orx_concurrent_option/with_order.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
use crate::{states::*, ConcurrentOption};
use core::{ops::Deref, sync::atomic::Ordering};
impl<T> ConcurrentOption<T> {
    /// Loads and returns the concurrent state of the option with the given `order`.
    ///
    /// # Examples
    ///
    /// ```
    /// use orx_concurrent_option::*;
    /// use core::sync::atomic::Ordering;
    ///
    /// let x: ConcurrentOption<u32> = ConcurrentOption::some(2);
    /// assert_eq!(x.state(Ordering::Relaxed), State::Some);
    ///
    /// let x: ConcurrentOption<u32> = ConcurrentOption::none();
    /// assert_eq!(x.state(Ordering::SeqCst), State::None);
    /// ```
    pub fn state(&self, order: Ordering) -> State {
        State::new(self.state.load(order))
    }
    /// Returns `true` if the option is a Some variant.
    ///
    /// # Examples
    ///
    /// ```
    /// use orx_concurrent_option::*;
    /// use core::sync::atomic::Ordering;
    ///
    /// let x: ConcurrentOption<u32> = ConcurrentOption::some(2);
    /// assert_eq!(x.is_some(), true);
    ///
    /// let x: ConcurrentOption<u32> = ConcurrentOption::none();
    /// assert_eq!(x.is_some(), false);
    /// ```
    #[inline]
    pub fn is_some_with_order(&self, order: Ordering) -> bool {
        self.state.load(order) == SOME
    }
    /// Returns `true` if the option is a None variant.
    ///
    /// # Examples
    ///
    /// ```
    /// use orx_concurrent_option::*;
    ///
    /// let x: ConcurrentOption<u32> = ConcurrentOption::some(2);
    /// assert_eq!(x.is_none(), false);
    ///
    /// let x: ConcurrentOption<u32> = ConcurrentOption::none();
    /// assert_eq!(x.is_none(), true);
    /// ```
    #[inline]
    pub fn is_none_with_order(&self, order: Ordering) -> bool {
        self.state.load(order) != SOME
    }
    /// Converts from `&Option<T>` to `Option<&T>`.
    ///
    /// Depending on requirement of the use case, `Relaxed`, `Acquire` or `SeqCst` can be used as the `order`.
    ///
    /// # Safety
    ///
    /// Note that creating a valid reference part of this method is thread safe.
    ///
    /// The method is `unsafe` due to the returned reference to the underlying value.
    ///
    /// * It is safe to use this method if the returned reference is discarded (miri would still complain).
    /// * It is also safe to use this method if the caller is able to guarantee that there exist
    /// no concurrent writes while holding onto this reference.
    ///   * One such case is using `as_ref` together with `initialize_when_none` method.
    /// This is perfectly safe since the value will be written only once,
    /// and `as_ref` returns a valid reference only after the value is initialized.
    /// * Otherwise, it will lead to an **Undefined Behavior** due to data race.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use orx_concurrent_option::*;
    /// use core::sync::atomic::Ordering;
    ///
    /// let x = ConcurrentOption::some(3.to_string());
    /// assert_eq!(unsafe { x.as_ref_with_order(Ordering::Relaxed) }, Some(&3.to_string()));
    ///
    /// _ = x.take();
    /// assert_eq!(unsafe { x.as_ref_with_order(Ordering::Acquire) }, None);
    /// ```
    pub unsafe fn as_ref_with_order(&self, order: Ordering) -> Option<&T> {
        match self.state.load(order) {
            SOME => {
                let x = &*self.value.get();
                Some(x.assume_init_ref())
            }
            _ => None,
        }
    }
    /// Converts from `Option<T>` (or `&Option<T>`) to `Option<&T::Target>`.
    ///
    /// Leaves the original Option in-place, creating a new one with a reference
    /// to the original one, additionally coercing the contents via [`Deref`].
    ///
    /// Depending on requirement of the use case, `Relaxed`, `Acquire` or `SeqCst` can be used as the `order`.
    ///
    /// # Safety
    ///
    /// Note that creating a valid reference part of this method is thread safe.
    ///
    /// The method is `unsafe` due to the returned reference to the underlying value.
    ///
    /// * It is safe to use this method if the returned reference is discarded (miri would still complain).
    /// * It is also safe to use this method if the caller is able to guarantee that there exist
    /// no concurrent writes while holding onto this reference.
    ///   * One such case is using `as_ref` together with `initialize_when_none` method.
