1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
use super::{
buffered::{
buffered_chunk::{BufferedChunk, BufferedChunkX},
buffered_iter::BufferedIter,
},
default_fns,
};
use crate::{
next::{Next, NextChunk},
ConIterIdsAndValues, ConcurrentIterX,
};
/// Trait defining a concurrent iterator with `next` and `next_id_and_chunk` methods which can safely be called my multiple threads concurrently.
pub trait ConcurrentIter: ConcurrentIterX {
/// Type of the buffered iterator returned by the `chunk_iter` method when elements are fetched in chunks by each thread.
type BufferedIter: BufferedChunk<Self::Item, ConIter = Self>;
/// Converts the `ConcurrentIter` into a `ConcurrentIterX`.
///
/// Note that type or method names with suffix 'x' is an indicator of the dropped promise of keeping order.
/// * `ConcurrentIterX` allows concurrent iteration; however, it may or may not provide the initial order of
/// an element in the providing source.
/// * `ConcurrentIter` extends `ConcurrentIterX` by including the keeping track of order guarantee.
///
/// This crate provides ordered `ConcurrentIter` implementations of all iterators.
/// In other words, `ConcurrentIterX` implementations already preserve the input order and hence
/// the iterators also implement `ConcurrentIter`.
/// A different `ConcurrentIterX` implementation is provided only if it makes it possible to have a performance gain.
/// One example is concurrent iterators created for arbitrary sequential iterators, in which case keeping track of
/// input order might have an impact.
///
/// In such cases, in order to make the choice explicit, these traits are differentiated.
///
/// In most of the practical use cases, we require only the `ConcurrentIter`.
/// The differentiation is utilized by under the hood coordination of crates aiming high performance
/// such as [orx_parallel](https://crates.io/crates/orx-parallel).
///
/// # Examples
///
/// **A. When order matters**
///
/// Once can create a concurrent iterator from a sequential iterator and use it as it is.
/// This will guarantee to provide the correct index of the input.
/// For instance in the following, `(i, value)` pair provided by `ids_and_values`
/// will guarantee that `2*i == value`.
///
/// ```rust
/// use orx_concurrent_iter::*;
/// use orx_concurrent_bag::ConcurrentBag;
///
/// let num_threads = 8;
///
/// let seq_iter = (0..1024).map(|x| x * 2).into_iter();
/// let con_iter = seq_iter.into_con_iter();
///
/// let con_bag = ConcurrentBag::new();
///
/// std::thread::scope(|s| {
/// for _ in 0..num_threads {
/// s.spawn(|| {
/// for (i, value) in con_iter.ids_and_values() {
/// con_bag.push((i, value / 2));
/// }
/// });
/// }
/// });
///
/// let vec = con_bag.into_inner();
/// for (i, value) in vec.into_iter() {
/// assert_eq!(i, value as usize);
/// }
/// ```
///
/// **B. When order does not matter**
///
/// Alternatively, if the order does not matter, we can create an unordered version of the concurrent iterator.
/// We can directly create one using `into_con_iter_x` on the source type.
/// Alternatively, we can convert any ordered concurrent iterator any time by calling `into_con_iter_x`.
/// In the following, we use an unordered version, since we are not interested in the indices of elements
/// while computing a parallel sum.
///
/// ```rust
/// use orx_concurrent_iter::*;
///
/// let num_threads = 8;
///
/// let seq_iter = (0..1024).map(|x| x * 2).into_iter();
/// let con_iter = seq_iter.into_con_iter_x(); // directly into x
/// // let con_iter = seq_iter.into_con_iter().into_con_iter_x(); // or alternatively
///
/// let sum: i32 = std::thread::scope(|s| {
/// let mut handles: Vec<_> = vec![];
/// for _ in 0..num_threads {
/// // as expected, `ids_and_values` method is not available
/// // but we have `values`
/// handles.push(s.spawn(|| con_iter.values().sum::<i32>()));
/// }
///
/// handles.into_iter().map(|x| x.join().expect("-")).sum()
/// });
///
/// assert_eq!(sum, (0..1024).sum::<i32>() * 2)
/// ```
#[inline(always)]
fn into_con_iter_x(self) -> impl ConcurrentIterX<Item = Self::Item>
where
Self: Sized,
{
self
}
/// Advances the iterator and returns the next value together with its enumeration index.
