orx_concurrent_option/option.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
use crate::{concurrent_option::ConcurrentOption, states::*, IntoOption};
use core::sync::atomic::Ordering;
use core::{mem::MaybeUninit, ops::Deref};
impl<T> ConcurrentOption<T> {
// &self
/// Returns `true` if the option is a Some variant.
///
/// # Examples
///
/// ```
/// use orx_concurrent_option::*;
/// use core::sync::atomic::Ordering;
///
/// let x: ConcurrentOption<u32> = ConcurrentOption::some(2);
/// assert_eq!(x.is_some(), true);
///
/// let x: ConcurrentOption<u32> = ConcurrentOption::none();
/// assert_eq!(x.is_some(), false);
/// ```
#[inline]
pub fn is_some(&self) -> bool {
self.state.load(Ordering::Relaxed) == SOME
}
/// Returns `true` if the option is a None variant.
///
/// # Examples
///
/// ```
/// use orx_concurrent_option::*;
///
/// let x: ConcurrentOption<u32> = ConcurrentOption::some(2);
/// assert_eq!(x.is_none(), false);
///
/// let x: ConcurrentOption<u32> = ConcurrentOption::none();
/// assert_eq!(x.is_none(), true);
/// ```
#[inline]
pub fn is_none(&self) -> bool {
self.state.load(Ordering::Relaxed) != SOME
}
/// Partially thread safe method to convert from `&Option<T>` to `Option<&T>`.
///
/// # Safety
///
/// Note that creating a valid reference part of this method is thread safe.
///
/// The method is `unsafe` due to the returned reference to the underlying value.
///
/// * It is safe to use this method if the returned reference is discarded (miri would still complain).
/// * It is also safe to use this method if the caller is able to guarantee that there exist
/// no concurrent writes while holding onto this reference.
/// * One such case is using `as_ref` together with `initialize_when_none` method.
/// This is perfectly safe since the value will be written only once,
/// and `as_ref` returns a valid reference only after the value is initialized.
/// * Otherwise, it will lead to an **Undefined Behavior** due to data race.
///
/// # Examples
///
/// ```rust
/// use orx_concurrent_option::*;
///
/// let x = ConcurrentOption::some(3.to_string());
/// assert_eq!(unsafe { x.as_ref() }, Some(&3.to_string()));
///
/// _ = x.take();
/// assert_eq!(unsafe { x.as_ref() }, None);
/// ```
pub unsafe fn as_ref(&self) -> Option<&T> {
match self.spin_get_handle(SOME, SOME) {
Some(_handle) => {
let x = &*self.value.get();
Some(x.assume_init_ref())
}
None => None,
}
}
/// Partially thread safe method to convert from `Option<T>` (or `&Option<T>`) to `Option<&T::Target>`.
///
/// Leaves the original Option in-place, creating a new one with a reference
/// to the original one, additionally coercing the contents via [`Deref`].
///
/// # Safety
///
/// Note that creating a valid reference part of this method is thread safe.
///
/// The method is `unsafe` due to the returned reference to the underlying value.
///
/// * It is safe to use this method if the returned reference is discarded (miri would still complain).
/// * It is also safe to use this method if the caller is able to guarantee that there exist
/// no concurrent writes while holding onto this reference.
/// * One such case is using `as_ref` together with `initialize_when_none` method.
/// This is perfectly safe since the value will be written only once,
/// and `as_ref` returns a valid reference only after the value is initialized.
/// * Otherwise, it will lead to an **Undefined Behavior** due to data race.
///
/// # Examples
///
/// ```rust
/// use orx_concurrent_option::*;
///
/// let x: ConcurrentOption<String> = ConcurrentOption::some("hey".to_owned());
/// assert_eq!(unsafe { x.as_deref() }, Some("hey"));
///
/// let x: ConcurrentOption<String> = ConcurrentOption::none();
/// assert_eq!(unsafe { x.as_deref() }, None);
/// ```
pub unsafe fn as_deref(&self) -> Option<&<T as Deref>::Target>
where
T: Deref,
{
match self.spin_get_handle(SOME, SOME) {
Some(_handle) => {
let x = &*self.value.get();
Some(x.assume_init_ref())
}
None => None,
}
}
/// Partially thread safe method to return an iterator over the possibly contained value; yields
/// * the single element if the option is of Some variant;
/// * no elements otherwise.
///
/// # Safety
///
/// Note that creating a valid reference part of this method is thread safe.
///
/// The method is `unsafe` due to the returned reference to the underlying value.
///
/// * It is safe to use this method if the returned reference is discarded (miri would still complain).
