1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
use orx_split_vec::prelude::PinnedVec;
use orx_split_vec::{Doubling, Fragment, GrowthWithConstantTimeAccess, Linear, SplitVec};
use std::{cmp::Ordering, fmt::Debug, sync::atomic::AtomicUsize};
const ORDERING: core::sync::atomic::Ordering = core::sync::atomic::Ordering::Relaxed;
/// An efficient and convenient thread-safe grow-only read-and-write collection, ideal for collecting results concurrently.
/// * **convenient**: the vector can be shared among threads simply as a shared reference, not even requiring `Arc`,
/// * **efficient**: for collecting results concurrently:
/// * rayon is significantly faster than `ConcurrentVec` when the elements are small and there is an extreme load (no work at all among push calls),
/// * `ConcurrentVec` is significantly faster than rayon when elements are large or there there is some computation happening to evaluate the elements before the push calls,
/// * you may see the details of the benchmarks at [benches/grow.rs](https://github.com/orxfun/orx-concurrent-bag/blob/main/benches/grow.rs).
///
/// The bag preserves the order of elements with respect to the order the `push` method is called.
///
/// # Examples
///
/// Safety guarantees to push to the bag with an immutable reference makes it easy to share the bag among threads.
///
/// ## Using `std::sync::Arc`
///
/// Following the common approach of using an `Arc`, we can share the vector among threads and collect results concurrently.
///
/// ```rust
/// use orx_concurrent_vec::*;
/// use std::{sync::Arc, thread};
///
/// let (num_threads, num_items_per_thread) = (4, 8);
///
/// let convec = Arc::new(ConcurrentVec::new());
/// let mut thread_vec: Vec<thread::JoinHandle<()>> = Vec::new();
///
/// for i in 0..num_threads {
/// let convec = convec.clone();
/// thread_vec.push(thread::spawn(move || {
/// for j in 0..num_items_per_thread {
/// convec.push(i * 1000 + j); // concurrently collect results simply by calling `push`
/// }
/// }));
/// }
///
/// for handle in thread_vec {
/// handle.join().unwrap();
/// }
///
/// let mut vec_from_convec: Vec<_> = convec.iter().copied().collect();
/// vec_from_convec.sort();
/// let mut expected: Vec<_> = (0..num_threads).flat_map(|i| (0..num_items_per_thread).map(move |j| i * 1000 + j)).collect();
/// expected.sort();
/// assert_eq!(vec_from_convec, expected);
/// ```
///
/// ## Using `std::thread::scope`
///
/// An even more convenient approach would be to use thread scopes. This allows to use shared reference of the vec across threads, instead of `Arc`.
///
/// ```rust
/// use orx_concurrent_vec::*;
/// use std::thread;
///
/// let (num_threads, num_items_per_thread) = (4, 8);
///
/// let convec = ConcurrentVec::new();
/// let convec_ref = &convec; // just take a reference
/// std::thread::scope(|s| {
/// for i in 0..num_threads {
/// s.spawn(move || {
/// for j in 0..num_items_per_thread {
/// convec_ref.push(i * 1000 + j); // concurrently collect results simply by calling `push`
/// }
/// });
/// }
/// });
///
/// let mut vec_from_convec: Vec<_> = convec.iter().copied().collect();
/// vec_from_convec.sort();
/// let mut expected: Vec<_> = (0..num_threads).flat_map(|i| (0..num_items_per_thread).map(move |j| i * 1000 + j)).collect();
/// expected.sort();
/// assert_eq!(vec_from_convec, expected);
/// ```
///
/// # Safety
///
/// `ConcurrentVec` uses a [`SplitVec`](https://crates.io/crates/orx-split-vec) as the underlying storage.
/// `SplitVec` implements [`PinnedVec`](https://crates.io/crates/orx-pinned-vec) which guarantees that elements which are already pushed to the vector stay pinned to their memory locations.
/// This feature makes it safe to grow with a shared reference on a single thread, as implemented by [`ImpVec`](https://crates.io/crates/orx-imp-vec).