    /// This is perfectly safe since the value will be written only once,
    /// and `as_ref` returns a valid reference only after the value is initialized.
    /// * Otherwise, it will lead to an **Undefined Behavior** due to data race.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use orx_concurrent_option::*;
    /// use core::sync::atomic::Ordering;
    ///
    /// unsafe
    /// {
    ///     let x: ConcurrentOption<String> = ConcurrentOption::some("hey".to_owned());
    ///     assert_eq!(x.as_deref_with_order(Ordering::Acquire), Some("hey"));
    ///
    ///     let x: ConcurrentOption<String> = ConcurrentOption::none();
    ///     assert_eq!(x.as_deref_with_order(Ordering::SeqCst), None);
    /// }
    /// ```
    pub unsafe fn as_deref_with_order(&self, order: Ordering) -> Option<&<T as Deref>::Target>
    where
        T: Deref,
    {
        match self.state.load(order) {
            SOME => {
                let x = &*self.value.get();
                Some(x.assume_init_ref())
            }
            _ => None,
        }
    }
    /// Returns an iterator over the possibly contained value; yields
    /// * the single element if the option is of Some variant;
    /// * no elements otherwise.
    ///
    /// Depending on requirement of the use case, `Relaxed`, `Acquire` or `SeqCst` can be used as the `order`.
    ///
    /// # Safety
    ///
    /// Note that creating a valid reference part of this method is thread safe.
    ///
    /// The method is `unsafe` due to the returned reference to the underlying value.
    ///
    /// * It is safe to use this method if the returned reference is discarded (miri would still complain).
    /// * It is also safe to use this method if the caller is able to guarantee that there exist
    /// no concurrent writes while holding onto this reference.
    ///   * One such case is using `as_ref` together with `initialize_when_none` method.
    /// This is perfectly safe since the value will be written only once,
    /// and `as_ref` returns a valid reference only after the value is initialized.
    /// * Otherwise, it will lead to an **Undefined Behavior** due to data race.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use orx_concurrent_option::*;
    /// use core::sync::atomic::Ordering;
    ///
    /// fn validate<'a>(mut iter: impl ExactSizeIterator<Item = &'a String>) {
    ///     assert_eq!(iter.len(), 0);
    ///     assert!(iter.next().is_none());
    ///     assert!(iter.next().is_none());
    /// }
    ///
    /// let x = ConcurrentOption::<String>::none();
    /// unsafe
    /// {
    /// validate(x.iter_with_order(Ordering::SeqCst));
    ///     validate(x.iter_with_order(Ordering::Relaxed).rev());
    ///     validate((&x).into_iter());
    /// }
    /// ```
    pub unsafe fn iter_with_order(&self, order: Ordering) -> crate::iter::Iter<'_, T> {
        let maybe = unsafe { self.as_ref_with_order(order) };
        crate::iter::Iter { maybe }
    }
    /// Clones the concurrent option with the desired `order` into an Option.
    ///
    /// Note that the `Clone` trait implementation clones the concurrent option with the default ordering.
    ///
    /// You may use `clone_with_order` in order to clone with the desired ordering.
    ///
    /// ```rust
    /// use orx_concurrent_option::*;
    /// use core::sync::atomic::Ordering;
    ///
    /// let mut x = ConcurrentOption::some(42);
    /// let y = x.clone_with_order(Ordering::SeqCst);
    /// assert_eq!(x.take(), y);
    /// ```
    pub fn clone_with_order(&self, order: Ordering) -> Option<T>
    where
        T: Clone,
    {
        unsafe { self.as_ref_with_order(order) }.cloned()
    }
    /// Returns whether or not self is equal to the `other` with the desired `order`.
    ///
    /// Note that the `PartialEq` trait implementation checks equality with the default ordering.
    ///
    /// You may use `eq_with_order` in order to check equality with the desired ordering.
