oracle_nosql_rust_sdk/
query_request.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
//
// Copyright (c) 2024, 2025 Oracle and/or its affiliates. All rights reserved.
//
// Licensed under the Universal Permissive License v 1.0 as shown at
//  https://oss.oracle.com/licenses/upl/
//
use crate::error::ia_err;
use crate::error::NoSQLError;
use crate::handle::Handle;
use crate::handle::SendOptions;
use crate::nson::*;
use crate::plan_iter::{deserialize_plan_iter, PlanIterKind, PlanIterState};
use crate::prepared_statement::PreparedStatement;
use crate::reader::Reader;
use crate::receive_iter::ReceiveIterData;
use crate::types::NoSQLColumnToFieldValue;
use crate::types::{Capacity, Consistency, FieldType, FieldValue, MapValue, OpCode, TopologyInfo};
use crate::writer::Writer;

use std::collections::HashMap;
use std::result::Result;
use std::time::Duration;
use tracing::trace;

/// Encapsulates a SQL query of a NoSQL Database table.
///
/// A query may be either a string query
/// statement or a prepared query, which may include bind variables.
/// A query request cannot have both a string statement and prepared query, but
/// it must have one or the other.
///
/// See the [SQL for NoSQL Database Guide](https://docs.oracle.com/en/database/other-databases/nosql-database/24.1/sqlfornosql/introduction-sql.html) for details on creating and using queries.
///
/// ## Simple Example
/// Here is a simple example of running a query that will return every row in a table named `users`:
///
/// ```no_run
/// # use oracle_nosql_rust_sdk::{Handle, QueryRequest};
/// # #[tokio::main]
/// # pub async fn main() -> Result<(), Box<dyn std::error::Error>> {
/// let handle = Handle::builder().build().await?;
/// let results = QueryRequest::new("select * from users")
///               .execute(&handle).await?;
/// for row in results.rows() {
///     println!("Row = {}", row);
/// }
/// # Ok(())
/// # }
/// ```
///
/// For performance reasons, prepared queries are preferred for queries that may
/// be reused. Prepared queries bypass compilation of the query. They also allow
/// for parameterized queries using bind variables.
#[derive(Default, Debug)]
pub struct QueryRequest {
    pub(crate) prepare_only: bool,
    //pub(crate) limit: u32,
    pub(crate) max_read_kb: u32,
    pub(crate) max_write_kb: u32,
    pub(crate) consistency: Consistency,
    pub(crate) timeout: Option<Duration>,
    pub(crate) compartment_id: String,

    // max_memory_consumption specifies the maximum amount of memory in bytes that
    // may be consumed by the query at the client for operations such as
    // duplicate elimination (which may be required due to the use of an index
    // on an array or map) and sorting. Such operations may consume a lot of
    // memory as they need to cache the full result set or a large subset of
    // it at the client memory.
    //
    // The default value is 1GB (1,000,000,000).
    // TODO pub max_memory_consumption: i64,

    // Durability is currently only used in On-Prem installations.
    // This setting only applies if the query modifies
    // a row using an INSERT, UPSERT, or DELETE statement. If the query is
    // read-only it is ignored.
    // Added in SDK Version 1.4.0
    // TODO Durability types.Durability

    // private fields: driver and RCB data

    // statement specifies a query statement.
    statement: Option<String>,

    // prepared_statement specifies the prepared query statement.
    pub(crate) prepared_statement: PreparedStatement,

    // shortcuts
    has_driver: bool,

    pub(crate) is_done: bool,

    // created/used by internal iterators
    is_internal: bool,

    // reached_limit indicates if the query execution reached the size-based or
    // number-based limit. If so, query execution must stop and a batch of
    // results (potentially empty) must be returned to the application.
    pub(crate) reached_limit: bool,

    pub(crate) consumed_capacity: Capacity,

    // memory_consumption represents the amount of memory in bytes that were
    // consumed by the query at the client for operations such as duplicate
    // elimination and sorting.
    // TODO pub memory_consumption: i64,

    // sql_hash_tag is a portion of the hash value of SQL text, used as a tag
    // for query tracing.
    pub(crate) sql_hash_tag: Vec<u8>,

