1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
//! This create implement compiletime ordering of locks into levels, [`L1`], [`L2`], [`L3`], [`L4`] and [`L5`].
//! In order to acquire a lock at level `i` only locks at level `i-1` or below may be held.
//!
//! If locks are alwayes acquired in level order on all threads, then one cannot have a deadlock
//! involving only acquireng locks.
//!
//! In the following example we create two [muteces](Mutex) at level [`L1`] and [`L2`] and lock them
//! in the propper order.
//! ```
//! use ordered_locks::{L1, L2, Mutex, CleanLockToken};
//! // Create value at lock level 0, this lock cannot be acquired while a level1 lock is heldt
//! let v1 = Mutex::<L1, _>::new(42);
//! // Create value at lock level 1
//! let v2 = Mutex::<L2, _>::new(43);
//! // Construct a token indicating that this thread does not hold any locks
//! let mut token = unsafe {CleanLockToken::new()};
//!
//! {
//! // We can aquire the locks for v1 and v2 at the same time
//! let mut g1 = v1.lock(token.token());
//! let (g1, token) = g1.token_split();
//! let mut g2 = v2.lock(token);
//! *g2 = 11;
//! *g1 = 12;
//! }
//! // Once the guards are dropped we can acquire other things
//! *v2.lock(token.token()) = 13;
//! ```
//!
//! In the following example we create two [muteces](Mutex) at level [`L1`] and [`L2`] and try to lock
//! the mutex at [`L1`] while already holding a [`Mutex`] at [`L2`] which failes to compile.
//! ```compile_fail
//! use ordered_locks::{L1, L2, Mutex, CleanLockToken};
//! // Create value at lock level 0, this lock cannot be acquired while a level1 lock is heldt
//! let v1 = Mutex::<L1, _>::new(42);
//! // Create value at lock level 1
//! let v2 = Mutex::<L2, _>::new(43);
//! // Construct a token indicating that this thread does not hold any locks
//! let mut clean_token = unsafe {CleanLockToken::new()};
//! let token = clean_token.token();
//!
//! // Try to aquire locks in the wrong order
//! let mut g2 = v2.lock(token);
//! let (g2, token) = g2.token_split();
//! let mut g1 = v1.lock(token); // shouldn't compile!
//! *g2 = 11;
//! *g1 = 12;
//! ```
use std::marker::PhantomData;
/// Lock level of a mutex
///
/// While a mutex of L1 is locked on a thread, only mutexes of L2 or higher may be locked.
/// This lock hierarchy prevents deadlocks from occurring. For a dead lock to occour
/// We need some thread TA to hold a resource RA, and request a resource RB, while
/// another thread TB holds RB, and requests RA. This is not possible with a lock
/// hierarchy either RA or RB must be on a level that the other.
///
/// At some point in time we would want Level to be replaced by usize, however
/// with current cont generics (rust 1.55), we cannot compare const generic arguments
/// so we are left with this mess.
pub trait Level {}
/// Indicate that the implementor is lower that the level O
pub trait Lower<O: Level>: Level {}
/// Lowest locking level, no locks can be on this level
#[derive(Debug)]
pub struct L0 {}
#[derive(Debug)]
pub struct L1 {}
#[derive(Debug)]
pub struct L2 {}
#[derive(Debug)]
pub struct L3 {}
#[derive(Debug)]
pub struct L4 {}
#[derive(Debug)]
pub struct L5 {}
impl Level for L0 {}
impl Level for L1 {}
impl Level for L2 {}
impl Level for L3 {}
impl Level for L4 {}
impl Level for L5 {}
impl Lower<L1> for L0 {}
impl Lower<L2> for L0 {}
impl Lower<L3> for L0 {}
impl Lower<L4> for L0 {}
impl Lower<L5> for L0 {}
impl Lower<L2> for L1 {}
impl Lower<L3> for L1 {}
impl Lower<L4> for L1 {}
impl Lower<L5> for L1 {}
impl Lower<L3> for L2 {}
impl Lower<L4> for L2 {}
impl Lower<L5> for L2 {}
impl Lower<L4> for L3 {}
impl Lower<L5> for L3 {}
impl Lower<L5> for L4 {}
/// Indicate that the implementor is higher that the level O
pub trait Higher<O: Level>: Level {}
impl<L1: Level, L2: Level> Higher<L2> for L1 where L2: Lower<L1> {}
/// While this exists only locks with a level higher than L, may be locked.