    ///
    /// ```rust
    /// use orx_concurrent_option::*;
    /// use core::sync::atomic::Ordering;
    ///
    /// let x = ConcurrentOption::some(3);
    /// let y = ConcurrentOption::some(7);
    /// let z = ConcurrentOption::<i32>::none();
    ///
    /// let o = Ordering::SeqCst;
    ///
    /// assert!(x.eq_with_order(&x, o));
    /// assert!(!x.eq_with_order(&y, o));
    /// assert!(!x.eq_with_order(&z, o));
    ///
    /// assert!(!z.eq_with_order(&x, o));
    /// assert!(!z.eq_with_order(&y, o));
    /// assert!(z.eq_with_order(&z, o));
    /// ```
    pub fn eq_with_order(&self, other: &Self, order: Ordering) -> bool
    where
        T: PartialEq,
    {
        match (unsafe { self.as_ref_with_order(order) }, unsafe {
            other.as_ref_with_order(order)
        }) {
            (None, None) => true,
            (Some(x), Some(y)) => x.eq(y),
            _ => false,
        }
    }
    /// Returns an ordering between `self` and `other` with the desired `order`.
    ///
    /// Note that the `PartialOrd` trait implementation checks equality with the default ordering.
    ///
    /// You may use `partial_cmp_with_order` in order to check equality with the desired ordering.
    ///
    /// ```rust
    /// use orx_concurrent_option::*;
    /// use core::cmp::Ordering::*;
    ///
    /// let x = ConcurrentOption::some(3);
    /// let y = ConcurrentOption::some(7);
    /// let z = ConcurrentOption::<i32>::none();
    ///
    /// let ord = core::sync::atomic::Ordering::SeqCst;
    ///
    /// assert_eq!(x.partial_cmp_with_order(&x, ord), Some(Equal));
    /// assert_eq!(x.partial_cmp_with_order(&y, ord), Some(Less));
    /// assert_eq!(x.partial_cmp_with_order(&z, ord), Some(Greater));
    ///
    /// assert_eq!(y.partial_cmp_with_order(&x, ord), Some(Greater));
    /// assert_eq!(y.partial_cmp_with_order(&y, ord), Some(Equal));
    /// assert_eq!(y.partial_cmp_with_order(&z, ord), Some(Greater));
    ///
    /// assert_eq!(z.partial_cmp_with_order(&x, ord), Some(Less));
    /// assert_eq!(z.partial_cmp_with_order(&y, ord), Some(Less));
    /// assert_eq!(z.partial_cmp_with_order(&z, ord), Some(Equal));
    /// ```
    pub fn partial_cmp_with_order(
        &self,
        other: &Self,
        order: Ordering,
    ) -> Option<core::cmp::Ordering>
    where
        T: PartialOrd,
    {
        use core::cmp::Ordering::*;
        match (unsafe { self.as_ref_with_order(order) }, unsafe {
            other.as_ref_with_order(order)
        }) {
            (Some(l), Some(r)) => l.partial_cmp(r),
            (Some(_), None) => Some(Greater),
            (None, Some(_)) => Some(Less),
            (None, None) => Some(Equal),
        }
    }
    /// Returns an ordering between `self` and `other` with the desired `order`.
    ///
    /// Note that the `Ord` trait implementation checks equality with the default ordering.
    ///
    /// You may use `cmp_with_order` in order to check equality with the desired ordering.
    ///
    /// ```rust
    /// use orx_concurrent_option::*;
    /// use core::cmp::Ordering::*;
    ///
    /// let x = ConcurrentOption::some(3);
    /// let y = ConcurrentOption::some(7);
    /// let z = ConcurrentOption::<i32>::none();
    ///
    /// let ord = core::sync::atomic::Ordering::SeqCst;
    ///
    /// assert_eq!(x.cmp_with_order(&x, ord), Equal);
    /// assert_eq!(x.cmp_with_order(&y, ord), Less);
    /// assert_eq!(x.cmp_with_order(&z, ord), Greater);
    ///
    /// assert_eq!(y.cmp_with_order(&x, ord), Greater);
    /// assert_eq!(y.cmp_with_order(&y, ord), Equal);
    /// assert_eq!(y.cmp_with_order(&z, ord), Greater);
    ///
    /// assert_eq!(z.cmp_with_order(&x, ord), Less);
    /// assert_eq!(z.cmp_with_order(&y, ord), Less);
    /// assert_eq!(z.cmp_with_order(&z, ord), Equal);
    /// ```
    pub fn cmp_with_order(&self, other: &Self, order: Ordering) -> core::cmp::Ordering
    where
        T: Ord,
    {
        use core::cmp::Ordering::*;
        match (unsafe { self.as_ref_with_order(order) }, unsafe {
            other.as_ref_with_order(order)
        }) {
            (Some(l), Some(r)) => l.cmp(r),
            (Some(_), None) => Greater,
            (None, Some(_)) => Less,
            (None, None) => Equal,
        }
    }
}