orderly_allocator/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
#![doc = include_str!("../README.md")]
#![no_std]
extern crate alloc;
use {
::alloc::collections::{BTreeMap, BTreeSet},
::core::{cmp::Ordering, error::Error, fmt, num::NonZero, ops::Range},
};
type Size = u32;
type Location = Size;
/// Metadata containing information about an allocation
///
/// This is a small `Copy` type. It also provides a niche, so that
/// `Option<Allocation>` has the same size as `Allocation`.
/// ```
/// # use {::core::mem::size_of, ::orderly_allocator::Allocation};
/// assert_eq!(size_of::<Allocation>(), size_of::<u64>());
/// assert_eq!(size_of::<Option<Allocation>>(), size_of::<Allocation>());
/// ```
#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash, Ord, PartialOrd)]
pub struct Allocation {
/// The location of this allocation within the buffer
pub offset: Location,
/// The size of this allocation
pub size: NonZero<Size>,
}
impl Allocation {
/// Get the offset of the allocation
///
/// This is just a wrapper for `allocation.offset` for symmetry with `size`.
pub fn offset(&self) -> Location {
self.offset
}
/// Get the size of the allocation
///
/// This is just sugar for `allocation.size.get()`.
pub fn size(&self) -> Size {
self.size.get()
}
/// Get a [`Range<usize>`] from `offset` to `offset + size`
///
/// This can be used to directly index a buffer.
///
/// For example:
/// ```ignore
/// # use {::core::num::NonZero, ::orderly_allocator::Allocation};
/// let buffer: Vec<usize> = (0..100).collect();
/// let allocation = Allocation {
/// offset: 25,
/// size: NonZero::new(4).unwrap()
/// };
///
/// let region = &buffer[allocation.range()];
///
/// assert_eq!(region, &[25, 26, 27, 28]);
/// ```
pub fn range(&self) -> Range<usize> {
(self.offset as usize)..((self.offset + self.size.get()) as usize)
}
}
/// A super-simple soft-realtime allocator for managing an external pool of
/// memory
#[derive(Clone)]
pub struct Allocator {
/// An ordered collection of free-regions, sorted primarily by size, then by
/// location
free: BTreeSet<FreeRegion>,
/// An ordered collection of free-regions, sorted by location
location_map: BTreeMap<Location, NonZero<Size>>,
/// The total capacity
capacity: NonZero<Size>,
/// The amount of free memory
available: Size,
}
// This type has an explicit implementation of Ord, since we rely on properties
// of its behaviour to find and select free regions.
#[derive(PartialEq, Eq, Copy, Clone, Debug)]
struct FreeRegion {
location: Location,
size: NonZero<Size>,
}
impl PartialOrd for FreeRegion {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl Ord for FreeRegion {
fn cmp(&self, other: &Self) -> Ordering {
use Ordering as O;
match (
self.size.cmp(&other.size),
self.location.cmp(&other.location),
) {
(O::Equal, O::Equal) => O::Equal,
(O::Equal, O::Less) | (O::Less, _) => O::Less,
(O::Equal, O::Greater) | (O::Greater, _) => O::Greater,
}
}
}
impl Allocator {
/// Create a new allocator to manage a pool of memory
///
/// Panics:
/// - Panics if `capacity == 0`
pub fn new(capacity: Size) -> Self {
let capacity = NonZero::new(capacity).expect("`capacity == 0`");
let mut allocator = Allocator {
free: BTreeSet::new(),
location_map: BTreeMap::new(),
capacity,
available: capacity.get(),
};
allocator.reset();
allocator
}
/// Try to allocate a region with the provided size
///
/// Uses a *best-fit* strategy, and returns [`Allocation`]s with arbitrary
/// alignment.
///
/// Returns `None` if:
/// - `size == 0`, or
/// - `size + 1` overflows.
pub fn alloc(&mut self, size: Size) -> Option<Allocation> {
self.alloc_with_align(size, 1)
}
/// Try to allocate a region with the provided size & alignment
///
/// Implements the following strategy (not quite *best-fit*):
/// - Search for a region with at least `size + align - 1`, and then truncate
/// the start of the region such that alignment is reached.
///
/// This is more prone to causing fragmentation compared to an unaligned
/// [`alloc`](Self::alloc).
