1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
use super::wrappers::values::ConIterValues;
use crate::{next::Next, ConIterIdsAndValues, NextChunk, NextManyExact};
/// Trait defining a concurrent iterator with `next` and `next_id_and_chunk` methods which can safely be called my multiple threads concurrently.
pub trait ConcurrentIter: Send + Sync {
/// Type of the items that the iterator yields.
type Item: Send + Sync;
/// Advances the iterator and returns the next value together with its enumeration index.
///
/// Returns [None] when iteration is finished.
///
/// # Examples
///
/// ```rust
/// use orx_concurrent_iter::*;
/// use orx_concurrent_bag::*;
///
/// let num_threads = 4;
/// let characters = vec!['0', '1', '2', '3', '4', '5', '6', '7'];
/// let slice = characters.as_slice();
///
/// let outputs = ConcurrentBag::new();
///
/// let con_iter = &slice.con_iter();
/// let bag = &outputs;
/// std::thread::scope(|s| {
/// for _ in 0..num_threads {
/// s.spawn(move || {
/// while let Some(next) = con_iter.next_id_and_value() {
/// let expected_value = char::from_digit(next.idx as u32, 10).unwrap();
/// assert_eq!(next.value, &expected_value);
///
/// bag.push(*next.value);
/// }
/// });
/// }
/// });
///
/// let mut outputs: Vec<char> = outputs.into_inner().into();
/// outputs.sort();
/// assert_eq!(characters, outputs);
/// ```
fn next_id_and_value(&self) -> Option<Next<Self::Item>>;
/// Advances the iterator `chunk_size` times and returns an iterator of at most `chunk_size` consecutive next values.
/// Further, the beginning enumeration index of the yielded values is returned.
///
/// This method:
/// * returns an iterator of `chunk_size` elements if there exists sufficient elements left in the iteration, or
/// * it might return an iterator of `m < chunk_size` elements if there exists only `m` elements left, or
/// * it might return an empty iterator.
///
/// This call would be equivalent to calling `next_id_and_value` method `chunk_size` times in a single-threaded execution.
/// However, calling `next` method `chunk_size` times in a concurrent execution does not guarantee to return `chunk_size` consecutive elements.
/// On the other hand, `next_id_and_chunk` guarantees that it returns consecutive elements, preventing any intermediate calls.
///
/// # Examples
///
/// Note that `next_chunk` method returns a [`NextChunk`].
/// Further, [`NextChunk::values`] is a regular `Iterator` which might yield at most `chunk_size` elements.
/// However, when the iterator is consumed concurrently, it will return an iterator which yields no elements.
/// Due to this, looping using the `next_chunk` method does not allow using `while let Some` pattern, and hence, it is not as ergonomic.
/// Therefore, whenever the length of the iterator is known; i.e., whenever the iterator also implements [`ExactSizeConcurrentIter`], [`ExactSizeConcurrentIter::next_exact_chunk`] is preferable.
/// Alternatively, [`ConcurrentIter::for_each_n`] or [`ConcurrentIter::enumerate_for_each_n`] methods can be used to avoid handling the loop manually.
///
/// ```rust
/// use orx_concurrent_iter::*;
/// use orx_concurrent_bag::*;
///
/// let num_threads = 4;
///
/// let characters = vec!['0', '1', '2', '3', '4', '5', '6', '7'];
/// let slice = characters.as_slice();
///
/// let outputs = ConcurrentBag::new();
///
/// let con_iter = &slice.con_iter();
/// let bag = &outputs;
/// std::thread::scope(|s| {
/// for _ in 0..num_threads {
/// s.spawn(move || {
/// loop {
/// let mut has_any_more = false;
///
/// let next = con_iter.next_chunk(2);
/// let begin = next.begin_idx();
/// for (i, value) in next.values().enumerate() {
/// has_any_more = true;
/// let idx = begin + i;
/// let expected_value = char::from_digit(idx as u32, 10).unwrap();
/// assert_eq!(value, &expected_value);
///
/// bag.push(*value);
/// }
///
/// if !has_any_more {
/// break;
/// }
/// }
/// });
/// }
/// });
///
/// let mut outputs: Vec<char> = outputs.into_inner().into();
/// outputs.sort();
/// assert_eq!(characters, outputs);
/// ```
fn next_chunk(&self, chunk_size: usize) -> impl NextChunk<Self::Item>;
/// Advances the iterator and returns the next value.