/// These tokens are carried around the call stack to indicate tho current locking level.
/// They have no size and should disappear at runtime.
pub struct LockToken<'a, L: Level>(PhantomData<&'a mut L>);
impl<'a, L: Level> LockToken<'a, L> {
/// Create a borrowed copy of self
pub fn token(&mut self) -> LockToken<'_, L> {
LockToken(Default::default())
}
/// Create a borrowed copy of self, on a higher level
pub fn downgrade<LC: Higher<L>>(&mut self) -> LockToken<'_, LC> {
LockToken(Default::default())
}
pub fn downgraded<LP: Lower<L>>(_: LockToken<'a, LP>) -> Self {
LockToken(Default::default())
}
}
/// Token indicating that there are no acquired locks while not borrowed.
pub struct CleanLockToken;
impl CleanLockToken {
/// Create a borrowed copy of self
pub fn token(&mut self) -> LockToken<'_, L0> {
LockToken(Default::default())
}
/// Create a borrowed copy of self, on a higher level
pub fn downgrade<L: Level>(&mut self) -> LockToken<'_, L> {
LockToken(Default::default())
}
/// Create a new instance
///
/// # Safety
///
/// This is safe to call as long as there are no currently acquired locks
/// in the thread/task, and as long as there are no other CleanLockToken
/// in the thread/task.
///
/// A CleanLockToken
pub unsafe fn new() -> Self {
CleanLockToken
}
}
/// A mutual exclusion primitive useful for protecting shared data
///
/// This mutex will block threads waiting for the lock to become available. The
/// mutex can also be statically initialized or created via a `new`
/// constructor. Each mutex has a type parameter which represents the data that
/// it is protecting. The data can only be accessed through the RAII guards
/// returned from `lock` and `try_lock`, which guarantees that the data is only
/// ever accessed when the mutex is locked.
#[derive(Debug)]
pub struct Mutex<L: Level, T> {
inner: std::sync::Mutex<T>,
_phantom: PhantomData<L>,
}
impl<L: Level, T: Default> Default for Mutex<L, T> {
fn default() -> Self {
Self {
inner: Default::default(),
_phantom: Default::default(),
}
}
}
impl<L: Level, T> Mutex<L, T> {
/// Creates a new mutex in an unlocked state ready for use
pub fn new(val: T) -> Self {
Self {
inner: std::sync::Mutex::new(val),
_phantom: Default::default(),
}
}
/// Acquires a mutex, blocking the current thread until it is able to do so.
///
/// This function will block the local thread until it is available to acquire the mutex.
/// Upon returning, the thread is the only thread with the mutex held.
/// An RAII guard is returned to allow scoped unlock of the lock. When the guard goes out of scope, the mutex will be unlocked.
pub fn lock<'a, LP: Lower<L> + 'a>(
&'a self,
lock_token: LockToken<'a, LP>,
) -> MutexGuard<'a, L, T> {
MutexGuard {
inner: self.inner.lock().unwrap(),
lock_token: LockToken::downgraded(lock_token),
}
}
/// Attempts to acquire this lock.
///
/// If the lock could not be acquired at this time, then `None` is returned.
/// Otherwise, an RAII guard is returned. The lock will be unlocked when the
/// guard is dropped.
///
/// This function does not block.
pub fn try_lock<'a, LP: Lower<L> + 'a>(
&'a self,
lock_token: LockToken<'a, LP>,
) -> Option<MutexGuard<'a, L, T>> {
match self.inner.try_lock() {
Ok(inner) => Some(MutexGuard {
inner,
lock_token: LockToken::downgraded(lock_token),
}),
Err(std::sync::TryLockError::Poisoned(_)) => panic!("Poised lock"),
Err(std::sync::TryLockError::WouldBlock) => None,
}
}
/// Consumes this Mutex, returning the underlying data.
pub fn into_inner(self) -> T {
self.inner.into_inner().unwrap()
}
}
/// An RAII implementation of a "scoped lock" of a mutex. When this structure is
/// dropped (falls out of scope), the lock will be unlocked.