    // err represents a non-retryable error returned by a query batch.
    err: Option<NoSQLError>,

    pub(crate) continuation_key: Option<Vec<u8>>,

    pub(crate) shard_id: i32,

    // total number of batches executed
    pub(crate) batch_counter: i32,

    // for "advanced" queries using plan iterators
    pub(crate) num_registers: i32,
    pub(crate) registers: Vec<FieldValue>,

    pub(crate) topology_info: TopologyInfo,
}

/// Struct representing the result of a query operation.
#[derive(Default, Debug)]
pub struct QueryResult {
    pub(crate) rows: Vec<MapValue>,
    pub(crate) prepared_statement: PreparedStatement,
    pub(crate) consumed: Capacity,
    // TODO: stats, consumed, etc.
}

impl QueryResult {
    /// Get the query result rows, if any.
    ///
    /// If the query returned no rows, this will return a reference to an empty vector.
    /// Otherwise, it will return a reference to the rows in the order specified by the query.
    pub fn rows(&self) -> &Vec<MapValue> {
        &self.rows
    }
    /// Take the query result rows, setting the result back to an empty vector.
    ///
    /// If the query returned no rows, this will return an empty vector.
    /// Otherwise, it will return the rows in the vector, giving the ownership
    /// of the rows to the caller.
    pub fn take_rows(&mut self) -> Vec<MapValue> {
        std::mem::take(&mut self.rows)
    }
    /// Get the prepared statement after execution of a query.
    ///
    /// The prepared statement can then be used in subsequent query requests, saving the
    /// extra step of preparing each query again.
    pub fn prepared_statement(&self) -> PreparedStatement {
        let mut ps = self.prepared_statement.clone();
        let _ = ps.reset();
        ps
    }
    /// Return the total capacity that was consumed during the execution of the query.
    ///
    /// This is only relevant for NoSQL Cloud operation. It returns a [`Capacity`] struct which
    /// contains the total read units, read KB, and write units used by the query execution.
    pub fn consumed(&self) -> Capacity {
        self.consumed.clone()
    }
}

impl QueryRequest {
    /// Create a new QueryRequest from a SQL query string.
    ///
    /// While this struct is named `QueryRequest`, the SQL supplied to it does not
    /// necessarily have to be a `SELECT` query. It could also be one of `INSERT`, `UPDATE`,
    /// or `DELETE`.
    ///
    /// See the [SQL for NoSQL Database Guide](https://docs.oracle.com/en/database/other-databases/nosql-database/24.1/sqlfornosql/introduction-sql.html) for details on creating and using queries.
    ///
    /// Note: this request should not be used for DDL statements (those that create or modify tables or indexes, such as `CREATE TABLE`). For DDL statements, use [`TableRequest`](crate::TableRequest) instead.
    ///
    pub fn new(statement: &str) -> Self {
        QueryRequest {
            statement: Some(statement.to_string()),
            shard_id: -1,
            ..Default::default()
        }
    }

    /// Create a new QueryRequest from a previously prepared query statement.
    ///
    /// Use of this method is recommended when executing the same type of query multiple
    /// times with different values for parameters. Doing so will save resources by not
    /// re-preparing the query on every execution.
    ///
    /// To set bind variables for query execution, first create the request with this method,
    /// then call [`QueryRequest::set_variable()`] for all desired bind variables. Then execute the
    /// query with [`QueryRequest::execute()`].
    pub fn new_prepared(prepared_statement: &PreparedStatement) -> Self {
        let ti: TopologyInfo;
        if let Some(t) = &prepared_statement.topology_info {
            ti = t.clone();
        } else {
            panic!(
                "Invalid prepared statement passed to new_prepared! Missing toploogy info. ps={:?}",
                prepared_statement
            );
        }
        QueryRequest {
            prepared_statement: prepared_statement.clone(),
            shard_id: -1,
            topology_info: ti,
            ..Default::default()
        }
    }

    /// Specify that this query execution should only prepare the query.
    ///
    /// Setting this value to true and then calling [`QueryRequest::execute()`]
    /// will result in only the query being prepared, and no result rows being returned.
    /// The prepared statement can then be retrieved using [`QueryResult::prepared_statement()`]
    /// and can be used in subsequent query calls using [`QueryRequest::new_prepared()`].
    pub fn prepare_only(mut self) -> Self {
        self.prepare_only = true;
        self
    }

    /// Specify the timeout value for the request.
    ///
    /// This is optional.
    /// If set, it must be greater than or equal to 1 millisecond, otherwise an
    /// IllegalArgument error will be returned.
    /// If not set, the default timeout value configured for the [`Handle`](crate::HandleBuilder::timeout()) is used.
    pub fn timeout(mut self, t: &Duration) -> Self {
        self.timeout = Some(t.clone());
        self
    }