///
/// Returns [None] when iteration is finished.
///
/// # Examples
///
/// ```rust
/// use orx_concurrent_iter::*;
/// use orx_concurrent_bag::*;
///
/// let num_threads = 4;
/// let characters = vec!['0', '1', '2', '3', '4', '5', '6', '7'];
/// let slice = characters.as_slice();
///
/// let outputs = ConcurrentBag::new();
///
/// let con_iter = &slice.con_iter();
/// let bag = &outputs;
/// std::thread::scope(|s| {
/// for _ in 0..num_threads {
/// s.spawn(move || {
/// while let Some(value) = con_iter.next() {
/// bag.push(*value);
/// }
/// });
/// }
/// });
///
/// let mut outputs: Vec<char> = outputs.into_inner().into();
/// outputs.sort();
/// assert_eq!(characters, outputs);
/// ```
#[inline(always)]
fn next(&self) -> Option<Self::Item> {
self.next_id_and_value().map(|x| x.value)
}
/// Returns an `Iterator` over the values of elements of the concurrent iterator.
///
/// Note that `values` method can be called concurrently from multiple threads to create multiple local-to-thread regular `Iterator`s.
/// However, each of these iterators will be connected in the sense that:
/// * all iterators will be aware of the progress by the other iterators;
/// * each element will be yielded exactly once.
///
/// The iterator's `next` method does nothing but call the `next`; this iterator is only to allow for using `for` loops directly.
///
/// # Examples
///
/// ```rust
/// use orx_concurrent_iter::*;
/// use orx_concurrent_bag::*;
///
/// let num_threads = 4;
/// let characters = vec!['0', '1', '2', '3', '4', '5', '6', '7'];
/// let slice = characters.as_slice();
///
/// let outputs = ConcurrentBag::new();
///
/// let con_iter = &slice.con_iter();
/// let bag = &outputs;
/// std::thread::scope(|s| {
/// for _ in 0..num_threads {
/// s.spawn(move || {
/// for value in con_iter.values() {
/// bag.push(*value);
/// }
/// });
/// }
/// });
///
/// // parent concurrent iterator is completely consumed
/// assert!(con_iter.values().next().is_none());
///
/// let mut outputs: Vec<char> = outputs.into_inner().into();
/// outputs.sort();
/// assert_eq!(characters, outputs);
/// ```
fn values(&self) -> ConIterValues<Self>
where
Self: Sized,
{
self.into()
}
/// Returns an `Iterator` over the ids and values of elements of the concurrent iterator.
///
/// Note that `values` method can be called concurrently from multiple threads to create multiple local-to-thread regular `Iterator`s.
/// However, each of these iterators will be connected in the sense that:
/// * all iterators will be aware of the progress by the other iterators;
/// * each element will be yielded exactly once.
///
/// The iterator's `next` method does nothing but call the `next_id_and_value`; this iterator is only to allow for using `for` loops directly.
///
/// # Examples
///
/// ```rust
/// use orx_concurrent_iter::*;
/// use orx_concurrent_bag::*;
///
/// let num_threads = 4;
/// let characters = vec!['0', '1', '2', '3', '4', '5', '6', '7'];
/// let slice = characters.as_slice();
///
/// let outputs = ConcurrentBag::new();
///
/// let con_iter = &slice.con_iter();
/// let bag = &outputs;
/// std::thread::scope(|s| {
/// for _ in 0..num_threads {
/// s.spawn(move || {
/// for (idx, value) in con_iter.ids_and_values() {
/// let expected_value = char::from_digit(idx as u32, 10).unwrap();
/// assert_eq!(value, &expected_value);
///
/// bag.push(*value);
/// }
/// });
/// }
/// });
///
/// // parent concurrent iterator is completely consumed
/// assert!(con_iter.ids_and_values().next().is_none());
///
/// let mut outputs: Vec<char> = outputs.into_inner().into();
/// outputs.sort();
/// assert_eq!(characters, outputs);
/// ```
fn ids_and_values(&self) -> ConIterIdsAndValues<Self>
where
Self: Sized,
{
self.into()
}
/// Applies the function `fun` to each element of the iterator concurrently.