///
/// The data protected by the mutex can be accessed through this guard via its
/// `Deref` and `DerefMut` implementations.
pub struct MutexGuard<'a, L: Level, T: ?Sized + 'a> {
inner: std::sync::MutexGuard<'a, T>,
lock_token: LockToken<'a, L>,
}
impl<'a, L: Level, T: ?Sized + 'a> MutexGuard<'a, L, T> {
/// Split the guard into two parts, the first a mutable reference to the held content
/// the second a [`LockToken`] that can be used for further locking
pub fn token_split(&mut self) -> (&mut T, LockToken<'_, L>) {
(&mut self.inner, self.lock_token.token())
}
}
impl<'a, L: Level, T: ?Sized + 'a> std::ops::Deref for MutexGuard<'a, L, T> {
type Target = T;
fn deref(&self) -> &Self::Target {
self.inner.deref()
}
}
impl<'a, L: Level, T: ?Sized + 'a> std::ops::DerefMut for MutexGuard<'a, L, T> {
fn deref_mut(&mut self) -> &mut Self::Target {
self.inner.deref_mut()
}
}
pub struct RwLock<L: Level, T> {
inner: std::sync::RwLock<T>,
_phantom: PhantomData<L>,
}
impl<L: Level, T: Default> Default for RwLock<L, T> {
fn default() -> Self {
Self {
inner: Default::default(),
_phantom: Default::default(),
}
}
}
/// A reader-writer lock
///
/// This type of lock allows a number of readers or at most one writer at any point in time.
/// The write portion of this lock typically allows modification of the underlying data (exclusive access)
/// and the read portion of this lock typically allows for read-only access (shared access).
///
/// The type parameter T represents the data that this lock protects. It is required that T satisfies
/// Send to be shared across threads and Sync to allow concurrent access through readers.
/// The RAII guards returned from the locking methods implement Deref (and DerefMut for the write methods)
/// to allow access to the contained of the lock.
impl<L: Level, T> RwLock<L, T> {
/// Creates a new instance of an RwLock<T> which is unlocked.
pub fn new(val: T) -> Self {
Self {
inner: std::sync::RwLock::new(val),
_phantom: Default::default(),
}
}
/// Consumes this RwLock, returning the underlying data.
pub fn into_inner(self) -> T {
self.inner.into_inner().unwrap()
}
/// Locks this RwLock with exclusive write access, blocking the current thread until it can be acquired.
/// This function will not return while other writers or other readers currently have access to the lock.
/// Returns an RAII guard which will drop the write access of this RwLock when dropped.
pub fn write<'a, LP: Lower<L> + 'a>(
&'a self,
lock_token: LockToken<'a, LP>,
) -> std::sync::LockResult<RwLockWriteGuard<'a, L, T>> {
Ok(RwLockWriteGuard {
inner: self.inner.write().unwrap(),
lock_token: LockToken::downgraded(lock_token),
})
}
/// Locks this RwLock with shared read access, blocking the current thread until it can be acquired.
///
/// The calling thread will be blocked until there are no more writers which hold the lock.
/// There may be other readers currently inside the lock when this method returns.
///
/// Note that attempts to recursively acquire a read lock on a RwLock when the current thread
/// already holds one may result in a deadlock.
///
/// Returns an RAII guard which will release this thread’s shared access once it is dropped.
pub fn read<'a, LP: Lower<L> + 'a>(
&'a self,
lock_token: LockToken<'a, LP>,
) -> RwLockReadGuard<'a, L, T> {
RwLockReadGuard {
inner: self.inner.read().unwrap(),
lock_token: LockToken::downgraded(lock_token),
}
}
}
/// RAII structure used to release the exclusive write access of a lock when dropped
pub struct RwLockWriteGuard<'a, L: Level, T> {
inner: std::sync::RwLockWriteGuard<'a, T>,
lock_token: LockToken<'a, L>,
}
impl<'a, L: Level, T> RwLockWriteGuard<'a, L, T> {
/// Split the guard into two parts, the first a mutable reference to the held content
/// the second a [`LockToken`] that can be used for further locking
pub fn token_split(&mut self) -> (&mut T, LockToken<'_, L>) {
(&mut self.inner, self.lock_token.token())
}
}
impl<'a, L: Level, T> std::ops::Deref for RwLockWriteGuard<'a, L, T> {
type Target = T;
fn deref(&self) -> &Self::Target {
self.inner.deref()
}
}
impl<'a, L: Level, T> std::ops::DerefMut for RwLockWriteGuard<'a, L, T> {
fn deref_mut(&mut self) -> &mut Self::Target {
self.inner.deref_mut()
}
}
/// RAII structure used to release the shared read access of a lock when dropped.
pub struct RwLockReadGuard<'a, L: Level, T> {
inner: std::sync::RwLockReadGuard<'a, T>,
lock_token: LockToken<'a, L>,
}
impl<'a, L: Level, T> RwLockReadGuard<'a, L, T> {
/// Split the guard into two parts, the first a reference to the held content
/// the second a [`LockToken`] that can be used for further locking
pub fn token_split(&mut self) -> (&T, LockToken<'_, L>) {
(&self.inner, self.lock_token.token())
}
}
impl<'a, L: Level, T> std::ops::Deref for RwLockReadGuard<'a, L, T> {
type Target = T;
fn deref(&self) -> &Self::Target {
self.inner.deref()
}
}
/// An asynchronous `Mutex`-like type.