///
/// Returns [None] when iteration is finished.
///
/// # Examples
///
/// ```rust
/// use orx_concurrent_iter::*;
/// use orx_concurrent_bag::*;
///
/// fn to_str(num: usize) -> String {
/// num.to_string()
/// }
///
/// let (num_threads, chunk_size) = (4, 32);
/// let strings: Vec<_> = (0..1024).map(to_str).collect();
/// let bag = ConcurrentBag::new();
///
/// let iter = strings.con_iter();
/// std::thread::scope(|s| {
/// for _ in 0..num_threads {
/// s.spawn(|| {
/// while let Some(next) = iter.next_id_and_value() {
/// // idx is the original position in `characters`
/// assert_eq!(next.value, &to_str(next.idx));
/// bag.push((next.idx, next.value.len()));
/// }
/// });
/// }
/// });
///
/// let mut outputs: Vec<_> = bag.into_inner().into();
/// outputs.sort_by_key(|x| x.0); // sort to original order
/// for (x, y) in outputs.iter().map(|x| x.1).zip(&strings) {
/// assert_eq!(x, y.len());
/// }
/// ```
fn next_id_and_value(&self) -> Option<Next<Self::Item>>;
/// Advances the iterator `chunk_size` times and returns an iterator of at most `chunk_size` consecutive next values.
/// Further, the beginning enumeration index of the yielded values is returned.
///
/// This method:
/// * returns an iterator of `chunk_size` elements if there exist sufficient elements left in the iteration, or
/// * it might return an iterator of `m < chunk_size` elements if there exists only `m` elements left, or
/// * it might return None, it will never return Some of an empty iterator.
///
/// This call would be equivalent to calling `next_id_and_value` method `chunk_size` times in a single-threaded execution.
/// However, calling `next` method `chunk_size` times in a concurrent execution does not guarantee to return `chunk_size` consecutive elements.
/// On the other hand, `next_chunk` guarantees that it returns consecutive elements, preventing any intermediate calls.
///
/// More importantly, this is an important performance optimization feature that enables
/// * reducing the number of atomic updates,
/// * avoiding performance degradation by false sharing if the fetched inputs will be processed and written to a shared memory (see [`ConcurrentBag` performance notes](https://docs.rs/orx-concurrent-bag/latest/orx_concurrent_bag/#section-performance-notes)).
///
/// # Examples
///
/// Note that `next_chunk` method returns a [`NextChunk`].
/// Further, [`NextChunk::values`] is a regular `ExactSizeIterator` which might yield at most `chunk_size` elements.
/// Note that the iterator will never be empty.
/// Whenever the concurrent iterator is used up, `next_chunk` method, similar to `next`, will return `None`.
///
/// ```rust
/// use orx_concurrent_iter::*;
/// use orx_concurrent_bag::*;
///
/// fn to_str(num: usize) -> String {
/// num.to_string()
/// }
///
/// let (num_threads, chunk_size) = (4, 32);
/// let strings: Vec<_> = (0..1024).map(to_str).collect();
/// let bag = ConcurrentBag::new();
///
/// let iter = strings.con_iter();
/// std::thread::scope(|s| {
/// for _ in 0..num_threads {
/// s.spawn(|| {
/// while let Some(chunk) = iter.next_chunk(chunk_size) {
/// for (i, value) in chunk.values.enumerate() {
/// // idx is the original position in `characters`
/// let idx = chunk.begin_idx + i;
/// assert_eq!(value, &to_str(idx));
/// bag.push((idx, value.len()));
/// }
/// }
/// });
/// }
/// });
///
/// let mut outputs: Vec<_> = bag.into_inner().into();
/// outputs.sort_by_key(|x| x.0); // sort to original order
/// for (x, y) in outputs.iter().map(|x| x.1).zip(&strings) {
/// assert_eq!(x, y.len());
/// }
/// ```
fn next_chunk(
&self,
chunk_size: usize,
) -> Option<NextChunk<Self::Item, impl ExactSizeIterator<Item = Self::Item>>>;
/// Returns an `Iterator` over the ids and values of elements of the concurrent iterator.
///
/// Note that `values` method can be called concurrently from multiple threads to create multiple local-to-thread regular `Iterator`s.
