1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
use std::sync::Arc;

use arrow::array::{ArrayRef, BooleanArray, BooleanBuilder, PrimitiveArray, PrimitiveBuilder};
use arrow::buffer::NullBuffer;
use arrow::datatypes::{ArrowPrimitiveType, Decimal128Type, UInt64Type};
use arrow::datatypes::{
    Date32Type, Float32Type, Float64Type, Int16Type, Int32Type, Int64Type, Int8Type, SchemaRef,
};
use arrow::record_batch::RecordBatch;
use snafu::ResultExt;

use crate::error::{self, ArrowSnafu, Result};
use crate::proto::stream::Kind;
use crate::reader::decode::boolean_rle::BooleanIter;
use crate::reader::decode::byte_rle::ByteRleIter;
use crate::reader::decode::float::FloatIter;
use crate::reader::decode::get_rle_reader;
use crate::schema::DataType;
use crate::stripe::Stripe;

use self::decimal::new_decimal_decoder;
use self::list::ListArrayDecoder;
use self::map::MapArrayDecoder;
use self::string::{new_binary_decoder, new_string_decoder};
use self::struct_decoder::StructArrayDecoder;
use self::timestamp::{new_timestamp_decoder, new_timestamp_instant_decoder};
use self::union::UnionArrayDecoder;

use super::column::{get_present_vec, Column};

mod decimal;
mod list;
mod map;
mod string;
mod struct_decoder;
mod timestamp;
mod union;

struct PrimitiveArrayDecoder<T: ArrowPrimitiveType> {
    iter: Box<dyn Iterator<Item = Result<T::Native>> + Send>,
    present: Option<Box<dyn Iterator<Item = bool> + Send>>,
}

impl<T: ArrowPrimitiveType> PrimitiveArrayDecoder<T> {
    pub fn new(
        iter: Box<dyn Iterator<Item = Result<T::Native>> + Send>,
        present: Option<Box<dyn Iterator<Item = bool> + Send>>,
    ) -> Self {
        Self { iter, present }
    }

    fn next_primitive_batch(
        &mut self,
        batch_size: usize,
        parent_present: Option<&[bool]>,
    ) -> Result<PrimitiveArray<T>> {
        let present = derive_present_vec(&mut self.present, parent_present, batch_size);

        match present {
            Some(present) => {
                let mut builder = PrimitiveBuilder::<T>::with_capacity(batch_size);
                for is_present in present {
                    if is_present {
                        // TODO: return as error instead
                        let val = self
                            .iter
                            .next()
                            .transpose()?
                            .expect("array less than expected length");
                        builder.append_value(val);
                    } else {
                        builder.append_null();
                    }
                }
                let array = builder.finish();
                Ok(array)
            }
            None => {
                let data = self
                    .iter
                    .by_ref()
                    .take(batch_size)
                    .collect::<Result<Vec<_>>>()?;
                let array = PrimitiveArray::<T>::from_iter_values(data);
                Ok(array)
            }
        }
    }
}

impl<T: ArrowPrimitiveType> ArrayBatchDecoder for PrimitiveArrayDecoder<T> {
    fn next_batch(
        &mut self,
        batch_size: usize,
        parent_present: Option<&[bool]>,
    ) -> Result<ArrayRef> {
        let array = self.next_primitive_batch(batch_size, parent_present)?;
        let array = Arc::new(array) as ArrayRef;
        Ok(array)
    }
}

type UInt64ArrayDecoder = PrimitiveArrayDecoder<UInt64Type>;
type Int64ArrayDecoder = PrimitiveArrayDecoder<Int64Type>;
type Int32ArrayDecoder = PrimitiveArrayDecoder<Int32Type>;
type Int16ArrayDecoder = PrimitiveArrayDecoder<Int16Type>;
type Int8ArrayDecoder = PrimitiveArrayDecoder<Int8Type>;
type Float32ArrayDecoder = PrimitiveArrayDecoder<Float32Type>;
type Float64ArrayDecoder = PrimitiveArrayDecoder<Float64Type>;
type DateArrayDecoder = PrimitiveArrayDecoder<Date32Type>; // TODO: does ORC encode as i64 or i32?

