1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
#![doc = include_str!("../README.md")]
#![no_std]
extern crate alloc;
use {
::alloc::collections::{BTreeMap, BTreeSet},
::core::{cmp::Ordering, fmt, num::NonZero},
};
type Size = u32;
type Location = Size;
/// Metadata containing information about an allocation
#[derive(PartialEq, Eq, Copy, Clone, Debug)]
pub struct Allocation {
/// The location of this allocation within the buffer
pub offset: Location,
/// The size of this allocation
pub size: NonZero<Size>,
}
/// A super-simple fast soft-realtime allocator for managing an external pool
/// of memory
///
/// Since the pool of memory it manages is external, it could be useful as a
/// suballocator for e.g. a GPU buffer.
///
/// Has worst-case *O(log(n))* performance for `alloc` & `free`, but provides a
/// *best-fit* search strategy & immediately coalesces on `free` resulting in
/// low fragmentation.
///
/// The *O(log(n))* performance characteristics are due to using BTrees
/// internally. So, despite the *temporal-complexity*, expect excellent
/// real-world performance; Rust's BTree implementation uses a branching factor
/// of 11. This means even if the allocator were in a state where it had
/// ~100,000 separate free-regions, a worst-case lookup will traverse only 5
/// tree nodes.
#[derive(Clone)]
pub struct Allocator {
/// An ordered collection of free-regions, sorted primarily by size, then by
/// location
free: BTreeSet<FreeRegion>,
/// An ordered collection of free-regions, sorted by location
location_map: BTreeMap<Location, NonZero<Size>>,
/// The total capacity
capacity: NonZero<Size>,
/// The amount of free memory
available: Size,
}
// This type has a special implementation of Ord
#[derive(PartialEq, Eq, Copy, Clone, Debug)]
struct FreeRegion {
location: Location,
size: NonZero<Size>,
}
impl PartialOrd for FreeRegion {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl Ord for FreeRegion {
fn cmp(&self, other: &Self) -> Ordering {
use Ordering as O;
match (
self.size.cmp(&other.size),
self.location.cmp(&other.location),
) {
(O::Equal, O::Equal) => O::Equal,
(O::Equal, O::Less) | (O::Less, _) => O::Less,
(O::Equal, O::Greater) | (O::Greater, _) => O::Greater,
}
}
}
impl Allocator {
/// Create a new allocator to manage a pool of memory
///
/// Panics:
/// - Panics if `capacity == 0`
pub fn new(capacity: Size) -> Self {
let capacity = NonZero::new(capacity).expect("`capacity == 0`");
let mut allocator = Allocator {
free: BTreeSet::new(),
location_map: BTreeMap::new(),
capacity,
available: capacity.get(),
};
allocator.reset();
allocator
}
/// Try to allocate a region with the provided size
///
/// Uses a *best-fit* strategy, and returns [`Allocation`]s with arbitrary
/// alignment.
///
/// Returns `None` if:
/// - `size == 0`, or
/// - `size + 1` overflows.
pub fn alloc(&mut self, size: Size) -> Option<Allocation> {
self.alloc_with_align(size, 1)
}
/// Try to allocate a region with the provided size & alignment
///
/// Implements the following strategy (not quite *best-fit*):
/// - Search for a region with at least `size + align - 1`, and then truncate
/// the start of the region such that alignment is reached.
///
/// This is more prone to causing fragmentation compared to an unaligned
/// [`alloc`](Self::alloc).
///
/// Returns `None` if:
/// - there are no free-regions with `size + align - 1` available space, or
/// - `size == 0`, or
/// - `align == 0`, or
/// - `size + align` overflows.
pub fn alloc_with_align(
&mut self,
size: Size,
align: Size,
) -> Option<Allocation> {
let size = NonZero::new(size)?;
let align = NonZero::new(align)?;
let FreeRegion {
location: mut free_region_location,
size: free_region_size,
} = self.find_free_region(size.checked_add(align.get() - 1)?)?;
self.remove_free_region(free_region_location, free_region_size);
let mut free_region_size: u32 = free_region_size.get();
if let Some(misalignment) = NonZero::new(free_region_location % align) {
self.insert_free_region(free_region_location, misalignment);
free_region_location += misalignment.get();
free_region_size -= misalignment.get();
}
if let Some(size_leftover) = NonZero::new(free_region_size - size.get()) {
self
.insert_free_region(free_region_location + size.get(), size_leftover);
}
self.available -= size.get();
Some(Allocation {
size,
offset: free_region_location,
})
}
/// Free the given allocation
///
/// # Panics
///
/// - May panic if the allocation's location gets freed twice, without first
/// being re-allocated.