///
/// Note that this method might be called on the same iterator at the same time from different threads.
/// The iterator guarantees that the function is applied to each element exactly once.
///
/// At each iteration of the loop, this method pulls `chunk_size` elements from the iterator.
/// Under the hood, this method will loop using the [`ConcurrentIter::next_chunk`] method, pulling items `chunk_size` by `chunk_size`.
///
/// # Examples
///
/// ```rust
/// use orx_concurrent_iter::*;
/// use orx_concurrent_bag::*;
///
/// let chunk_size = 2;
/// let num_threads = 4;
/// let characters = vec!['0', '1', '2', '3', '4', '5', '6', '7'];
/// let slice = characters.as_slice();
///
/// let outputs = ConcurrentBag::new();
///
/// let con_iter = &slice.con_iter();
/// let bag = &outputs;
///
/// std::thread::scope(|s| {
/// for _ in 0..num_threads {
/// s.spawn(move || {
/// con_iter.for_each_n(chunk_size, |c| {
/// bag.push(c.to_digit(10).unwrap());
/// });
/// });
/// }
/// });
///
/// // parent concurrent iterator is completely consumed
/// assert!(con_iter.next().is_none());
///
/// let sum: u32 = outputs.into_inner().iter().sum();
/// assert_eq!(sum, (0..8).sum());
/// ```
fn for_each_n<Fun: FnMut(Self::Item)>(&self, chunk_size: usize, fun: Fun);
/// Applies the function `fun` to each index and corresponding element of the iterator concurrently.
///
/// Note that this method might be called on the same iterator at the same time from different threads.
/// The iterator guarantees that the function is applied to each element exactly once.
///
/// At each iteration of the loop, this method pulls `chunk_size` elements from the iterator.
/// Under the hood, this method will loop using the [`ConcurrentIter::next_chunk`] method, pulling items `chunk_size` by `chunk_size`.
///
/// # Examples
///
/// ```rust
/// use orx_concurrent_iter::*;
/// use orx_concurrent_bag::*;
///
/// let chunk_size = 2;
/// let num_threads = 4;
/// let characters = vec!['0', '1', '2', '3', '4', '5', '6', '7'];
/// let slice = characters.as_slice();
///
/// let outputs = ConcurrentBag::new();
///
/// let con_iter = &slice.con_iter();
/// let bag = &outputs;
///
/// std::thread::scope(|s| {
/// for _ in 0..num_threads {
/// s.spawn(move || {
/// con_iter.enumerate_for_each_n(chunk_size, |i, c| {
/// let expected_value = char::from_digit(i as u32, 10).unwrap();
/// assert_eq!(c, &expected_value);
///
/// bag.push(c.to_digit(10).unwrap());
/// });
/// });
/// }
/// });
///
/// // parent concurrent iterator is completely consumed
/// assert!(con_iter.next().is_none());
///
/// let sum: u32 = outputs.into_inner().iter().sum();
/// assert_eq!(sum, (0..8).sum());
/// ```
fn enumerate_for_each_n<Fun: FnMut(usize, Self::Item)>(&self, chunk_size: usize, fun: Fun);
/// Applies the function `fun` to each element of the iterator concurrently.
///
/// Note that this method might be called on the same iterator at the same time from different threads.
/// The iterator guarantees that the function is applied to each element exactly once.
///
/// Under the hood, this method will loop using the [`ConcurrentIter::next`] method, pulling items one by one.
