1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
use super::{
    buffered::{
        buffered_chunk::{BufferedChunk, BufferedChunkX},
        buffered_iter::BufferedIter,
    },
    default_fns,
};
use crate::{
    next::{Next, NextChunk},
    ConIterIdsAndValues, ConcurrentIterX,
};

/// Trait defining a concurrent iterator with `next` and `next_id_and_chunk` methods which can safely be called my multiple threads concurrently.
pub trait ConcurrentIter: ConcurrentIterX {
    /// Type of the buffered iterator returned by the `chunk_iter` method when elements are fetched in chunks by each thread.
    type BufferedIter: BufferedChunk<Self::Item, ConIter = Self>;

    /// Converts the `ConcurrentIter` into a `ConcurrentIterX`.
    ///
    /// Note that type or method names with suffix 'x' is an indicator of the dropped promise of keeping order.
    /// * `ConcurrentIterX` allows concurrent iteration; however, it may or may not provide the initial order of
    /// an element in the providing source.
    /// * `ConcurrentIter` extends `ConcurrentIterX` by including the keeping track of order guarantee.
    ///
    /// This crate provides ordered `ConcurrentIter` implementations of all iterators.
    /// In other words, `ConcurrentIterX` implementations already preserve the input order and hence
    /// the iterators also implement `ConcurrentIter`.
    /// A different `ConcurrentIterX` implementation is provided only if it makes it possible to have a performance gain.
    /// One example is concurrent iterators created for arbitrary sequential iterators, in which case keeping track of
    /// input order might have an impact.
    ///
    /// In such cases, in order to make the choice explicit, these traits are differentiated.
    ///
    /// In most of the practical use cases, we require only the `ConcurrentIter`.
    /// The differentiation is utilized by under the hood coordination of crates aiming high performance
    /// such as [orx_parallel](https://crates.io/crates/orx-parallel).
    ///
    /// # Examples
    ///
    /// **A. When order matters**
    ///
    /// Once can create a concurrent iterator from a sequential iterator and use it as it is.
    /// This will guarantee to provide the correct index of the input.
    /// For instance in the following, `(i, value)` pair provided by `ids_and_values`
    /// will guarantee that `2*i == value`.
    ///
    /// ```rust
    /// use orx_concurrent_iter::*;
    /// use orx_concurrent_bag::ConcurrentBag;
    ///
    /// let num_threads = 8;
    ///
    /// let seq_iter = (0..1024).map(|x| x * 2).into_iter();
    /// let con_iter = seq_iter.into_con_iter();
    ///
    /// let con_bag = ConcurrentBag::new();
    ///
    /// std::thread::scope(|s| {
    ///     for _ in 0..num_threads {
    ///         s.spawn(|| {
    ///             for (i, value) in con_iter.ids_and_values() {
    ///                 con_bag.push((i, value / 2));
    ///             }
    ///         });
    ///     }
    /// });
    ///
    /// let vec = con_bag.into_inner();
    /// for (i, value) in vec.into_iter() {
    ///     assert_eq!(i, value as usize);
    /// }
    /// ```
    ///
    /// **B. When order does not matter**
    ///
    /// Alternatively, if the order does not matter, we can create an unordered version of the concurrent iterator.
    /// We can directly create one using `into_con_iter_x` on the source type.
    /// Alternatively, we can convert any ordered concurrent iterator any time by calling `into_con_iter_x`.
    /// In the following, we use an unordered version, since we are not interested in the indices of elements
    /// while computing a parallel sum.
    ///
    /// ```rust
    /// use orx_concurrent_iter::*;
    ///
    /// let num_threads = 8;
    ///
    /// let seq_iter = (0..1024).map(|x| x * 2).into_iter();
    /// let con_iter = seq_iter.into_con_iter_x(); // directly into x
    /// // let con_iter = seq_iter.into_con_iter().into_con_iter_x(); // or alternatively
    ///
    /// let sum: i32 = std::thread::scope(|s| {
    ///     let mut handles: Vec<_> = vec![];
    ///     for _ in 0..num_threads {
    ///         // as expected, `ids_and_values` method is not available
    ///         // but we have `values`
    ///         handles.push(s.spawn(|| con_iter.values().sum::<i32>()));
    ///     }
    ///
    ///     handles.into_iter().map(|x| x.join().expect("-")).sum()
    /// });
    ///
    /// assert_eq!(sum, (0..1024).sum::<i32>() * 2)
    /// ```
    #[inline(always)]
    fn into_con_iter_x(self) -> impl ConcurrentIterX<Item = Self::Item>
    where
        Self: Sized,
    {
        self
    }