    /// Cloud Service only: set the name or id of a compartment to be used for this operation.
    ///
    /// The compartment may be specified as either a name (or path for nested compartments) or as an id (OCID).
    /// A name (vs id) can only be used when authenticated using a specific user identity. It is not available if
    /// the associated handle authenticated as an Instance Principal (which can be done when calling the service from
    /// a compute instance in the Oracle Cloud Infrastructure: see [`HandleBuilder::cloud_auth_from_instance()`](crate::HandleBuilder::cloud_auth_from_instance()).)
    ///
    /// If no compartment is given, the root compartment of the tenancy will be used.
    pub fn compartment_id(mut self, compartment_id: &str) -> Self {
        self.compartment_id = compartment_id.to_string();
        self
    }

    // Specify a limit on number of items returned by the operation.
    //
    // This allows an operation to return less than the default amount of data.
    //pub fn limit(mut self, l: u32) -> Self {
    //self.limit = l;
    //self
    //}

    /// Specify the desired consistency policy for the request.
    ///
    /// If not set, the default consistency of [`Consistency::Eventual`] is used.
    pub fn consistency(mut self, c: &Consistency) -> Self {
        self.consistency = c.clone();
        self
    }

    /// Specify the limit on the total data read during a single batch operation, in KB.
    ///
    /// For cloud service, this value can only reduce the system defined limit.
    /// An attempt to increase the limit beyond the system defined limit will
    /// cause an IllegalArgument error. This limit is independent of read units
    /// consumed by the operation.
    ///
    /// It is recommended that for tables with relatively low provisioned read
    /// throughput that this limit be set to less than or equal to one half
    /// of the provisioned throughput in order to reduce the possibility of throttling
    /// errors.
    pub fn max_read_kb(mut self, max: u32) -> Self {
        self.max_read_kb = max;
        self
    }

    /// Specify the limit on the total data written during a single batch operation, in KB.
    ///
    /// For cloud service, this value can only reduce the system defined limit.
    /// An attempt to increase the limit beyond the system defined limit will
    /// cause an IllegalArgument error. This limit is independent of write units
    /// consumed by the operation.
    ///
    /// This limit is independent of write units consumed by the operation.
    pub fn max_write_kb(mut self, max: u32) -> Self {
        self.max_write_kb = max;
        self
    }

    // used by ext_var_ref_iter
    pub(crate) fn get_external_var(&self, id: i32) -> Option<&FieldValue> {
        if self.prepared_statement.is_empty() {
            return None;
        }
        self.prepared_statement.get_variable_by_id(id)
    }

    // note private
    async fn get_results(
        &mut self,
        handle: &Handle,
        results: &mut Vec<MapValue>,
    ) -> Result<(), NoSQLError> {
        // this is where everything happens

        if let Some(e) = &self.err {
            return Err(e.clone());
        }

        if self.prepare_only == true || self.prepared_statement.is_simple() {
            // results already fetched from nson_deserialize()
            //println!("get_results: prepare or simple: returning");
            return Ok(());
        }

        //let driver_plan = &mut self.prepared_statement.driver_query_plan;
        let mut driver_plan = std::mem::take(&mut self.prepared_statement.driver_query_plan);

        if driver_plan.get_state() == PlanIterState::Uninitialized {
            //println!("get_results: initializing driver plan");
            self.reached_limit = false;
            //self.memory_consumption = 0;
            self.consumed_capacity = Capacity::default();
            self.sql_hash_tag = Default::default();

            self.consumed_capacity.read_kb += 1; // prep cost
            self.consumed_capacity.read_units += 1; // prep cost
            driver_plan.open(self, handle)?;
        }

        let mut more;
        loop {
            //println!("get_results: calling driver_plan.next()");
            more = driver_plan.next(self, handle).await?;
            if more == false {
                //println!("get_results: no more results: breaking");
                break;
            }
            //println!("get_results: pushing 1 result");
            results.push(driver_plan.get_result(self).get_map_value()?);
            //if self.limit > 0 && results.len() >= self.limit as usize {
            //println!(
            //"get_results: reached limit: results_size={}, limit={}",
            //results.len(),
            //self.limit
            //);
            //self.reached_limit = true;
            //break;
            //}
        }

        self.prepared_statement.driver_query_plan = driver_plan;

        if more {
            // non-advanced queries just need Some/None, value not used
            self.continuation_key = Some(Vec::new());
            self.is_done = false;
        } else {
            if self.reached_limit {
                // there is more to do, but we reached a limit
                self.continuation_key = Some(Vec::new());
                self.reached_limit = false;
                self.is_done = false;
            } else {
                self.continuation_key = None;
                self.is_done = true;
            }
        }