///
/// # Examples
///
/// ```rust
/// use orx_concurrent_iter::*;
/// use orx_concurrent_bag::*;
///
/// let num_threads = 4;
/// let characters = vec!['0', '1', '2', '3', '4', '5', '6', '7'];
/// let slice = characters.as_slice();
///
/// let outputs = ConcurrentBag::new();
///
/// let con_iter = &slice.con_iter();
/// let bag = &outputs;
///
/// std::thread::scope(|s| {
/// for _ in 0..num_threads {
/// s.spawn(move || {
/// con_iter.for_each(|c| {
/// bag.push(c.to_digit(10).unwrap());
/// });
/// });
/// }
/// });
///
/// // parent concurrent iterator is completely consumed
/// assert!(con_iter.next().is_none());
///
/// let sum: u32 = outputs.into_inner().iter().sum();
/// assert_eq!(sum, (0..8).sum());
/// ```
fn for_each<Fun: FnMut(Self::Item)>(&self, fun: Fun) {
self.for_each_n(1, fun)
}
/// Applies the function `fun` to each index and corresponding element of the iterator concurrently.
/// It may be considered as the concurrent counterpart of the chain of `enumerate` and `for_each` calls.
///
/// Note that this method might be called on the same iterator at the same time from different threads.
/// The iterator guarantees that the function is applied to each element exactly once.
///
/// Under the hood, this method will loop using the [`ConcurrentIter::next_id_and_value`] method, pulling items one by one.
///
/// # Examples
///
/// ```rust
/// use orx_concurrent_iter::*;
/// use orx_concurrent_bag::*;
///
/// let num_threads = 4;
/// let characters = vec!['0', '1', '2', '3', '4', '5', '6', '7'];
/// let slice = characters.as_slice();
///
/// let outputs = ConcurrentBag::new();
///
/// let con_iter = &slice.con_iter();
/// let bag = &outputs;
///
/// std::thread::scope(|s| {
/// for _ in 0..num_threads {
/// s.spawn(move || {
/// con_iter.enumerate_for_each(|i, c| {
/// let expected_value = char::from_digit(i as u32, 10).unwrap();
/// assert_eq!(c, &expected_value);
///
/// bag.push(c.to_digit(10).unwrap());
/// });
/// });
/// }
/// });
///
/// // parent concurrent iterator is completely consumed
/// assert!(con_iter.next().is_none());
///
/// let sum: u32 = outputs.into_inner().iter().sum();
/// assert_eq!(sum, (0..8).sum());
/// ```
fn enumerate_for_each<Fun: FnMut(usize, Self::Item)>(&self, fun: Fun) {
self.enumerate_for_each_n(1, fun)
}
/// Folds the elements of the iterator pulled concurrently using `fold` function.
///
/// Note that this method might be called on the same iterator at the same time from different threads.
/// Each thread will start its concurrent fold operation with the `neutral` value.
/// This value is then transformed into the result by applying the `fold` on it together with the pulled elements.
///
/// Therefore, each thread will end up at a different partial result.
/// Further, each thread's partial result might be different in every execution.
///
/// However, once `fold` is applied starting again from `neutral` using the thread results, we compute the deterministic result.
/// This establishes a very ergonomic parallel fold implementation.
///
/// # Chunk Size
///
/// When `chunk_size` is set to 1, threads will pull elements from the iterator one by one.
/// This might be the preferred setting when we are working with general `ConcurrentIter`s rather than `ExactSizeConcurrentIter`s,
/// or whenever the work to be done to `fold` the results is large enough to make the time spent for updating atomic counters insignificant.
///
/// On the other hand, whenever we are working with an `ExactSizeConcurrentIter` and the iterator has many elements,
/// it is possible to avoid the cost of atomic updates almost completely by setting the chunk size to a larger value.
/// Rule of thumb in this situation is that the larger the better provided that the chunk size is not too large that would lead some threads to remain idle.
/// However, note that this optimization is only significant if the `fold` operation is significantly small, such as the addition example below.
///
/// # Panics
///
/// Panics if `chunk_size` is zero; chunk size is required to be strictly positive.
///
/// # Examples
///
/// Notice that the initial value is called `neutral` as in **monoids**, rather than init or initial.
/// This is to highlight that each thread will start its separate execution from this value.
///
/// Integer addition and number zero are good examples for `neutral` and `fold`, respectively.
/// Assume our iterator will yield 4 values: [3, 4, 1, 9].
/// We want to sum these values using two threads.
/// We can achieve parallelism very conveniently using `fold` as follows.