///
/// In order to achieve this feature in a concurrent program, `ConcurrentVec` pairs the `SplitVec` with an `AtomicUsize`.
/// * `AtomicUsize` fixes the target memory location of each element to be pushed at the time the `push` method is called. Regardless of whether or not writing to memory completes before another element is pushed, every pushed element receives a unique position reserved for it.
/// * `SplitVec` guarantees that already pushed elements are not moved around in memory and new elements are written to the reserved position.
///
/// The approach guarantees that
/// * only one thread can write to the memory location of an element being pushed to the vec,
/// * at any point in time, only one thread is responsible for the allocation of memory if the vec requires new memory,
/// * no thread reads an element which is being written, reading is allowed only after the element is completely written,
/// * hence, there exists no race condition.
///
/// This pair allows a lightweight and convenient concurrent bag which is ideal for collecting results concurrently.
///
/// # Write-Only vs Read-Write
///
/// The concurrent vec is read-and-write & grow-only vec which is convenient and efficient for collecting elements.
/// While allowing growth by pushing elements from multiple threads, each thread can safely read already pushed elements.
///
/// See [`ConcurrentBag`](https://crates.io/crates/orx-concurrent-bag) for a write-only variant which allows only writing during growth.
/// The advantage of the bag, on the other hand, is that it stores elements as `T` rather than `Option<T>`.
#[derive(Debug)]
pub struct ConcurrentVec<T, G = Doubling>
where
G: GrowthWithConstantTimeAccess,
{
split: SplitVec<Option<T>, G>,
len: AtomicUsize,
}
unsafe impl<T, G: GrowthWithConstantTimeAccess> Sync for ConcurrentVec<T, G> {}
unsafe impl<T, G: GrowthWithConstantTimeAccess> Send for ConcurrentVec<T, G> {}
impl<T> ConcurrentVec<T, Doubling> {
/// Creates a new empty concurrent vec.
///
/// # Examples
///
/// ```rust
/// use orx_concurrent_vec::*;
///
/// let convec = ConcurrentVec::new();
/// convec.push('a');
/// convec.push('b');
///
/// assert_eq!(vec!['a', 'b'], convec.iter().copied().collect::<Vec<_>>());
/// ```
pub fn new() -> Self {
Self::with_doubling_growth()
}
/// Creates a new empty concurrent vec with doubling growth strategy.
///
/// Each fragment of the underlying split vector will have a capacity which is double the capacity of the prior fragment.
///
/// More information about doubling strategy can be found here [`orx_split_vec::Doubling`](https://docs.rs/orx-split-vec/latest/orx_split_vec/struct.Doubling.html).
///
/// # Examples
///
/// ```rust
/// use orx_concurrent_vec::*;
///
/// // fragments will have capacities 4, 8, 16, etc.
/// let convec = ConcurrentVec::with_doubling_growth();
/// convec.push('a');
/// convec.push('b');
///
/// assert_eq!(vec!['a', 'b'], convec.iter().copied().collect::<Vec<_>>());
/// ```
pub fn with_doubling_growth() -> Self {
let mut vec = SplitVec::new();
let first_fragment = unsafe { vec.fragments_mut().get_unchecked_mut(0) };
Self::init_fragment(first_fragment);
Self {
split: vec,
len: AtomicUsize::new(0),
}
}
}
impl<T> Default for ConcurrentVec<T, Doubling> {
/// Creates a new empty concurrent vec.
///
/// # Examples
///
/// ```rust
/// use orx_concurrent_vec::*;
///
/// let convec = ConcurrentVec::default();
/// convec.push('a');
/// convec.push('b');
///
/// assert_eq!(vec!['a', 'b'], convec.iter().copied().collect::<Vec<_>>());
/// ```
fn default() -> Self {
Self::new()
}
}
impl<T> ConcurrentVec<T, Linear> {
/// Creates a new empty concurrent vec with linear growth strategy.
///
/// Each fragment of the underlying split vector will have a capacity of `2 ^ constant_fragment_capacity_exponent`.