/// * It is also safe to use this method if the caller is able to guarantee that there exist
/// no concurrent writes while holding onto this reference.
/// * One such case is using `as_ref` together with `initialize_when_none` method.
/// This is perfectly safe since the value will be written only once,
/// and `as_ref` returns a valid reference only after the value is initialized.
/// * Otherwise, it will lead to an **Undefined Behavior** due to data race.
///
/// # Examples
///
/// ```rust
/// use orx_concurrent_option::*;
///
/// fn validate<'a>(mut iter: impl ExactSizeIterator<Item = &'a String>) {
/// assert_eq!(iter.len(), 0);
/// assert!(iter.next().is_none());
/// assert!(iter.next().is_none());
/// }
///
/// let x = ConcurrentOption::<String>::none();
/// validate(unsafe { x.iter() });
/// validate(unsafe { x.iter() }.rev());
/// validate((&x).into_iter());
/// ```
pub unsafe fn iter(&self) -> crate::iter::Iter<'_, T> {
crate::iter::Iter {
maybe: self.as_ref(),
}
}
/// Clones the value of the `ConcurrentOption<T>` into a `Some` of `T`
/// if the concurrent option is some; returns None otherwise.
///
/// # Examples
///
/// ```
/// use orx_concurrent_option::*;
///
/// let opt = ConcurrentOption::some(12);
/// assert_eq!(unsafe { opt.as_ref() }, Some(&12));
///
/// let clone = opt.clone_into_option();
/// assert_eq!(clone, Some(12));
/// ```
pub fn clone_into_option(&self) -> Option<T>
where
T: Clone,
{
match self.spin_get_handle(SOME, SOME) {
Some(_handle) => {
let x = unsafe { &*self.value.get() };
Some(unsafe { x.assume_init_ref().clone() })
}
None => None,
}
}
/// Thread safe method to map the reference of the underlying value with the given function `f`.
///
/// Returns
/// * None if the option is None
/// * `f(&value)` if the option is Some(value)
///
/// # Concurrency Notes
///
/// Notice that `map` is a composition of `as_ref` and `map`.
/// However, it is stronger in terms of thread safety since the access to the value is controlled
/// and a reference to the underlying value is not leaked outside the option.
///
/// Therefore, `map` must be preferred in a concurrent program:
/// * the map operation via `map` guarantees that the underlying value will not be updated before the operation; while
/// * the alternative approach with `as_ref` is subject to data race if the state of the optional is concurrently being
/// updated by methods such as `take`.
/// * an exception to this is the `initialize_if_none` method which fits very well the initialize-once scenarios;
/// here, `as_ref` and `initialize_if_none` can safely be called concurrently from multiple threads.
///
/// # Examples
///
/// ```rust
/// use orx_concurrent_option::*;
///
/// let x = ConcurrentOption::<String>::none();
/// let len = x.map(|x| x.len());
/// assert_eq!(len, None);
///
/// let x = ConcurrentOption::some("foo".to_string());
/// let len = x.map(|x| x.len());
/// assert_eq!(len, Some(3));
/// ```
pub fn map<U, F>(&self, f: F) -> Option<U>
where
F: FnOnce(&T) -> U,
{
match self.spin_get_handle(SOME, SOME) {
Some(_handle) => {
let x = unsafe { MaybeUninit::assume_init_ref(&*self.value.get()) };
Some(f(x))
}
None => None,
}
}
/// Returns the provided default result (if none),
/// or applies a function to the contained value (if any).
///
/// Arguments passed to `map_or` are eagerly evaluated; if you are passing
/// the result of a function call, it is recommended to use [`map_or_else`],
/// which is lazily evaluated.
///
/// [`map_or_else`]: ConcurrentOption::map_or_else
///
/// # Examples
///
/// ```
/// use orx_concurrent_option::*;
///
/// let x = ConcurrentOption::some("foo");
/// assert_eq!(x.map_or(42, |v| v.len()), 3);
///
/// let x: ConcurrentOption<&str> = ConcurrentOption::none();
/// assert_eq!(x.map_or(42, |v| v.len()), 42);
/// ```
pub fn map_or<U, F>(&self, default: U, f: F) -> U
where
F: FnOnce(&T) -> U,
{
match self.spin_get_handle(SOME, SOME) {
Some(_handle) => {
let x = unsafe { MaybeUninit::assume_init_ref(&*self.value.get()) };
f(x)
}
None => default,
}
}
/// Computes a default function result (if none), or
/// applies a different function to the contained value (if any).
