1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
use crate::{
    iter::buffered::iter::BufferIter, next::NextChunk, ConIterOfIterX, ConcurrentIter,
    ConcurrentIterX, Next,
};
use std::{
    cell::UnsafeCell,
    sync::atomic::{AtomicUsize, Ordering},
};

const COMPLETED: usize = usize::MAX;
const IS_MUTATING: usize = usize::MAX - 1;

/// A regular `Iter: Iterator` ascended to the concurrent programs with use of atomics.
///
/// Since `ConIterOfIter` can wrap up any `Iterator` and enable concurrent iteration,
/// it might be considered as the most general `ConcurrentIter` implementation.
///
/// In performance critical scenarios and whenever possible, it might be preferable to use a more specific implementation such as [`crate::ConIterOfSlice`].
pub struct ConIterOfIter<T: Send + Sync, Iter>
where
    Iter: Iterator<Item = T>,
{
    pub(crate) iter: UnsafeCell<Iter>,
    initial_len: Option<usize>,
    counter: AtomicUsize,
    yielded_counter: AtomicUsize,
}

impl<T: Send + Sync, Iter> ConIterOfIter<T, Iter>
where
    Iter: Iterator<Item = T>,
{
    /// Creates a concurrent iterator for the given `iter`.
    pub fn new(iter: Iter) -> Self {
        let initial_len = match iter.size_hint() {
            (_, None) => None,
            (lower, Some(upper)) if lower == upper => Some(lower),
            _ => None,
        };

        Self {
            iter: iter.into(),
            initial_len,
            counter: 0.into(),
            yielded_counter: 0.into(),
        }
    }

    pub(crate) fn progress_and_get_begin_idx(&self, number_to_fetch: usize) -> Option<usize> {
        match number_to_fetch {
            0 => None,
            _ => {
                let begin_idx = self.counter.fetch_add(number_to_fetch, Ordering::Relaxed);
                loop {
                    match self.try_get_handle(begin_idx) {
                        Ok(_) => return Some(begin_idx),
                        Err(COMPLETED) => return None,
                        _ => {}
                    }
                }
            }
        }
    }

    fn get(&self, item_idx: usize) -> Option<T> {
        loop {
            match self.try_get_handle(item_idx) {
                Ok(_) => {
                    let next = unsafe { &mut *self.iter.get() }.next();

                    match next.is_some() {
                        true => self.release_handle(item_idx + 1),
                        false => self.release_handle_complete(),
                    }

                    return next;
                }
                Err(COMPLETED) => return None,
                _ => {}
            }
        }
    }

    // handles

    fn try_get_handle(&self, begin_idx: usize) -> Result<usize, usize> {
        self.yielded_counter.compare_exchange(
            begin_idx,
            IS_MUTATING,
            Ordering::Acquire,
            Ordering::Relaxed,
        )
    }

    pub(crate) fn release_handle(&self, num_taken: usize) {
        match self.yielded_counter.compare_exchange(
            IS_MUTATING,
            num_taken,
            Ordering::Release,
            Ordering::Relaxed,
        ) {
            Ok(_) => {}
            Err(e) => assert_eq!(e, COMPLETED, "Failed to update ConIterOfIter state"),
        }
    }

    pub(crate) fn release_handle_complete(&self) {
        match self.yielded_counter.compare_exchange(
            IS_MUTATING,
            COMPLETED,
            Ordering::Release,
            Ordering::Relaxed,
        ) {
            Ok(_) => {}
            Err(e) => assert_eq!(e, COMPLETED, "Failed to update ConIterOfIter state"),
        }
    }
}

impl<T: Send + Sync, Iter> std::fmt::Debug for ConIterOfIter<T, Iter>
where
    Iter: Iterator<Item = T>,
{
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        super::helpers::fmt_iter(f, "ConIterOfIter", self.initial_len, &self.counter)
    }
}

impl<T: Send + Sync, Iter> From<Iter> for ConIterOfIter<T, Iter>
where
    Iter: Iterator<Item = T>,
{
    fn from(iter: Iter) -> Self {
        Self::new(iter)
    }
}

unsafe impl<T: Send + Sync, Iter> Sync for ConIterOfIter<T, Iter> where Iter: Iterator<Item = T> {}

unsafe impl<T: Send + Sync, Iter> Send for ConIterOfIter<T, Iter> where Iter: Iterator<Item = T> {}

// AtomicIter -> ConcurrentIter

impl<T: Send + Sync, Iter> ConcurrentIterX for ConIterOfIter<T, Iter>
where
    Iter: Iterator<Item = T>,
{
    type Item = T;

    type SeqIter = Iter;

    type BufferedIterX = BufferIter<T, Iter>;