///
/// More information about doubling strategy can be found here [`orx_split_vec::Linear`](https://docs.rs/orx-split-vec/latest/orx_split_vec/struct.Linear.html).
///
/// # Examples
///
/// ```rust
/// use orx_concurrent_vec::*;
///
/// // each fragment will have a capacity of 2^5 = 32
/// let convec = ConcurrentVec::with_linear_growth(5);
/// convec.push('a');
/// convec.push('b');
///
/// assert_eq!(vec!['a', 'b'], convec.iter().copied().collect::<Vec<_>>());
/// ```
pub fn with_linear_growth(constant_fragment_capacity_exponent: usize) -> Self {
let mut vec = SplitVec::with_linear_growth(constant_fragment_capacity_exponent);
let first_fragment = unsafe { vec.fragments_mut().get_unchecked_mut(0) };
Self::init_fragment(first_fragment);
Self {
split: vec,
len: AtomicUsize::new(0),
}
}
}
impl<T, G: GrowthWithConstantTimeAccess> From<SplitVec<Option<T>, G>> for ConcurrentVec<T, G> {
fn from(split: SplitVec<Option<T>, G>) -> Self {
let len = AtomicUsize::new(split.len());
Self { split, len }
}
}
impl<T, G: GrowthWithConstantTimeAccess> ConcurrentVec<T, G> {
/// Consumes the concurrent vec and returns the inner storage, the `SplitVec`.
///
/// Note that
/// * it is cheap to wrap a `SplitVec` as a `ConcurrentVec` using thee `From` trait;
/// * and similarly to convert a `ConcurrentVec` to the underlying `SplitVec` using `into_inner` method.
///
/// # Examples
///
/// ```rust
/// use orx_concurrent_vec::prelude::*;
///
/// let convec = ConcurrentVec::new();
///
/// convec.push('a');
/// convec.push('b');
/// convec.push('c');
/// convec.push('d');
/// assert_eq!(vec!['a', 'b', 'c', 'd'], convec.iter().copied().collect::<Vec<_>>());
///
/// let mut split = convec.into_inner();
/// assert_eq!(vec![Some('a'), Some('b'), Some('c'), Some('d')], split.iter().copied().collect::<Vec<_>>());
///
/// split.push(Some('e'));
/// *split.get_mut(0).expect("exists") = Some('x');
///
/// assert_eq!(vec![Some('x'), Some('b'), Some('c'), Some('d'), Some('e')], split.iter().copied().collect::<Vec<_>>());
///
/// let mut convec: ConcurrentVec<_> = split.into();
/// assert_eq!(vec!['x', 'b', 'c', 'd', 'e'], convec.iter().copied().collect::<Vec<_>>());
///
/// convec.clear();
/// assert!(convec.is_empty());
///
/// let split = convec.into_inner();
/// assert!(split.is_empty());
pub fn into_inner(self) -> SplitVec<Option<T>, G> {
let (len, mut split) = (self.len(), self.split);
Self::correct_split_lengths(&mut split, len);
split
}
/// ***O(1)*** Returns the number of elements which are pushed to the vector, including the elements which received their reserved locations and currently being pushed.
///
/// In order to get number of elements which are completely pushed to the vector, excluding elements that are currently being pushed, you may use
/// `convec.len_exact()`, or equivalently, `convec.iter().count()`; however, with ***O(n)*** time complexity.
///
///
/// # Examples
///
/// ```rust
/// use orx_concurrent_vec::ConcurrentVec;
///
/// let convec = ConcurrentVec::new();
/// convec.push('a');
/// convec.push('b');
///
/// assert_eq!(2, convec.len());
/// ```
#[inline(always)]
pub fn len(&self) -> usize {
unsafe { self.len.as_ptr().read() }
}
/// ***O(n)*** Returns the number of elements which are completely pushed to the vector, excluding elements which received their reserved locations and currently being pushed.
///
/// In order to get number of elements for which the `push` method is called, including elements that are currently being pushed, you may use
/// `convec.len()` with ***O(1)*** time complexity.