///
/// Returns `None` if:
/// - there are no free-regions with `size + align - 1` available space, or
/// - `size == 0`, or
/// - `align == 0`, or
/// - `size + align` overflows.
pub fn alloc_with_align(
&mut self,
size: Size,
align: Size,
) -> Option<Allocation> {
let size = NonZero::new(size)?;
let align = NonZero::new(align)?;
let FreeRegion {
location: mut free_region_location,
size: free_region_size,
} = self.find_free_region(size.checked_add(align.get() - 1)?)?;
self.remove_free_region(free_region_location, free_region_size);
let mut free_region_size = free_region_size.get();
if let Some(misalignment) =
NonZero::new((align.get() - (free_region_location % align)) % align)
{
self.insert_free_region(free_region_location, misalignment);
free_region_location += misalignment.get();
free_region_size -= misalignment.get();
}
if let Some(size_leftover) = NonZero::new(free_region_size - size.get()) {
self
.insert_free_region(free_region_location + size.get(), size_leftover);
}
self.available -= size.get();
Some(Allocation {
size,
offset: free_region_location,
})
}
/// Free the given allocation
///
/// # Panics
///
/// - May panic if the allocation's location gets freed twice, without first
/// being re-allocated.
///
/// Note: This panic will not catch all double frees.
pub fn free(&mut self, alloc: Allocation) {
let mut free_region = FreeRegion {
location: alloc.offset,
size: alloc.size,
};
// coalesce
{
if let Some(FreeRegion { location, size }) =
self.previous_free_region(alloc.offset)
{
if location + size.get() == free_region.location {
self.remove_free_region(location, size);
free_region.location = location;
// note: this unwrap is ok because the sum of all free-regions cannot
// be larger than the total size of the allocator; which we know is
// some `Size`.
free_region.size = free_region.size.checked_add(size.get()).unwrap();
}
};
if let Some(FreeRegion { location, size }) =
self.following_free_region(alloc.offset)
{
if free_region.location + free_region.size.get() == location {
self.remove_free_region(location, size);
// note: this unwrap is ok because the sum of all free-regions cannot
// be larger than the total size of the allocator; which we know is
// some `Size`.
free_region.size = free_region.size.checked_add(size.get()).unwrap();
}
}
}
self.insert_free_region(free_region.location, free_region.size);
self.available += alloc.size.get();
}
/// Free ***all*** allocations
pub fn reset(&mut self) {
self.free.clear();
self.location_map.clear();
self.available = self.capacity.get();
self.insert_free_region(0, self.capacity);
}
/// Add new free space at the end of the allocator
///
/// Returns `Err(Overflow)` if `self.capacity + additional` would overflow.
pub fn grow_capacity(&mut self, additional: Size) -> Result<(), Overflow> {
let Some(additional) = NonZero::new(additional) else {
return Ok(()); // `additional` is zero, so do nothing
};
let current_capacity = self.capacity;
let Some(new_capacity) = current_capacity.checked_add(additional.get())
else {
return Err(Overflow {
current_capacity,
additional,
});
};
self.capacity = new_capacity;
self.free(Allocation {
offset: current_capacity.get(),
size: additional,
});
Ok(())
}
/// Try to re-size an existing allocation in-place
///
/// Will not change the offset of the allocation and tries to expand the
/// allocation to the right if there is sufficient free space.
///
/// Returns:
/// - `Ok(Allocation)` on success.
/// - `Err(InsufficientSpace)` if there is not enough available space
/// to expand the allocation to `new_size`. In this case, the existing
/// allocation is left untouched.
pub fn try_reallocate(
&mut self,
alloc: Allocation,
new_size: Size,
) -> Result<Allocation, ReallocateError> {
let Some(new_size) = NonZero::new(new_size) else {
return Err(ReallocateError::Invalid);
};
match new_size.cmp(&alloc.size) {
Ordering::Greater => {
let required_additional = NonZero::new(new_size.get() - alloc.size())
.unwrap_or_else(|| unreachable!());
// find the next free-region;
let Some(next_free) = self.following_free_region(alloc.offset) else {
return Err(ReallocateError::InsufficientSpace {
required_additional,
available: 0,
});
};
// Check that the free-region we found is actually contiguous with our
// allocation, and that it has enough space
if next_free.location != alloc.offset + alloc.size() {
return Err(ReallocateError::InsufficientSpace {
required_additional,
available: 0,
});
}
if next_free.size < required_additional {
return Err(ReallocateError::InsufficientSpace {
required_additional,
available: next_free.size.get(),
});
}
// all good, take what we need and return the rest
let new_alloc = Allocation {
offset: alloc.offset,
size: new_size,
};
self.remove_free_region(next_free.location, next_free.size);
self.insert_free_region(
new_alloc.offset + new_alloc.size(),
NonZero::new(next_free.size.get() - required_additional.get())
.unwrap_or_else(|| unreachable!()),
);
self.available -= required_additional.get();
Ok(new_alloc)
},
Ordering::Less => {
// free the additional space
let additional = NonZero::new(alloc.size() - new_size.get())
.unwrap_or_else(|| unreachable!());
self.free(Allocation {
offset: alloc.offset + alloc.size() - additional.get(),
size: additional,
});
Ok(Allocation {
offset: alloc.offset,
size: new_size,
})
},
Ordering::Equal => {
// do nothing
Ok(alloc)
},
}
}
/// Get the total capacity of the pool
pub fn capacity(&self) -> Size {
self.capacity.get()
}
/// Get the total available memory in this pool
///
/// Note: The memory may be fragmented, so it may not be possible to allocate
/// an object of this size.