    /// Converts the concurrent iterator back to the original wrapped type which is the source of the elements to be iterated.
    /// Already progressed elements are skipped.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use orx_concurrent_iter::*;
    ///
    /// let iter = (0..1024).map(|x| x.to_string());
    /// let con_iter = iter.into_con_iter();
    ///
    /// std::thread::scope(|s| {
    ///     s.spawn(|| {
    ///         for _ in 0..42 {
    ///             _ = con_iter.next();
    ///         }
    ///
    ///         let mut buffered = con_iter.buffered_iter(32);
    ///         let _chunk = buffered.next().unwrap();
    ///     });
    /// });
    ///
    /// let num_used = 42 + 32;
    ///
    /// // converts the remaining elements into a sequential iterator
    /// let seq_iter = con_iter.into_seq_iter();
    ///
    /// assert_eq!(seq_iter.len(), 1024 - num_used);
    /// for (i, x) in seq_iter.enumerate() {
    ///     assert_eq!(x, (num_used + i).to_string());
    /// }
    /// ```
    fn into_seq_iter(self) -> Self::SeqIter {
        self.iter.into_inner()
    }

    fn next_chunk_x(&self, chunk_size: usize) -> Option<impl ExactSizeIterator<Item = Self::Item>> {
        match chunk_size {
            0 => None,
            _ => match self.progress_and_get_begin_idx(chunk_size) {
                None => None,
                Some(begin_idx) => {
                    let iter = unsafe { &mut *self.iter.get() };

                    let end_idx = begin_idx + chunk_size;

                    let buffer: Vec<_> = (begin_idx..end_idx)
                        .map(|_| iter.next())
                        .take_while(|x| x.is_some())
                        .map(|x| x.expect("must be some"))
                        .collect();

                    match buffer.len() == chunk_size {
                        true => self.release_handle(end_idx),
                        false => self.release_handle_complete(),
                    }

                    let values = buffer.into_iter();
                    Some(values)
                }
            },
        }
    }

    fn next(&self) -> Option<Self::Item> {
        let idx = self.counter.fetch_add(1, Ordering::Acquire);
        self.get(idx)
    }

    #[inline(always)]
    fn try_get_len(&self) -> Option<usize> {
        match self.yielded_counter.load(Ordering::SeqCst) == COMPLETED {
            true => Some(0),
            false => self.initial_len.map(|initial_len| {
                let current = self.counter.load(Ordering::Acquire);
                initial_len.saturating_sub(current)
            }),
        }
    }

    #[inline(always)]
    fn try_get_initial_len(&self) -> Option<usize> {
        self.initial_len
    }

    #[inline(always)]
    fn skip_to_end(&self) {
        self.yielded_counter.store(COMPLETED, Ordering::SeqCst);
    }
}

impl<T: Send + Sync, Iter> ConcurrentIter for ConIterOfIter<T, Iter>
where
    Iter: Iterator<Item = T>,
{
    type BufferedIter = Self::BufferedIterX;

    #[inline(always)]
    #[allow(refining_impl_trait)]
    fn into_con_iter_x(self) -> ConIterOfIterX<T, Iter>
    where
        Self: Sized,
    {
        // self
        let iter = self.iter.into_inner();
        ConIterOfIterX::new(iter)
    }

    #[inline(always)]
    fn next_id_and_value(&self) -> Option<Next<Self::Item>> {
        let idx = self.counter.fetch_add(1, Ordering::Acquire);
        self.get(idx).map(|value| Next { idx, value })
    }

    #[inline(always)]
    fn next_chunk(
        &self,
        chunk_size: usize,
    ) -> Option<NextChunk<Self::Item, impl ExactSizeIterator<Item = Self::Item>>> {
        match chunk_size {
            0 => None,
            _ => match self.progress_and_get_begin_idx(chunk_size) {
                None => None,
                Some(begin_idx) => {
                    let iter = unsafe { &mut *self.iter.get() };

                    let end_idx = begin_idx + chunk_size;

                    let buffer: Vec<_> = (begin_idx..end_idx)
                        .map(|_| iter.next())
                        .take_while(|x| x.is_some())
                        .map(|x| x.expect("must be some"))
                        .collect();

                    match buffer.len() == chunk_size {
                        true => self.release_handle(end_idx),
                        false => self.release_handle_complete(),
                    }

                    let values = buffer.into_iter();
                    Some(NextChunk { begin_idx, values })
                }
            },
        }
    }
}