///
/// This type acts similarly to [`std::sync::Mutex`], with two major
/// differences: `lock` is an async method so does not block, and the lock
/// guard is designed to be held across `.await` points.
#[cfg(feature = "tokio")]
#[derive(Debug)]
pub struct AsyncMutex<L: Level, T> {
inner: tokio::sync::Mutex<T>,
_phantom: PhantomData<L>,
}
#[cfg(feature = "tokio")]
impl<L: Level, T> AsyncMutex<L, T> {
/// Creates a new lock in an unlocked state ready for use.
pub fn new(val: T) -> Self {
Self {
inner: tokio::sync::Mutex::new(val),
_phantom: Default::default(),
}
}
// Locks this mutex, causing the current task to yield until the lock has been acquired.
// When the lock has been acquired, function returns a MutexGuard
pub async fn lock<'a, LP: Lower<L> + 'a>(
&'a self,
lock_token: LockToken<'a, LP>,
) -> AsyncMutexGuard<'a, L, T> {
AsyncMutexGuard {
inner: self.inner.lock().await,
lock_token: LockToken::downgraded(lock_token),
}
}
/// Attempts to acquire the lock, and returns TryLockError if the lock is currently held somewhere else.
///
/// The `lock_token` is held until the lock is released, to get a token for further locking
/// call [`AsyncMutexGuard::token_split`]
pub fn try_lock<'a, LP: Lower<L> + 'a>(
&'a self,
lock_token: LockToken<'a, LP>,
) -> Result<AsyncMutexGuard<'a, L, T>, tokio::sync::TryLockError> {
self.inner.try_lock().map(|inner| AsyncMutexGuard {
inner,
lock_token: LockToken::downgraded(lock_token),
})
}
/// Consumes this Mutex, returning the underlying data.
pub fn into_inner(self) -> T {
self.inner.into_inner()
}
}
#[cfg(feature = "tokio")]
impl<L: Level, T: Default> Default for AsyncMutex<L, T> {
fn default() -> Self {
Self {
inner: Default::default(),
_phantom: Default::default(),
}
}
}
/// A handle to a held `Mutex`. The guard can be held across any `.await` point
/// as it is [`Send`].
///
/// As long as you have this guard, you have exclusive access to the underlying
/// `T`. The guard internally borrows the `Mutex`, so the mutex will not be
/// dropped while a guard exists.
///
/// The lock is automatically released whenever the guard is dropped, at which
/// point `lock` will succeed yet again.
#[cfg(feature = "tokio")]
pub struct AsyncMutexGuard<'a, L: Level, T: ?Sized + 'a> {
inner: tokio::sync::MutexGuard<'a, T>,
lock_token: LockToken<'a, L>,
}
#[cfg(feature = "tokio")]
impl<'a, L: Level, T: ?Sized + 'a> AsyncMutexGuard<'a, L, T> {
/// Split the guard into two parts, the first a mutable reference to the held content
/// the second a [`LockToken`] that can be used for further locking
pub fn token_split(&mut self) -> (&mut T, LockToken<'_, L>) {
(&mut self.inner, self.lock_token.token())
}
}
#[cfg(feature = "tokio")]
impl<'a, L: Level, T: ?Sized + 'a> std::ops::Deref for AsyncMutexGuard<'a, L, T> {
type Target = T;
fn deref(&self) -> &Self::Target {
self.inner.deref()
}
}
#[cfg(feature = "tokio")]
impl<'a, L: Level, T: ?Sized + 'a> std::ops::DerefMut for AsyncMutexGuard<'a, L, T> {
fn deref_mut(&mut self) -> &mut Self::Target {
self.inner.deref_mut()
}
}
/// This function can only be called if no lock is held by the calling thread/task
#[inline]
pub fn check_no_locks(_: LockToken<'_, L0>) {}