    /// Advances the iterator and returns the next value together with its enumeration index.
    ///
    /// Returns [None] when iteration is finished.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use orx_concurrent_iter::*;
    /// use orx_concurrent_bag::*;
    ///
    /// fn to_str(num: usize) -> String {
    ///     num.to_string()
    /// }
    ///
    /// let (num_threads, chunk_size) = (4, 32);
    /// let strings: Vec<_> = (0..1024).map(to_str).collect();
    /// let bag = ConcurrentBag::new();
    ///
    /// let iter = strings.con_iter();
    /// std::thread::scope(|s| {
    ///     for _ in 0..num_threads {
    ///         s.spawn(|| {
    ///             while let Some(next) = iter.next_id_and_value() {
    ///                 // idx is the original position in `characters`
    ///                 assert_eq!(next.value, &to_str(next.idx));
    ///                 bag.push((next.idx, next.value.len()));
    ///             }
    ///         });
    ///     }
    /// });
    ///
    /// let mut outputs: Vec<_> = bag.into_inner().into();
    /// outputs.sort_by_key(|x| x.0); // sort to original order
    /// for (x, y) in outputs.iter().map(|x| x.1).zip(&strings) {
    ///     assert_eq!(x, y.len());
    /// }
    /// ```
    fn next_id_and_value(&self) -> Option<Next<Self::Item>>;

    /// Advances the iterator `chunk_size` times and returns an iterator of at most `chunk_size` consecutive next values.
    /// Further, the beginning enumeration index of the yielded values is returned.
    ///
    /// This method:
    /// * returns an iterator of `chunk_size` elements if there exist sufficient elements left in the iteration, or
    /// * it might return an iterator of `m < chunk_size` elements if there exists only `m` elements left, or
    /// * it might return None, it will never return Some of an empty iterator.
    ///
    /// This call would be equivalent to calling `next_id_and_value` method `chunk_size` times in a single-threaded execution.
    /// However, calling `next` method `chunk_size` times in a concurrent execution does not guarantee to return `chunk_size` consecutive elements.
    /// On the other hand, `next_chunk` guarantees that it returns consecutive elements, preventing any intermediate calls.
    ///
    /// More importantly, this is an important performance optimization feature that enables
    /// * reducing the number of atomic updates,
    /// * avoiding performance degradation by false sharing if the fetched inputs will be processed and written to a shared memory (see [`ConcurrentBag` performance notes](https://docs.rs/orx-concurrent-bag/latest/orx_concurrent_bag/#section-performance-notes)).
    ///
    /// # Examples
    ///
    /// Note that `next_chunk` method returns a [`NextChunk`].
    /// Further, [`NextChunk::values`] is a regular `ExactSizeIterator` which might yield at most `chunk_size` elements.
    /// Note that the iterator will never be empty.
    /// Whenever the concurrent iterator is used up, `next_chunk` method, similar to `next`, will return `None`.
    ///
    /// ```rust
    /// use orx_concurrent_iter::*;
    /// use orx_concurrent_bag::*;
    ///
    /// fn to_str(num: usize) -> String {
    ///     num.to_string()
    /// }
    ///
    /// let (num_threads, chunk_size) = (4, 32);
    /// let strings: Vec<_> = (0..1024).map(to_str).collect();
    /// let bag = ConcurrentBag::new();
    ///
    /// let iter = strings.con_iter();
    /// std::thread::scope(|s| {
    ///     for _ in 0..num_threads {
    ///         s.spawn(|| {
    ///             while let Some(chunk) = iter.next_chunk(chunk_size) {
    ///                 for (i, value) in chunk.values.enumerate() {
    ///                     // idx is the original position in `characters`
    ///                     let idx = chunk.begin_idx + i;
    ///                     assert_eq!(value, &to_str(idx));
    ///                     bag.push((idx, value.len()));
    ///                 }
    ///             }
    ///         });
    ///     }
    /// });
    ///
    /// let mut outputs: Vec<_> = bag.into_inner().into();
    /// outputs.sort_by_key(|x| x.0); // sort to original order
    /// for (x, y) in outputs.iter().map(|x| x.1).zip(&strings) {
    ///     assert_eq!(x, y.len());
    /// }
    /// ```
    fn next_chunk(
        &self,
        chunk_size: usize,
    ) -> Option<NextChunk<Self::Item, impl ExactSizeIterator<Item = Self::Item>>>;