///
/// # Basic examples
///
/// ```
/// use orx_concurrent_option::*;
///
/// let k = 21;
///
/// let x = ConcurrentOption::some("foo");
/// assert_eq!(x.map_or_else(|| 2 * k, |v| v.len()), 3);
///
/// let x: ConcurrentOption<&str> = ConcurrentOption::none();
/// assert_eq!(x.map_or_else(|| 2 * k, |v| v.len()), 42);
/// ```
pub fn map_or_else<U, D, F>(&self, default: D, f: F) -> U
where
D: FnOnce() -> U,
F: FnOnce(&T) -> U,
{
match self.spin_get_handle(SOME, SOME) {
Some(_handle) => {
let x = unsafe { MaybeUninit::assume_init_ref(&*self.value.get()) };
f(x)
}
None => default(),
}
}
/// Thread safe method that returns `true` if the option is a Some and the value inside of it matches a predicate.
///
/// # Examples
///
/// ```
/// use orx_concurrent_option::*;
///
/// let x = ConcurrentOption::some(2);
/// assert_eq!(x.is_some_and(|x| *x > 1), true);
///
/// let x = ConcurrentOption::some(0);
/// assert_eq!(x.is_some_and(|x| *x > 1), false);
///
/// let x: ConcurrentOption<i32> = ConcurrentOption::none();
/// assert_eq!(x.is_some_and(|x| *x > 1), false);
/// ```
#[inline]
pub fn is_some_and(&self, f: impl FnOnce(&T) -> bool) -> bool {
match self.spin_get_handle(SOME, SOME) {
Some(_handle) => {
let x = unsafe { MaybeUninit::assume_init_ref(&*self.value.get()) };
f(x)
}
None => false,
}
}
/// Returns None if the option is None, otherwise returns `other`.
///
/// Arguments passed to `and` are eagerly evaluated; if you are passing the
/// result of a function call, it is recommended to use [`and_then`], which is
/// lazily evaluated.
///
/// [`and_then`]: ConcurrentOption::and_then
///
/// # Examples
///
/// ```
/// use orx_concurrent_option::*;
///
/// let x = ConcurrentOption::some(2);
/// let y: ConcurrentOption<&str> = ConcurrentOption::none();
/// assert_eq!(x.and(y), None);
///
/// let x: ConcurrentOption<u32> = ConcurrentOption::none();
/// let y = ConcurrentOption::some("foo");
/// assert_eq!(x.and(y), None);
///
/// let x = ConcurrentOption::some(2);
/// let y = Some("foo");
/// assert_eq!(x.and(y), Some("foo"));
///
/// let x: ConcurrentOption<u32> = ConcurrentOption::none();
/// let y: Option<&str> = None;
/// assert_eq!(x.and(y), None);
/// ```
pub fn and<U>(&self, other: impl IntoOption<U>) -> Option<U> {
match self.is_some() {
true => other.into_option(),
false => None,
}
}
/// Returns None if the option is None, otherwise calls `f` with the
/// wrapped value and returns the result.
///
/// Some languages call this operation flatmap.
///
/// # Examples
///
/// ```
/// use orx_concurrent_option::*;
///
/// fn sq_then_to_string(x: &u32) -> Option<String> {
/// x.checked_mul(*x).map(|sq| sq.to_string())
/// }
///
/// assert_eq!(ConcurrentOption::some(2).and_then(sq_then_to_string), Some(4.to_string()));
/// assert_eq!(ConcurrentOption::some(1_000_000).and_then(sq_then_to_string), None); // overflowed!
/// assert_eq!(ConcurrentOption::none().and_then(sq_then_to_string), None);
/// ```
///
/// Since `ConcurrentOption` also implements `IntoOption`; and_then can also be called with
/// a function returning a concurrent option.
///
/// ```
/// use orx_concurrent_option::*;
///
/// fn sq_then_to_string(x: &u32) -> ConcurrentOption<String> {
/// x.checked_mul(*x).map(|sq| sq.to_string()).into()
/// }
///
/// assert_eq!(ConcurrentOption::some(2).and_then(sq_then_to_string), Some(4.to_string()));
/// assert_eq!(ConcurrentOption::some(1_000_000).and_then(sq_then_to_string), None); // overflowed!
/// assert_eq!(ConcurrentOption::none().and_then(sq_then_to_string), None);
/// ```
pub fn and_then<U, V, F>(&self, f: F) -> Option<U>
where
V: IntoOption<U>,
F: FnOnce(&T) -> V,
{
match self.spin_get_handle(SOME, SOME) {
Some(_handle) => {
let x = unsafe { MaybeUninit::assume_init_ref(&*self.value.get()) };
f(x).into_option()
}
None => None,
}
}
/// Returns None if the option is None, otherwise calls `predicate`
/// with the wrapped value and returns:
///
/// - Some(t) if `predicate` returns `true` (where `t` is the wrapped
/// value), and
/// - None if `predicate` returns `false`.