///
///
/// # Examples
///
/// ```rust
/// use orx_concurrent_vec::ConcurrentVec;
///
/// let convec = ConcurrentVec::new();
/// convec.push('a');
/// convec.push('b');
///
/// assert_eq!(2, convec.len_exact());
/// assert_eq!(2, convec.iter().count());
/// ```
#[inline(always)]
pub fn len_exact(&self) -> usize {
self.iter().count()
}
/// Returns whether the vector is empty (`len() == 0`) or not.
///
/// # Examples
///
/// ```rust
/// use orx_concurrent_vec::ConcurrentVec;
///
/// let mut convec = ConcurrentVec::new();
///
/// assert!(convec.is_empty());
///
/// convec.push('a');
/// convec.push('b');
/// assert!(!convec.is_empty());
///
/// convec.clear();
/// assert!(convec.is_empty());
/// ```
#[inline(always)]
pub fn is_empty(&self) -> bool {
self.len() == 0
}
/// Returns an iterator to elements of the vector.
///
/// Iteration of elements is in the order the push method is called.
///
/// Note that the iterator skips elements which are currently being written; safely yields only the elements which are completely written.
///
/// # Examples
///
/// ```rust
/// use orx_concurrent_vec::ConcurrentVec;
///
/// let convec = ConcurrentVec::new();
/// convec.push('a');
/// convec.push('b');
///
/// let mut iter = unsafe { convec.iter() };
/// assert_eq!(iter.next(), Some(&'a'));
/// assert_eq!(iter.next(), Some(&'b'));
/// assert_eq!(iter.next(), None);
/// ```
pub fn iter(&self) -> impl Iterator<Item = &T> {
self.split.iter().take(self.len()).flatten()
}
/// Returns the element at the `index`-th position of the concurrent vector.
///
/// Returns `None` if:
/// * the `index` is out of bounds,
/// * or the element is currently being written to the `index`-th position; however, writing process is not completed yet.
///
/// # Examples
///
/// ```rust
/// use orx_concurrent_vec::ConcurrentVec;
///
/// let convec = ConcurrentVec::new();
/// convec.push('a');
/// convec.push('b');
///
/// assert_eq!(convec.get(0), Some(&'a'));
/// assert_eq!(convec.get(1), Some(&'b'));
/// assert_eq!(convec.get(2), None);
/// ```
#[allow(clippy::missing_panics_doc, clippy::unwrap_in_result)]
pub fn get(&self, index: usize) -> Option<&T> {
if index < self.len() && index < self.split.capacity() {
let (f, i) = self
.split
.growth
.get_fragment_and_inner_indices_unchecked(index);
let fragment = self.split.fragments().get(f).expect("exists");
unsafe { fragment.get_unchecked(i) }.as_ref()
} else {
None
}
}
/// Concurrent & thread-safe method to push the given `value` to the back of the vector.
///
/// It preserves the order of elements with respect to the order the `push` method is called.
///
/// # Examples
///
/// Allowing to safely push to the vector with an immutable reference, it is trivial to share the vec among threads.
///
/// ## Using `std::sync::Arc`
///
/// Following the common approach of using an `Arc`, we can share the vec among threads and collect results concurrently.
///
/// ```rust
/// use orx_concurrent_vec::prelude::*;
/// use std::{sync::Arc, thread};
///
/// let (num_threads, num_items_per_thread) = (4, 8);
///
/// let convec = Arc::new(ConcurrentVec::new());
/// let mut thread_vec: Vec<thread::JoinHandle<()>> = Vec::new();
///
/// for i in 0..num_threads {
/// let convec = convec.clone();
/// thread_vec.push(thread::spawn(move || {
/// for j in 0..num_items_per_thread {
/// convec.push(i * 1000 + j); // concurrently collect results simply by calling `push`
/// }
/// }));
/// }
///
/// for handle in thread_vec {
/// handle.join().unwrap();
/// }
///
/// let mut vec_from_convec: Vec<_> = convec.iter().copied().collect();
/// vec_from_convec.sort();
/// let mut expected: Vec<_> = (0..num_threads).flat_map(|i| (0..num_items_per_thread).map(move |j| i * 1000 + j)).collect();
/// expected.sort();
/// assert_eq!(vec_from_convec, expected);
/// ```
///
/// ## Using `std::thread::scope`
///
/// An even more convenient approach would be to use thread scopes.