    /// Returns an `Iterator` over the ids and values of elements of the concurrent iterator.
    ///
    /// Note that `values` method can be called concurrently from multiple threads to create multiple local-to-thread regular `Iterator`s.
    /// However, each of these iterators will be connected in the sense that:
    /// * all iterators will be aware of the progress by the other iterators;
    /// * each element will be yielded exactly once.
    ///
    /// The iterator's `next` method does nothing but call the `next_id_and_value`; this iterator is only to allow for using `for` loops directly.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use orx_concurrent_iter::*;
    /// use orx_concurrent_bag::*;
    ///
    /// fn to_str(num: usize) -> String {
    ///     num.to_string()
    /// }
    ///
    /// let num_threads = 4;
    /// let strings: Vec<_> = (0..1024).map(to_str).collect();
    /// let bag = ConcurrentBag::new();
    ///
    /// let iter = strings.con_iter();
    /// std::thread::scope(|s| {
    ///     for _ in 0..num_threads {
    ///         s.spawn(|| {
    ///             for (idx, value) in iter.ids_and_values() {
    ///                 // idx is the original position in `characters`
    ///                 assert_eq!(value, &to_str(idx));
    ///                 bag.push((idx, value.len()));
    ///             }
    ///         });
    ///     }
    /// });
    ///
    /// let mut outputs: Vec<_> = bag.into_inner().into();
    /// outputs.sort_by_key(|x| x.0); // sort to original order
    /// for (x, y) in outputs.iter().map(|x| x.1).zip(&strings) {
    ///     assert_eq!(x, y.len());
    /// }
    /// ```
    fn ids_and_values(&self) -> ConIterIdsAndValues<Self>
    where
        Self: Sized,
    {
        self.into()
    }

    /// Applies the function `fun` to each element of the iterator concurrently.
    ///
    /// Note that this method might be called on the same iterator at the same time from different threads.
    /// The iterator guarantees that the function is applied to each element exactly once.
    ///
    /// At each iteration of the loop, this method pulls `chunk_size` elements from the iterator.
    /// Under the hood, this method will loop using the buffered chunks iterator, pulling items as batches of the given `chunk_size`.
    ///
    /// # Panics
    ///
    /// Panics if `chunk_size` is zero; chunk size is required to be strictly positive.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use orx_concurrent_iter::*;
    /// use orx_concurrent_bag::*;
    ///
    /// let (num_threads, chunk_size) = (4, 2);
    /// let characters = vec!['0', '1', '2', '3', '4', '5', '6', '7'];
    ///
    /// let iter = characters.con_iter();
    /// let bag = ConcurrentBag::new();
    ///
    /// std::thread::scope(|s| {
    ///     for _ in 0..num_threads {
    ///         s.spawn(|| {
    ///             iter.for_each(chunk_size, |c| {
    ///                 bag.push(c.to_digit(10).unwrap());
    ///             });
    ///         });
    ///     }
    /// });
    ///
    /// // parent concurrent iterator is completely consumed
    /// assert!(iter.next().is_none());
    ///
    /// let sum: u32 = bag.into_inner().iter().sum();
    /// assert_eq!(sum, (0..8).sum());
    /// ```
    fn for_each<Fun: FnMut(Self::Item)>(&self, chunk_size: usize, fun: Fun)
    where
        Self: Sized,
    {
        default_fns::for_each::for_each(self, chunk_size, fun);
    }

    /// Applies the function `fun` to each index and corresponding element of the iterator concurrently.
    ///
    /// Note that this method might be called on the same iterator at the same time from different threads.
    /// The iterator guarantees that the function is applied to each element exactly once.
    ///
    /// At each iteration of the loop, this method pulls `chunk_size` elements from the iterator.
    /// Under the hood, this method will loop using the buffered chunks iterator, pulling items as batches of the given `chunk_size`.
    ///
    /// # Panics
    ///
    /// Panics if `chunk_size` is zero; chunk size is required to be strictly positive.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use orx_concurrent_iter::*;
    /// use orx_concurrent_bag::*;
    ///
    /// let (num_threads, chunk_size) = (4, 2);
    /// let characters = vec!['0', '1', '2', '3', '4', '5', '6', '7'];
    ///
    /// let iter = characters.con_iter();
    /// let bag = ConcurrentBag::new();
    ///
    /// std::thread::scope(|s| {
    ///     for _ in 0..num_threads {
    ///         s.spawn(|| {
    ///             iter.enumerate_for_each(chunk_size, |i, c| {
    ///                 let expected_value = char::from_digit(i as u32, 10).unwrap();
    ///                 assert_eq!(c, &expected_value);
    ///
    ///                 bag.push(c.to_digit(10).unwrap());
    ///             });
    ///         });
    ///     }
    /// });
    ///
    /// // parent concurrent iterator is completely consumed
    /// assert!(iter.next().is_none());
    ///
    /// let sum: u32 = bag.into_inner().iter().sum();
    /// assert_eq!(sum, (0..8).sum());
    /// ```
    fn enumerate_for_each<Fun: FnMut(usize, Self::Item)>(&self, chunk_size: usize, fun: Fun)
    where
        Self: Sized,
    {
        default_fns::for_each::for_each_with_ids(self, chunk_size, fun)
    }