pub fn total_available(&self) -> Size {
self.available
}
/// Get the size of the largest available memory region in this pool
pub fn largest_available(&self) -> Size {
self.free.last().map_or(0, |region| region.size.get())
}
/// Returns true if there are no allocations
pub fn is_empty(&self) -> bool {
self.capacity.get() == self.available
}
/// Returns an iterator over the unallocated regions
///
/// This should be used **only** for gathering metadata about the internal
/// state of the allocator for debugging purposes.
///
/// You must not use this instead of allocating; subsequent calls to `alloc`
/// will freely allocate from the reported regions.
pub fn report_free_regions(
&self,
) -> impl Iterator<Item = Allocation> + use<'_> {
self.free.iter().map(|free_region| Allocation {
offset: free_region.location,
size: free_region.size,
})
}
/// Try to find a region with at least `size`
fn find_free_region(&mut self, size: NonZero<Size>) -> Option<FreeRegion> {
self
.free
.range(FreeRegion { size, location: 0 }..)
.copied()
.next()
}
/// Get the first free-region before `location`
fn previous_free_region(&self, location: Location) -> Option<FreeRegion> {
self
.location_map
.range(..location)
.next_back()
.map(|(&location, &size)| FreeRegion { location, size })
}
/// Get the first free-region after `location`
fn following_free_region(&self, location: Location) -> Option<FreeRegion> {
use ::core::ops::Bound as B;
self
.location_map
.range((B::Excluded(location), B::Unbounded))
.next()
.map(|(&location, &size)| FreeRegion { location, size })
}
/// remove a region from the internal free lists
fn remove_free_region(&mut self, location: Location, size: NonZero<Size>) {
self.location_map.remove(&location);
let region_existed = self.free.remove(&FreeRegion { location, size });
assert!(
region_existed,
"tried to remove a FreeRegion which did not exist: {:?}",
FreeRegion { location, size }
);
}
/// add a region to the internal free lists
fn insert_free_region(&mut self, location: Location, size: NonZero<Size>) {
self.free.insert(FreeRegion { location, size });
let existing_size = self.location_map.insert(location, size);
assert!(
existing_size.is_none(),
"Double free. Tried to add {new:?}, but {existing:?} was already there",
new = FreeRegion { location, size },
existing = FreeRegion {
location,
size: existing_size.unwrap_or_else(|| unreachable!())
}
)
}
}
impl fmt::Debug for Allocator {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Allocator")
.field("capacity", &self.capacity)
.field("total_available", &self.available)
.field("largest_available", &self.largest_available())
.finish()
}
}
#[derive(Debug, Copy, Clone)]
pub struct Overflow {
pub current_capacity: NonZero<Size>,
pub additional: NonZero<Size>,
}
impl Error for Overflow {}
impl fmt::Display for Overflow {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_fmt(format_args!(
"Overflow Error: Allocator with capacity {} could not grow by additional {}.",
self.current_capacity, self.additional
))
}
}
#[derive(Debug, Copy, Clone)]
pub enum ReallocateError {
InsufficientSpace {
required_additional: NonZero<Size>,
available: Size,
},
Invalid,
}
impl Error for ReallocateError {}
impl fmt::Display for ReallocateError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
ReallocateError::InsufficientSpace {
required_additional,
available,
} => f.write_fmt(format_args!(
"InsufficientSpace Error: Unable to expand allocation: \
required_additional:{required_additional}, available:{available}."
)),
ReallocateError::Invalid => {
f.write_str("Invalid allocation or `new_size` was 0")
},
}
}
}