///
/// ```rust
/// use orx_concurrent_iter::*;
///
/// let num_threads = 2;
///
/// let numbers = vec![3, 4, 1, 9];
/// let slice = numbers.as_slice();
/// let iter = &slice.con_iter();
///
/// let neutral = 0; // neutral for i32 & add
///
/// let sum = std::thread::scope(|s| {
/// (0..num_threads)
/// .map(|_| s.spawn(move || iter.fold(1, neutral, |x, y| x + y))) // parallel fold
/// .map(|x| x.join().unwrap())
/// .fold(neutral, |x, y| x + y) // sequential fold
/// });
///
/// assert_eq!(sum, 17);
/// ```
///
/// Note that this code can execute in one of many possible ways.
/// Let's say our two threads are called tA and tB.
/// * tA might pull and sum all four of the numbers; hence, returns 17. tB cannot pull any element and just returns the neutral element. Sequential fold will add 17 and 0, and return 17.
/// * tA might pull only the third element; hence, returns 0+1 = 1. tB pulls the other 3 elements and returns 0+3+4+9 = 16. Final fold will then return 0+1+16 = 17.
/// * and so on, so forth.
///
/// `ConcurrentIter` guarantees that each element is visited and computed exactly once.
/// Therefore, the parallel computation will always be correct provided that we provide a neutral element such that:
///
/// ```rust ignore
/// assert_eq!(fold(neutral, element), element);
/// ```
///
/// Other trivial examples are:
/// * `1` & multiplication
/// * empty string/list & string/list concat
/// * `true` & logical, etc.
///
/// ***Wrong Example with a Non-Neutral Element***
///
/// In a sequential fold operation, one can choose to start the summation above with an initial value of 100.
/// Then, the resulting value would deterministically be 117.
///
/// However, if we pass 100 as the neutral element to the concurrent fold above, we would receive 217 (additional 100 for each thread).
/// Notice that the result depends on the number of threads used in computation.
/// This is incorrect.
///
/// In either case, it is a good practice to leave 100 out of the fold operation.
/// It is preferable to pass 0 as the initial and neutral element, and add 100 to the result of the fold operation.
fn fold<B, Fold>(&self, chunk_size: usize, neutral: B, fold: Fold) -> B
where
Fold: FnMut(B, Self::Item) -> B;
}
/// A concurrent iterator that knows its exact length.
pub trait ExactSizeConcurrentIter: ConcurrentIter {
/// Returns the exact remaining length of the concurrent iterator.
fn len(&self) -> usize;
/// Returns true if the iterator is empty.
fn is_empty(&self) -> bool {
self.len() == 0
}
/// Returns the next chunk with the requested `chunk_size`:
/// * Returns `None` if there are no more elements to yield.
/// * Returns `Some` of a [`crate::NextManyExact`] which contains the following information:
/// * `begin_idx`: the index of the first element to be yielded by the `values` iterator.
/// * `values`: an `ExactSizeIterator` with known `len` which is guaranteed to be positive and less than or equal to `chunk_size`.
///
/// # Examples
///
/// ```rust
/// use orx_concurrent_iter::*;
/// use orx_concurrent_bag::*;
///
/// let chunk_size = 2;
/// let num_threads = 4;
///
/// let characters = vec!['0', '1', '2', '3', '4', '5', '6', '7'];
/// let slice = characters.as_slice();
///
/// let outputs = ConcurrentBag::new();
///
/// let con_iter = &slice.con_iter();
/// let bag = &outputs;
/// std::thread::scope(|s| {
/// for _ in 0..num_threads {
/// s.spawn(move || {
/// while let Some(next) = con_iter.next_exact_chunk(chunk_size) {
/// let begin = next.begin_idx();
/// for (i, value) in next.values().enumerate() {
/// let idx = begin + i;
/// let expected_value = char::from_digit(idx as u32, 10).unwrap();
/// assert_eq!(value, &expected_value);
///
/// bag.push(*value);
/// }
/// }
/// });
/// }
/// });
///
/// let mut outputs: Vec<char> = outputs.into_inner().into();
/// outputs.sort();
/// assert_eq!(characters, outputs);
/// ```
fn next_exact_chunk(
&self,
chunk_size: usize,
) -> Option<NextManyExact<Self::Item, impl ExactSizeIterator<Item = Self::Item>>>;
}