
    pub fn clear(&mut self) {
        let pinned = self.pinned.get_mut();
        pinned.clear();
        let capacity = pinned.capacity();

        self.capacity.store(capacity, Ordering::SeqCst);
        self.len.store(0, Ordering::SeqCst);
    }

    // helpers
    fn new_from_pinned(pinned: P) -> Self {
        Self {
            len: pinned.len().into(),
            capacity: pinned.capacity().into(),
            pinned: pinned.into(),
            phantom: Default::default(),
        }
    }

    pub(crate) unsafe fn correct_pinned_len(&self) {
        let pinned = unsafe { &mut *self.pinned.get() };
        unsafe { pinned.set_len(self.len()) };
    }
}

unsafe impl<T, P: PinnedVec<Option<T>>> Sync for ConcurrentVec<T, P> {}

unsafe impl<T, P: PinnedVec<Option<T>>> Send for ConcurrentVec<T, P> {}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn new_len_empty_clear() {
        fn test<P: PinnedVec<Option<char>>>(con_vec: ConcurrentVec<char, P>) {
            let mut con_vec = con_vec;

            assert!(con_vec.is_empty());
            assert_eq!(0, con_vec.len());
            assert_eq!(0, con_vec.len_exact());

            con_vec.push('a');

            assert!(!con_vec.is_empty());
            assert_eq!(1, con_vec.len());
            assert_eq!(1, con_vec.len_exact());

            con_vec.push('b');
            con_vec.push('c');
            con_vec.push('d');

            assert!(!con_vec.is_empty());
            assert_eq!(4, con_vec.len());
            assert_eq!(4, con_vec.len_exact());

            con_vec.clear();
            assert!(con_vec.is_empty());
            assert_eq!(0, con_vec.len());
            assert_eq!(0, con_vec.len_exact());

            con_vec.push('a');
            con_vec.push('b');

            let mut pinned = con_vec.into_inner();
            *pinned.get_mut(0).expect("is-some") = None;

            let con_vec: ConcurrentVec<_, _> = pinned.into();
            assert_eq!(2, con_vec.len());
            assert_eq!(1, con_vec.len_exact());
        }

        test(ConcurrentVec::new());
        test(ConcurrentVec::default());
        test(ConcurrentVec::with_doubling_growth());
        test(ConcurrentVec::with_recursive_growth());
        test(ConcurrentVec::with_linear_growth(2));
        test(ConcurrentVec::with_linear_growth(4));
        test(ConcurrentVec::with_fixed_capacity(64));
    }

    #[test]
    fn capacity() {
        let split: SplitVec<_, Doubling> = (0..4).map(Some).collect();
        let bag: ConcurrentVec<_, _> = split.into();
        assert_eq!(bag.capacity(), 4);
        bag.push(42);
        assert_eq!(bag.capacity(), 12);

        let split: SplitVec<_, Recursive> = (0..4).map(Some).collect();
        let bag: ConcurrentVec<_, _> = split.into();
        assert_eq!(bag.capacity(), 4);
        bag.push(42);
        assert_eq!(bag.capacity(), 12);

        let mut split: SplitVec<_, Linear> = SplitVec::with_linear_growth(2);
        split.extend_from_slice(&[0, 1, 2, 3].map(Some));
        let bag: ConcurrentVec<_, _> = split.into();
        assert_eq!(bag.capacity(), 4);
        bag.push(42);
        assert_eq!(bag.capacity(), 8);

        let mut fixed: FixedVec<_> = FixedVec::new(5);
        fixed.extend_from_slice(&[0, 1, 2, 3].map(Some));
        let bag: ConcurrentVec<_, _> = fixed.into();
        assert_eq!(bag.capacity(), 5);
        bag.push(42);
        assert_eq!(bag.capacity(), 5);
    }

    #[test]
    #[should_panic]
    fn exceeding_fixed_capacity_panics() {
        let mut fixed: FixedVec<_> = FixedVec::new(5);
        fixed.extend_from_slice(&[0, 1, 2, 3].map(Some));
        let bag: ConcurrentVec<_, _> = fixed.into();
        assert_eq!(bag.capacity(), 5);
        bag.push(42);
        bag.push(7);
    }

    #[test]
    #[should_panic]
    fn exceeding_fixed_capacity_panics_concurrently() {
        let bag = ConcurrentVec::with_fixed_capacity(10);
        let bag_ref = &bag;
        std::thread::scope(|s| {
            for _ in 0..4 {
                s.spawn(move || {
                    for _ in 0..3 {
                        // in total there will be 4*3 = 12 pushes
                        bag_ref.push(42);
                    }
                });
            }
        });
    }

    #[test]
    fn debug() {
        let bag = ConcurrentVec::new();

        bag.push('a');
        bag.push('b');
        bag.push('c');
        bag.push('d');
        bag.push('e');

        let str = format!("{:?}", bag);
        assert_eq!(
            str,
            "ConcurrentVec { pinned: ['a', 'b', 'c', 'd', 'e'], len: 5, capacity: 12 }"
        );
    }

    #[test]
    fn iter() {
        let mut bag = ConcurrentVec::new();

        assert_eq!(0, bag.iter().count());

        bag.push('a');

        assert_eq!(vec!['a'], bag.iter().copied().collect::<Vec<_>>());

        bag.push('b');
        bag.push('c');
        bag.push('d');

        assert_eq!(
            vec!['a', 'b', 'c', 'd'],
            bag.iter().copied().collect::<Vec<_>>()
        );

        bag.clear();
        assert_eq!(0, bag.iter().count());
    }

    #[test]
    fn into_inner_from() {
        let bag = ConcurrentVec::new();

        bag.push('a');
        bag.push('b');
        bag.push('c');
        bag.push('d');
        assert_eq!(
            vec!['a', 'b', 'c', 'd'],
            bag.iter().copied().collect::<Vec<_>>()
        );

        let mut split = bag.into_inner();
        assert_eq!(
            vec!['a', 'b', 'c', 'd'],
            split.iter().flatten().copied().collect::<Vec<_>>()
        );

        split.push(Some('e'));
        *split.get_mut(0).expect("exists") = Some('x');

        assert_eq!(
            vec!['x', 'b', 'c', 'd', 'e'],
            split.iter().flatten().copied().collect::<Vec<_>>()
        );

        let mut bag: ConcurrentVec<_> = split.into();
        assert_eq!(
            vec!['x', 'b', 'c', 'd', 'e'],
            bag.iter().copied().collect::<Vec<_>>()
        );

        bag.clear();
        assert!(bag.is_empty());

        let split = bag.into_inner();
        assert!(split.is_empty());
    }

    #[test]
    fn ok_at_num_threads() {
        use std::thread::available_parallelism;
        let default_parallelism_approx = available_parallelism().expect("is-ok").get();
        dbg!(default_parallelism_approx);

        let num_threads = default_parallelism_approx;
        let num_items_per_thread = 16384;

        let bag = ConcurrentVec::new();
        let bag_ref = &bag;
        std::thread::scope(|s| {
            for i in 0..num_threads {
                s.spawn(move || {
                    for j in 0..num_items_per_thread {
                        bag_ref.push((i * 100000 + j) as i32);
                    }
                });
            }
        });

        let pinned = bag.into_inner();
        assert_eq!(pinned.len(), num_threads * num_items_per_thread);
    }
}