/// This allows to use shared reference to the vec directly, instead of `Arc`.
///
/// ```rust
/// use orx_concurrent_vec::*;
/// use std::thread;
///
/// let (num_threads, num_items_per_thread) = (4, 8);
///
/// let convec = ConcurrentVec::new();
/// let convec_ref = &convec; // just take a reference
/// std::thread::scope(|s| {
/// for i in 0..num_threads {
/// s.spawn(move || {
/// for j in 0..num_items_per_thread {
/// convec_ref.push(i * 1000 + j); // concurrently collect results simply by calling `push`
/// }
/// });
/// }
/// });
///
/// let mut vec_from_convec: Vec<_> = convec.iter().copied().collect();
/// vec_from_convec.sort();
/// let mut expected: Vec<_> = (0..num_threads).flat_map(|i| (0..num_items_per_thread).map(move |j| i * 1000 + j)).collect();
/// expected.sort();
/// assert_eq!(vec_from_convec, expected);
/// ```
///
/// # Safety
///
/// `ConcurrentVec` uses a [`SplitVec`](https://crates.io/crates/orx-split-vec) as the underlying storage.
/// `SplitVec` implements [`PinnedVec`](https://crates.io/crates/orx-pinned-vec) which guarantees that elements which are already pushed to the vector stay pinned to their memory locations.
/// This feature makes it safe to grow with a shared reference on a single thread, as implemented by [`ImpVec`](https://crates.io/crates/orx-imp-vec).
///
/// In order to achieve this feature in a concurrent program, `ConcurrentVec` pairs the `SplitVec` with an `AtomicUsize`.
/// * `AtomicUsize` fixes the target memory location of each element being pushed at the point the `push` method is called.
/// Regardless of whether or not writing to memory completes before another element is pushed, every pushed element receives a unique position reserved for it.
/// * `SplitVec` guarantees that already pushed elements are not moved around in memory and new elements are written to the reserved position.
///
/// This pair allows a lightweight and convenient concurrent vec which is ideal for collecting results concurrently.
pub fn push(&self, value: T) {
let idx = self.len.fetch_add(1, ORDERING);
loop {
let capacity = self.split.capacity();
match idx.cmp(&capacity) {
Ordering::Less => {
let split = std::hint::black_box(unsafe { into_mut(&self.split) });
if let Some(ptr) = unsafe { split.ptr_mut(idx) } {
unsafe { *ptr = Some(value) };
break;
}
}
Ordering::Equal => {
let split = unsafe { into_mut(&self.split) };
let next_capacity = split.growth.new_fragment_capacity(split.fragments());
let mut fragment = Vec::with_capacity(next_capacity).into();
Self::init_fragment(&mut fragment);
fragment[0] = Some(value);
let fragments = unsafe { split.fragments_mut() };
fragments.push(fragment);
break;
}
Ordering::Greater => {}
}
}
}
/// Clears the vec removing all already pushed elements.
///
/// # Safety
///
/// This method requires a mutually exclusive reference.
/// This guarantees that there might not be any continuing writing process of a `push` operation.
/// Therefore, the elements can safely be cleared.