/// However, each of these iterators will be connected in the sense that:
/// * all iterators will be aware of the progress by the other iterators;
/// * each element will be yielded exactly once.
///
/// The iterator's `next` method does nothing but call the `next_id_and_value`; this iterator is only to allow for using `for` loops directly.
///
/// # Examples
///
/// ```rust
/// use orx_concurrent_iter::*;
/// use orx_concurrent_bag::*;
///
/// fn to_str(num: usize) -> String {
/// num.to_string()
/// }
///
/// let num_threads = 4;
/// let strings: Vec<_> = (0..1024).map(to_str).collect();
/// let bag = ConcurrentBag::new();
///
/// let iter = strings.con_iter();
/// std::thread::scope(|s| {
/// for _ in 0..num_threads {
/// s.spawn(|| {
/// for (idx, value) in iter.ids_and_values() {
/// // idx is the original position in `characters`
/// assert_eq!(value, &to_str(idx));
/// bag.push((idx, value.len()));
/// }
/// });
/// }
/// });
///
/// let mut outputs: Vec<_> = bag.into_inner().into();
/// outputs.sort_by_key(|x| x.0); // sort to original order
/// for (x, y) in outputs.iter().map(|x| x.1).zip(&strings) {
/// assert_eq!(x, y.len());
/// }
/// ```
fn ids_and_values(&self) -> ConIterIdsAndValues<Self>
where
Self: Sized,
{
self.into()
}
/// Applies the function `fun` to each element of the iterator concurrently.
///
/// Note that this method might be called on the same iterator at the same time from different threads.
/// The iterator guarantees that the function is applied to each element exactly once.
///
/// At each iteration of the loop, this method pulls `chunk_size` elements from the iterator.
/// Under the hood, this method will loop using the buffered chunks iterator, pulling items as batches of the given `chunk_size`.
///
/// # Panics
///
/// Panics if `chunk_size` is zero; chunk size is required to be strictly positive.
///
/// # Examples
///
/// ```rust
/// use orx_concurrent_iter::*;
/// use orx_concurrent_bag::*;
///
/// let (num_threads, chunk_size) = (4, 2);
/// let characters = vec!['0', '1', '2', '3', '4', '5', '6', '7'];
///
/// let iter = characters.con_iter();
/// let bag = ConcurrentBag::new();
///
/// std::thread::scope(|s| {
/// for _ in 0..num_threads {
/// s.spawn(|| {
/// iter.for_each(chunk_size, |c| {
/// bag.push(c.to_digit(10).unwrap());
/// });
/// });
/// }
/// });
///
/// // parent concurrent iterator is completely consumed
/// assert!(iter.next().is_none());
///
/// let sum: u32 = bag.into_inner().iter().sum();
/// assert_eq!(sum, (0..8).sum());
/// ```
fn for_each<Fun: FnMut(Self::Item)>(&self, chunk_size: usize, fun: Fun)
where
Self: Sized,
{
default_fns::for_each::for_each(self, chunk_size, fun);
}
/// Applies the function `fun` to each index and corresponding element of the iterator concurrently.
///
/// Note that this method might be called on the same iterator at the same time from different threads.
/// The iterator guarantees that the function is applied to each element exactly once.
///
/// At each iteration of the loop, this method pulls `chunk_size` elements from the iterator.
/// Under the hood, this method will loop using the buffered chunks iterator, pulling items as batches of the given `chunk_size`.
///
/// # Panics
///
/// Panics if `chunk_size` is zero; chunk size is required to be strictly positive.
///
/// # Examples
///
/// ```rust
/// use orx_concurrent_iter::*;
/// use orx_concurrent_bag::*;
///
/// let (num_threads, chunk_size) = (4, 2);
/// let characters = vec!['0', '1', '2', '3', '4', '5', '6', '7'];
///
/// let iter = characters.con_iter();
/// let bag = ConcurrentBag::new();
///
/// std::thread::scope(|s| {
/// for _ in 0..num_threads {
/// s.spawn(|| {
/// iter.enumerate_for_each(chunk_size, |i, c| {
/// let expected_value = char::from_digit(i as u32, 10).unwrap();
/// assert_eq!(c, &expected_value);
///
/// bag.push(c.to_digit(10).unwrap());
/// });
/// });
/// }
/// });
///
/// // parent concurrent iterator is completely consumed
/// assert!(iter.next().is_none());
///
/// let sum: u32 = bag.into_inner().iter().sum();
/// assert_eq!(sum, (0..8).sum());
/// ```
fn enumerate_for_each<Fun: FnMut(usize, Self::Item)>(&self, chunk_size: usize, fun: Fun)
where
Self: Sized,
{
default_fns::for_each::for_each_with_ids(self, chunk_size, fun)
}
/// Creates an iterator which pulls elements from this iterator as chunks of the given `chunk_size`.