///
/// Note: This panic will not catch all double frees.
pub fn free(&mut self, alloc: Allocation) {
let mut free_region = FreeRegion {
location: alloc.offset,
size: alloc.size,
};
// coalesce
{
if let Some(FreeRegion { location, size }) =
self.previous_free_region(alloc.offset)
{
if location + size.get() == free_region.location {
self.remove_free_region(location, size);
free_region.location = location;
// note: this unwrap is ok because the sum of all free-regions cannot
// be larger than the total size of the allocator; which we know is
// some `Size`.
free_region.size = free_region.size.checked_add(size.get()).unwrap();
}
};
if let Some(FreeRegion { location, size }) =
self.following_free_region(alloc.offset)
{
if free_region.location + free_region.size.get() == location {
self.remove_free_region(location, size);
// note: this unwrap is ok because the sum of all free-regions cannot
// be larger than the total size of the allocator; which we know is
// some `Size`.
free_region.size = free_region.size.checked_add(size.get()).unwrap();
}
}
}
self.insert_free_region(free_region.location, free_region.size);
self.available += alloc.size.get();
}
/// Free ***all*** allocations
pub fn reset(&mut self) {
self.free.clear();
self.location_map.clear();
self.available = self.capacity.get();
self.insert_free_region(0, self.capacity);
}
/// Get the total capacity of the pool
pub fn capacity(&self) -> Size {
self.capacity.get()
}
/// Get the total available memory in this pool
///
/// Note: The memory may be fragmented, so it may not be possible to allocate
/// an object of this size.
pub fn total_available(&self) -> Size {
self.available
}
/// Get the size of the largest available memory region in this pool
pub fn largest_available(&self) -> Size {
self.free.last().map_or(0, |region| region.size.get())
}
/// Returns true if there are no allocations
pub fn is_empty(&self) -> bool {
self.capacity.get() == self.available
}
/// Try to find a region with at least `size`
fn find_free_region(&mut self, size: NonZero<Size>) -> Option<FreeRegion> {
self
.free
.range(FreeRegion { size, location: 0 }..)
.copied()
.next()
}
/// Get the first free-region before `location`
fn previous_free_region(&self, location: Location) -> Option<FreeRegion> {
self
.location_map
.range(..location)
.next_back()
.map(|(&location, &size)| FreeRegion { location, size })
}
/// Get the first free-region after `location`
fn following_free_region(&self, location: Location) -> Option<FreeRegion> {
use ::core::ops::Bound as B;
self
.location_map
.range((B::Excluded(location), B::Unbounded))
.next()
.map(|(&location, &size)| FreeRegion { location, size })
}
/// remove a region from the internal free lists
fn remove_free_region(&mut self, location: Location, size: NonZero<Size>) {
self.location_map.remove(&location);
let region_existed = self.free.remove(&FreeRegion { location, size });
assert!(
region_existed,
"tried to remove a FreeRegion which did not exist: {:?}",
FreeRegion { location, size }
);
}
/// add a region to the internal free lists
fn insert_free_region(&mut self, location: Location, size: NonZero<Size>) {
self.free.insert(FreeRegion { location, size });
let existing_size = self.location_map.insert(location, size);
assert!(
existing_size.is_none(),
"Double free. Tried to add {new:?}, but {existing:?} was already there",
new = FreeRegion { location, size },
existing = FreeRegion {
location,
size: existing_size.unwrap_or_else(|| unreachable!())
}
)
}
}
impl fmt::Debug for Allocator {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Allocator")
.field(&"capacity", &self.capacity)
.field(&"total_available", &self.available)
.field(&"largest_available", &self.largest_available())
.finish()
}
}