    /// Creates an iterator which pulls elements from this iterator as chunks of the given `chunk_size`.
    ///
    /// Returned iterator is a regular `Iterator`, except that it is linked to the concurrent iterator and pulls its elements concurrently from the parent iterator.
    /// The `next` call of the buffered iterator returns `None` if the concurrent iterator is consumed.
    /// Otherwise, it returns a [`NextChunk`] which is composed of two values:
    /// * `begin_idx`: the index in the original source data, or concurrent iterator, of the first element of the pulled chunk,
    /// * `values`: an `ExactSizeIterator` containing at least 1 and at most `chunk_size` consecutive elements pulled from the original source data.
    ///
    /// Iteration in chunks is allocation free whenever possible; for instance, when the source data is a vector, a slice or an array, etc. with known size.
    /// On the other hand, when the source data is an arbitrary `Iterator`, iteration in chunks requires a buffer to write the chunk of pulled elements.
    ///
    /// This method is memory efficient in these situations.
    /// It allocates a buffer of `chunk_size` only once when created, only if the source data requires it.
    /// This buffer is used over and over until the concurrent iterator is consumed.
    ///
    /// # Panics
    ///
    /// Panics if `chunk_size` is zero; chunk size is required to be strictly positive.
    ///
    /// # Example
    ///
    /// Example below illustrates a parallel sum operation.
    /// Entire iteration requires an allocation (4 threads) * (16 chunk size) = 64 elements.
    ///
    /// ```rust
    /// use orx_concurrent_iter::*;
    ///
    /// let (num_threads, chunk_size) = (4, 64);
    /// let iter = (0..16384).map(|x| x * 2).into_con_iter();
    ///
    /// let sum = std::thread::scope(|s| {
    ///     (0..num_threads)
    ///         .map(|_| {
    ///             s.spawn(|| {
    ///                 let mut sum = 0;
    ///                 let mut buffered = iter.buffered_iter(chunk_size);
    ///                 while let Some(chunk) = buffered.next() {
    ///                     sum += chunk.values.sum::<usize>();
    ///                 }
    ///                 sum
    ///             })
    ///         })
    ///         .map(|x| x.join().expect("-"))
    ///         .sum::<usize>()
    /// });
    ///
    /// let expected = 16384 * 16383;
    /// assert_eq!(sum, expected);
    /// ```
    ///
    /// # `buffered_iter` and `next_chunk`
    ///
    /// When iterating over single elements using `next` or `values`, the concurrent iterator just yields the element without requiring any allocation.
    ///
    /// When iterating as chunks, concurrent iteration might or might not require an allocation.
    /// * For instance, no allocation is required if the source data of the iterator is a vector, a slice or an array, etc.
    /// * On the other hand, an allocation of `chunk_size` is required if the source data is an any `Iterator` without further type information.
    ///
    /// Pulling elements as chunks using the `next_chunk` or `buffered_iter` methods differ in the latter case as follows:
    /// * `next_chunk` will allocate a vector of `next_chunk` elements every time it is called;
    /// * `buffered_iter` will allocate a vector of `next_chunk` only once on construction, and this buffer will be used over and over until the concurrent iterator is consumed leading to negligible allocation.
    ///
    /// Therefore, it is safer to always use `buffered_iter`, unless we need to keep changing the `chunk_size` through iteration, which is a rare scenario.
    ///
    /// In a typical use case where we concurrently iterate over the elements of the iterator using `num_threads` threads:
    /// * we will create `num_threads` buffered iterators; i.e., we will call `buffered_iter` once from each thread,
    /// * each thread will allocate a vector of `chunk_size` capacity.
    ///
    /// In total, the iteration will use an additional memory of `num_threads * chunk_size`.
    /// Note that the amount of allocation is not a function of the length of the source data.
    /// Assuming the length will be large in a scenario requiring parallel iteration, the allocation can be considered to be very small.
    fn buffered_iter(&self, chunk_size: usize) -> BufferedIter<Self::Item, Self::BufferedIter> {
        BufferedIter::new(Self::BufferedIter::new(chunk_size), self)
    }
}