///
/// Returned iterator is a regular `Iterator`, except that it is linked to the concurrent iterator and pulls its elements concurrently from the parent iterator.
/// The `next` call of the buffered iterator returns `None` if the concurrent iterator is consumed.
/// Otherwise, it returns a [`NextChunk`] which is composed of two values:
/// * `begin_idx`: the index in the original source data, or concurrent iterator, of the first element of the pulled chunk,
/// * `values`: an `ExactSizeIterator` containing at least 1 and at most `chunk_size` consecutive elements pulled from the original source data.
///
/// Iteration in chunks is allocation free whenever possible; for instance, when the source data is a vector, a slice or an array, etc. with known size.
/// On the other hand, when the source data is an arbitrary `Iterator`, iteration in chunks requires a buffer to write the chunk of pulled elements.
///
/// This method is memory efficient in these situations.
/// It allocates a buffer of `chunk_size` only once when created, only if the source data requires it.
/// This buffer is used over and over until the concurrent iterator is consumed.
///
/// # Panics
///
/// Panics if `chunk_size` is zero; chunk size is required to be strictly positive.
///
/// # Example
///
/// Example below illustrates a parallel sum operation.
/// Entire iteration requires an allocation (4 threads) * (16 chunk size) = 64 elements.
///
/// ```rust
/// use orx_concurrent_iter::*;
///
/// let (num_threads, chunk_size) = (4, 64);
/// let iter = (0..16384).map(|x| x * 2).into_con_iter();
///
/// let sum = std::thread::scope(|s| {
/// (0..num_threads)
/// .map(|_| {
/// s.spawn(|| {
/// let mut sum = 0;
/// let mut buffered = iter.buffered_iter(chunk_size);
/// while let Some(chunk) = buffered.next() {
/// sum += chunk.values.sum::<usize>();
/// }
/// sum
/// })
/// })
/// .map(|x| x.join().expect("-"))
/// .sum::<usize>()
/// });
///
/// let expected = 16384 * 16383;
/// assert_eq!(sum, expected);
/// ```
///
/// # `buffered_iter` and `next_chunk`
///
/// When iterating over single elements using `next` or `values`, the concurrent iterator just yields the element without requiring any allocation.
///
/// When iterating as chunks, concurrent iteration might or might not require an allocation.
/// * For instance, no allocation is required if the source data of the iterator is a vector, a slice or an array, etc.
/// * On the other hand, an allocation of `chunk_size` is required if the source data is an any `Iterator` without further type information.
///
/// Pulling elements as chunks using the `next_chunk` or `buffered_iter` methods differ in the latter case as follows:
/// * `next_chunk` will allocate a vector of `next_chunk` elements every time it is called;
/// * `buffered_iter` will allocate a vector of `next_chunk` only once on construction, and this buffer will be used over and over until the concurrent iterator is consumed leading to negligible allocation.
///
/// Therefore, it is safer to always use `buffered_iter`, unless we need to keep changing the `chunk_size` through iteration, which is a rare scenario.
///
/// In a typical use case where we concurrently iterate over the elements of the iterator using `num_threads` threads:
/// * we will create `num_threads` buffered iterators; i.e., we will call `buffered_iter` once from each thread,
/// * each thread will allocate a vector of `chunk_size` capacity.
///
/// In total, the iteration will use an additional memory of `num_threads * chunk_size`.
/// Note that the amount of allocation is not a function of the length of the source data.
/// Assuming the length will be large in a scenario requiring parallel iteration, the allocation can be considered to be very small.
fn buffered_iter(&self, chunk_size: usize) -> BufferedIter<Self::Item, Self::BufferedIter> {
BufferedIter::new(Self::BufferedIter::new(chunk_size), self)
}
}