///
/// # Examples
///
/// ```rust
/// use orx_concurrent_vec::ConcurrentVec;
///
/// let mut vec = ConcurrentVec::new();
///
/// vec.push('a');
/// vec.push('b');
///
/// vec.clear();
/// assert!(vec.is_empty());
/// ```
pub fn clear(&mut self) {
self.len.store(0, ORDERING);
self.split.clear();
}
// helpers
fn init_fragment(fragment: &mut Fragment<Option<T>>) {
debug_assert_eq!(0, fragment.len());
let len = fragment.capacity();
unsafe { fragment.set_len(len) }
for x in fragment.iter_mut() {
*x = None;
}
}
fn correct_split_lengths(split: &mut SplitVec<Option<T>, G>, len: usize) {
let mut remaining = len;
let fragments = unsafe { split.fragments_mut() };
for fragment in fragments {
let capacity = fragment.capacity();
if remaining <= capacity {
unsafe { fragment.set_len(remaining) };
} else {
unsafe { fragment.set_len(capacity) };
remaining -= capacity;
}
}
unsafe { split.set_len(len) };
}
}
#[allow(invalid_reference_casting)]
unsafe fn into_mut<'a, T>(reference: &T) -> &'a mut T {
&mut *(reference as *const T as *mut T)
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn new_len_empty_clear() {
fn test<G: GrowthWithConstantTimeAccess>(convec: ConcurrentVec<char, G>) {
let mut convec = convec;
assert!(convec.is_empty());
assert_eq!(0, convec.len());
convec.push('a');
assert!(!convec.is_empty());
assert_eq!(1, convec.len());
convec.push('b');
convec.push('c');
convec.push('d');
assert!(!convec.is_empty());
assert_eq!(4, convec.len());
convec.clear();
assert!(convec.is_empty());
assert_eq!(0, convec.len());
}
test(ConcurrentVec::new());
test(ConcurrentVec::default());
test(ConcurrentVec::with_doubling_growth());
test(ConcurrentVec::with_linear_growth(2));
test(ConcurrentVec::with_linear_growth(4));
}
#[test]
fn debug() {
let convec = ConcurrentVec::new();
convec.push('a');
convec.push('b');
convec.push('c');
convec.push('d');
let str = format!("{:?}", convec);
assert_eq!(
str,
"ConcurrentVec { split: SplitVec [\n [Some('a'), Some('b'), Some('c'), Some('d')]\n]\n, len: 4 }"
);
}
#[test]
fn iter() {
let mut convec = ConcurrentVec::new();
assert_eq!(0, convec.iter().count());
convec.push('a');
assert_eq!(vec!['a'], convec.iter().copied().collect::<Vec<_>>());
convec.push('b');
convec.push('c');
convec.push('d');
assert_eq!(
vec!['a', 'b', 'c', 'd'],
convec.iter().copied().collect::<Vec<_>>()
);
convec.clear();
assert_eq!(0, convec.iter().count());
}
#[test]
fn get() {
let mut convec = ConcurrentVec::new();
assert_eq!(convec.get(0), None);
convec.push('a');
assert_eq!(convec.get(0), Some(&'a'));
convec.push('b');
convec.push('c');
convec.push('d');
assert_eq!(convec.get(0), Some(&'a'));
assert_eq!(convec.get(1), Some(&'b'));
assert_eq!(convec.get(2), Some(&'c'));
assert_eq!(convec.get(3), Some(&'d'));
convec.clear();
assert_eq!(convec.get(0), None);
}
#[test]
fn into_inner_from() {
let convec = ConcurrentVec::new();
convec.push('a');
convec.push('b');
convec.push('c');
convec.push('d');
assert_eq!(
vec!['a', 'b', 'c', 'd'],
convec.iter().copied().collect::<Vec<_>>()
);
let mut split = convec.into_inner();
assert_eq!(
vec![Some('a'), Some('b'), Some('c'), Some('d')],
split.iter().copied().collect::<Vec<_>>()
);
split.push(Some('e'));
*split.get_mut(0).expect("exists") = Some('x');
assert_eq!(
vec![Some('x'), Some('b'), Some('c'), Some('d'), Some('e')],
split.iter().copied().collect::<Vec<_>>()
);
let mut convec: ConcurrentVec<_> = split.into();
assert_eq!(
vec!['x', 'b', 'c', 'd', 'e'],
convec.iter().copied().collect::<Vec<_>>()
);
convec.clear();
assert!(convec.is_empty());
let split = convec.into_inner();
assert!(split.is_empty());
}
}