/// Wrapper around PrimitiveArrayDecoder to allow specifying the precision and scale
/// of the output decimal array.
struct DecimalArrayDecoder {
    precision: u8,
    scale: i8,
    inner: PrimitiveArrayDecoder<Decimal128Type>,
}

impl DecimalArrayDecoder {
    pub fn new(
        precision: u8,
        scale: i8,
        iter: Box<dyn Iterator<Item = Result<i128>> + Send>,
        present: Option<Box<dyn Iterator<Item = bool> + Send>>,
    ) -> Self {
        let inner = PrimitiveArrayDecoder::<Decimal128Type>::new(iter, present);
        Self {
            precision,
            scale,
            inner,
        }
    }
}

impl ArrayBatchDecoder for DecimalArrayDecoder {
    fn next_batch(
        &mut self,
        batch_size: usize,
        parent_present: Option<&[bool]>,
    ) -> Result<ArrayRef> {
        let array = self
            .inner
            .next_primitive_batch(batch_size, parent_present)?
            .with_precision_and_scale(self.precision, self.scale)
            .context(ArrowSnafu)?;
        let array = Arc::new(array) as ArrayRef;
        Ok(array)
    }
}

struct BooleanArrayDecoder {
    iter: Box<dyn Iterator<Item = Result<bool>> + Send>,
    present: Option<Box<dyn Iterator<Item = bool> + Send>>,
}

impl BooleanArrayDecoder {
    pub fn new(
        iter: Box<dyn Iterator<Item = Result<bool>> + Send>,
        present: Option<Box<dyn Iterator<Item = bool> + Send>>,
    ) -> Self {
        Self { iter, present }
    }
}

impl ArrayBatchDecoder for BooleanArrayDecoder {
    fn next_batch(
        &mut self,
        batch_size: usize,
        parent_present: Option<&[bool]>,
    ) -> Result<ArrayRef> {
        let present = derive_present_vec(&mut self.present, parent_present, batch_size);

        match present {
            Some(present) => {
                let mut builder = BooleanBuilder::with_capacity(batch_size);
                for is_present in present {
                    if is_present {
                        // TODO: return as error instead
                        let val = self
                            .iter
                            .next()
                            .transpose()?
                            .expect("array less than expected length");
                        builder.append_value(val);
                    } else {
                        builder.append_null();
                    }
                }
                let array = builder.finish();
                let array = Arc::new(array) as ArrayRef;
                Ok(array)
            }
            None => {
                let data = self
                    .iter
                    .by_ref()
                    .take(batch_size)
                    .collect::<Result<Vec<_>>>()?;
                let array = BooleanArray::from(data);
                let array = Arc::new(array) as ArrayRef;
                Ok(array)
            }
        }
    }
}

fn merge_parent_present(
    parent_present: &[bool],
    present: impl IntoIterator<Item = bool> + Send,
) -> Vec<bool> {
    // present must have len <= parent_present
    let mut present = present.into_iter();
    let mut merged_present = Vec::with_capacity(parent_present.len());
    for &is_present in parent_present {
        if is_present {
            let p = present.next().expect("array less than expected length");
            merged_present.push(p);
        } else {
            merged_present.push(false);
        }
    }
    merged_present
}

fn derive_present_vec(
    present: &mut Option<Box<dyn Iterator<Item = bool> + Send>>,
    parent_present: Option<&[bool]>,
    batch_size: usize,
) -> Option<Vec<bool>> {
    match (present, parent_present) {
        (Some(present), Some(parent_present)) => {
            let present = present.by_ref().take(batch_size);
            Some(merge_parent_present(parent_present, present))
        }
        (Some(present), None) => Some(present.by_ref().take(batch_size).collect::<Vec<_>>()),
        (None, Some(parent_present)) => Some(parent_present.to_vec()),
        (None, None) => None,
    }
}