///
/// This function works similar to [`Iterator::filter()`]. You can imagine
/// the `Option<T>` being an iterator over one or zero elements. `filter()`
/// lets you decide which elements to keep.
///
/// # Safety
///
/// Note that creating a valid reference part of this method is thread safe.
///
/// The method is `unsafe` due to the returned reference to the underlying value.
///
/// * It is safe to use this method if the returned reference is discarded (miri would still complain).
/// * It is also safe to use this method if the caller is able to guarantee that there exist
/// no concurrent writes while holding onto this reference.
/// * One such case is using `as_ref` together with `initialize_when_none` method.
/// This is perfectly safe since the value will be written only once,
/// and `as_ref` returns a valid reference only after the value is initialized.
/// * Otherwise, it will lead to an **Undefined Behavior** due to data race.
///
/// # Examples
///
/// ```rust
/// use orx_concurrent_option::*;
///
/// fn is_even(n: &i32) -> bool {
/// n % 2 == 0
/// }
/// unsafe
/// {
/// assert_eq!(ConcurrentOption::none().filter(is_even), None);
/// assert_eq!(ConcurrentOption::some(3).filter(is_even), None);
/// assert_eq!(ConcurrentOption::some(4).filter(is_even), Some(&4));
/// }
/// ```
pub unsafe fn filter<P>(&self, predicate: P) -> Option<&T>
where
P: FnOnce(&T) -> bool,
{
match self.spin_get_handle(SOME, SOME) {
Some(_handle) => {
let x = unsafe { MaybeUninit::assume_init_ref(&*self.value.get()) };
match predicate(x) {
true => Some(x),
false => None,
}
}
None => None,
}
}
}
impl<T> ConcurrentOption<&T> {
/// Maps an `ConcurrentOption<&T>` to an `Option<T>` by cloning the contents of the
/// option.
///
/// # Examples
///
/// ```
/// use orx_concurrent_option::*;
/// use core::sync::atomic::Ordering;
///
/// let x = 12;
/// let opt_x = ConcurrentOption::some(&x);
/// assert_eq!(unsafe { opt_x.as_ref() }, Some(&&12));
///
/// let cloned = opt_x.cloned();
/// assert_eq!(cloned, Some(12));
/// ```
pub fn cloned(mut self) -> Option<T>
where
T: Clone,
{
self.exclusive_take().cloned()
}
/// Maps an `ConcurrentOption<&T>` to an `Option<T>` by copying the contents of the
/// option.
///
/// # Examples
///
/// ```
/// use orx_concurrent_option::*;
///
/// let x = 12;
/// let opt_x = ConcurrentOption::some(&x);
/// assert_eq!(unsafe { opt_x.as_ref() }, Some(&&12));
///
/// let copied = opt_x.copied();
/// assert_eq!(copied, Some(12));
/// ```
pub fn copied(mut self) -> Option<T>
where
T: Copy,
{
self.exclusive_take().copied()
}
}
impl<T> ConcurrentOption<ConcurrentOption<T>> {
/// Converts from `ConcurrentOption<ConcurrentOption<T>>` to `Option<T>`.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use orx_concurrent_option::*;
///
/// let x: ConcurrentOption<ConcurrentOption<u32>> = ConcurrentOption::some(ConcurrentOption::some(6));
/// assert_eq!(Some(6), x.flatten());
///
/// let x: ConcurrentOption<ConcurrentOption<u32>> = ConcurrentOption::some(ConcurrentOption::none());
/// assert_eq!(None, x.flatten());
///
/// let x: ConcurrentOption<ConcurrentOption<u32>> = ConcurrentOption::none();
/// assert_eq!(None, x.flatten());
/// ```
pub fn flatten(mut self) -> Option<T> {
self.exclusive_take().and_then(|mut x| x.exclusive_take())
}
}
impl<T> ConcurrentOption<Option<T>> {
/// Converts from `ConcurrentOption<Option<T>>` to `Option<T>`.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use orx_concurrent_option::*;
///
/// let x: ConcurrentOption<Option<u32>> = ConcurrentOption::some(Some(6));
/// assert_eq!(Some(6), x.flatten());
///
/// let x: ConcurrentOption<Option<u32>> = ConcurrentOption::some(None);
/// assert_eq!(None, x.flatten());
///
/// let x: ConcurrentOption<Option<u32>> = ConcurrentOption::none();
/// assert_eq!(None, x.flatten());
/// ```
pub fn flatten(mut self) -> Option<T> {
self.exclusive_take().and_then(|x| x)
}
}