/// Fix the lengths to account for nulls (represented as 0 length)
fn populate_lengths_with_nulls(
    lengths: Vec<u64>,
    batch_size: usize,
    present: &Option<Vec<bool>>,
) -> Vec<usize> {
    if let Some(present) = present {
        let mut lengths_with_nulls = Vec::with_capacity(batch_size);
        let mut lengths = lengths.iter();
        for &is_present in present {
            if is_present {
                let length = *lengths.next().unwrap();
                lengths_with_nulls.push(length as usize);
            } else {
                lengths_with_nulls.push(0);
            }
        }
        lengths_with_nulls
    } else {
        lengths.into_iter().map(|l| l as usize).collect()
    }
}

fn create_null_buffer(present: Option<Vec<bool>>) -> Option<NullBuffer> {
    match present {
        // Edge case where keys of map cannot have a null buffer
        Some(present) if present.iter().all(|&p| p) => None,
        Some(present) => Some(NullBuffer::from(present)),
        None => None,
    }
}

pub struct NaiveStripeDecoder {
    stripe: Stripe,
    schema_ref: SchemaRef,
    decoders: Vec<Box<dyn ArrayBatchDecoder>>,
    index: usize,
    batch_size: usize,
    number_of_rows: usize,
}

impl Iterator for NaiveStripeDecoder {
    type Item = Result<RecordBatch>;

    fn next(&mut self) -> Option<Self::Item> {
        if self.index < self.number_of_rows {
            let record = self
                .decode_next_batch(self.number_of_rows - self.index)
                .transpose()?;
            self.index += self.batch_size;
            Some(record)
        } else {
            None
        }
    }
}

pub trait ArrayBatchDecoder: Send {
    /// Used as base for decoding ORC columns into Arrow arrays. Provide an input `batch_size`
    /// which specifies the upper limit of the number of values returned in the output array.
    ///
    /// If parent nested type (e.g. Struct) indicates a null in it's PRESENT stream,
    /// then the child doesn't have a value (similar to other nullability). So we need
    /// to take care to insert these null values as Arrow requires the child to hold
    /// data in the null slot of the child.
    // TODO: encode nullability in generic -> for a given column in a stripe, we will always know
    //       upfront if we need to bother with nulls or not, so we don't need to keep checking this
    //       for every invocation of next_batch
    // NOTE: null parent may have non-null child, so would still have to account for this
    fn next_batch(
        &mut self,
        batch_size: usize,
        parent_present: Option<&[bool]>,
    ) -> Result<ArrayRef>;
}

pub fn array_decoder_factory(
    column: &Column,
    stripe: &Stripe,
) -> Result<Box<dyn ArrayBatchDecoder>> {
    let decoder: Box<dyn ArrayBatchDecoder> = match column.data_type() {
        // TODO: try make branches more generic, reduce duplication
        DataType::Boolean { .. } => {
            let iter = stripe.stream_map().get(column, Kind::Data);
            let iter = Box::new(BooleanIter::new(iter));
            let present = get_present_vec(column, stripe)?
                .map(|iter| Box::new(iter.into_iter()) as Box<dyn Iterator<Item = bool> + Send>);
            Box::new(BooleanArrayDecoder::new(iter, present))
        }
        DataType::Byte { .. } => {
            let iter = stripe.stream_map().get(column, Kind::Data);
            let iter = Box::new(ByteRleIter::new(iter).map(|value| value.map(|value| value as i8)));
            let present = get_present_vec(column, stripe)?
                .map(|iter| Box::new(iter.into_iter()) as Box<dyn Iterator<Item = bool> + Send>);
            Box::new(Int8ArrayDecoder::new(iter, present))
        }
        DataType::Short { .. } => {
            let iter = stripe.stream_map().get(column, Kind::Data);
            let iter = get_rle_reader(column, iter)?;
            let present = get_present_vec(column, stripe)?
                .map(|iter| Box::new(iter.into_iter()) as Box<dyn Iterator<Item = bool> + Send>);
            Box::new(Int16ArrayDecoder::new(iter, present))
        }
        DataType::Int { .. } => {
            let iter = stripe.stream_map().get(column, Kind::Data);
            let iter = get_rle_reader(column, iter)?;
            let present = get_present_vec(column, stripe)?
                .map(|iter| Box::new(iter.into_iter()) as Box<dyn Iterator<Item = bool> + Send>);
            Box::new(Int32ArrayDecoder::new(iter, present))
        }
        DataType::Long { .. } => {
            let iter = stripe.stream_map().get(column, Kind::Data);
            let iter = get_rle_reader(column, iter)?;
            let present = get_present_vec(column, stripe)?
                .map(|iter| Box::new(iter.into_iter()) as Box<dyn Iterator<Item = bool> + Send>);
            Box::new(Int64ArrayDecoder::new(iter, present))
        }
        DataType::Float { .. } => {
            let iter = stripe.stream_map().get(column, Kind::Data);
            let iter = Box::new(FloatIter::new(iter, stripe.number_of_rows()));
            let present = get_present_vec(column, stripe)?
                .map(|iter| Box::new(iter.into_iter()) as Box<dyn Iterator<Item = bool> + Send>);
            Box::new(Float32ArrayDecoder::new(iter, present))
        }
        DataType::Double { .. } => {
            let iter = stripe.stream_map().get(column, Kind::Data);
            let iter = Box::new(FloatIter::new(iter, stripe.number_of_rows()));
            let present = get_present_vec(column, stripe)?
                .map(|iter| Box::new(iter.into_iter()) as Box<dyn Iterator<Item = bool> + Send>);
            Box::new(Float64ArrayDecoder::new(iter, present))
        }
        DataType::String { .. } | DataType::Varchar { .. } | DataType::Char { .. } => {
            new_string_decoder(column, stripe)?
        }
        DataType::Binary { .. } => new_binary_decoder(column, stripe)?,
        DataType::Decimal {
            precision, scale, ..
        } => new_decimal_decoder(column, stripe, *precision, *scale)?,
        DataType::Timestamp { .. } => new_timestamp_decoder(column, stripe)?,
        DataType::TimestampWithLocalTimezone { .. } => {
            new_timestamp_instant_decoder(column, stripe)?
        }

        DataType::Date { .. } => {
            let iter = stripe.stream_map().get(column, Kind::Data);
            let iter = get_rle_reader(column, iter)?;
            let present = get_present_vec(column, stripe)?
                .map(|iter| Box::new(iter.into_iter()) as Box<dyn Iterator<Item = bool> + Send>);
            Box::new(DateArrayDecoder::new(iter, present))
        }
        DataType::Struct { .. } => Box::new(StructArrayDecoder::new(column, stripe)?),
        DataType::List { .. } => Box::new(ListArrayDecoder::new(column, stripe)?),
        DataType::Map { .. } => Box::new(MapArrayDecoder::new(column, stripe)?),
        DataType::Union { .. } => Box::new(UnionArrayDecoder::new(column, stripe)?),
    };

    Ok(decoder)
}

impl NaiveStripeDecoder {
    fn inner_decode_next_batch(&mut self, remaining: usize) -> Result<Vec<ArrayRef>> {
        let chunk = self.batch_size.min(remaining);

        let mut fields = Vec::with_capacity(self.stripe.columns().len());

        for decoder in &mut self.decoders {
            let array = decoder.next_batch(chunk, None)?;
            if array.is_empty() {
                break;
            } else {
                fields.push(array);
            }
        }

        Ok(fields)
    }

    fn decode_next_batch(&mut self, remaining: usize) -> Result<Option<RecordBatch>> {
        let fields = self.inner_decode_next_batch(remaining)?;

        if fields.is_empty() {
            Ok(None)
        } else {
            //TODO(weny): any better way?
            let fields = self
                .schema_ref
                .fields
                .into_iter()
                .map(|field| field.name())
                .zip(fields)
                .collect::<Vec<_>>();

            Ok(Some(
                RecordBatch::try_from_iter(fields).context(error::ConvertRecordBatchSnafu)?,
            ))
        }
    }

    pub fn new(stripe: Stripe, schema_ref: SchemaRef, batch_size: usize) -> Result<Self> {
        let mut decoders = Vec::with_capacity(stripe.columns().len());
        let number_of_rows = stripe.number_of_rows();

        for col in stripe.columns() {
            let decoder = array_decoder_factory(col, &stripe)?;
            decoders.push(decoder);
        }

        Ok(Self {
            stripe,
            schema_ref,
            decoders,
            index: 0,
            batch_size,
            number_of_rows,
        })
    }
}