        Ok(())
    }

    pub(crate) fn copy_for_internal(&self) -> Self {
        if self.prepared_statement.is_empty() {
            panic!("prepared statement is empty in copy_for_internal");
        }
        QueryRequest {
            is_internal: true,
            prepared_statement: self.prepared_statement.copy_for_internal(),
            shard_id: self.shard_id,
            //limit: self.limit,
            // purposefully not copying registers
            num_registers: -1,
            timeout: self.timeout.clone(),
            ..Default::default()
        }
    }

    pub(crate) fn reset(&mut self) -> Result<(), NoSQLError> {
        self.is_done = false;
        self.reached_limit = false;
        self.batch_counter = 0;
        self.consumed_capacity = Capacity::default();
        // clear prepared statement iterators
        self.prepared_statement.reset()
    }

    /// Set a named bind variable for execution of a prepared query.
    ///
    /// See [`PreparedStatement`] for an example of using this method.
    pub fn set_variable(
        &mut self,
        name: &str,
        value: &impl NoSQLColumnToFieldValue,
    ) -> Result<(), NoSQLError> {
        if self.prepared_statement.is_empty() {
            return ia_err!("cannot set bind variables: no prepared statement in QueryRequest");
        }
        let fv = value.to_field_value();
        self.prepared_statement.set_variable(name, &fv)
    }

    /// Set a positional bind variable for execution of a prepared query.
    ///
    /// This is similar to [`set_variable()`](QueryRequest::set_variable()) but uses integer-based positional parameters:
    /// ```no_run
    /// # use oracle_nosql_rust_sdk::{Handle, QueryRequest, NoSQLColumnToFieldValue};
    /// # #[tokio::main]
    /// # pub async fn main() -> Result<(), Box<dyn std::error::Error>> {
    /// let handle = Handle::builder().build().await?;
    /// let prep_result = QueryRequest::new("insert into testusers(id, name) values(?, ?)")
    ///     .prepare_only()
    ///     .execute(&handle)
    ///     .await?;
    /// let data = vec!["jane", "john", "jasper"];
    /// let mut qreq = QueryRequest::new_prepared(&prep_result.prepared_statement());
    /// for i in 0..data.len() {
    ///     let id = (i as i32) + 100;
    ///     qreq.set_variable_by_id(1, &id)?;
    ///     qreq.set_variable_by_id(2, &data[i])?;
    ///     let result = qreq.execute(&handle).await?;
    ///     println!("Insert result = {:?}", result);
    /// }
    /// # Ok(())
    /// # }
    pub fn set_variable_by_id(
        &mut self,
        id: i32,
        value: &impl NoSQLColumnToFieldValue,
    ) -> Result<(), NoSQLError> {
        if self.prepared_statement.is_empty() {
            return ia_err!("cannot set bind variables: no prepared statement in QueryRequest");
        }
        let fv = value.to_field_value();
        self.prepared_statement.set_variable_by_id(id, &fv)
    }

    /// Execute the query to full completion.
    ///
    /// This is the preferred method for execution of a query. Internally, this method will loop
    /// calling `execute_batch()` until all results are returned and all post-processing (sorting,
    /// grouping, aggregations, etc) are complete.
    ///
    /// If the query has no rows to return, [`QueryResult::rows()`] will return an empty vector.
    /// Otherwise it will return a vector of
    /// [`MapValue`](crate::types::MapValue) structs in the order specified by the
    /// query statement.
    pub async fn execute(&mut self, h: &Handle) -> Result<QueryResult, NoSQLError> {
        let mut iter_data = ReceiveIterData::default();
        let mut results: Vec<MapValue> = Vec::new();
        self.reset()?;
        while self.is_done == false {
            //println!("execute_internal doing next batch");
            self.execute_batch_internal(h, &mut results, &mut iter_data)
                .await?;
            self.batch_counter += 1;
            if self.batch_counter > 10000 {
                panic!("Batch_internal infinite loop detected: self={:?}", self);
            }
        }

        if self.prepared_statement.is_empty() {
            panic!("empty prepared statement after execute!");
        }

        // TODO: retries, stats, etc
        let mut qres = QueryResult {
            prepared_statement: self.prepared_statement.clone(),
            consumed: self.consumed_capacity.clone(),
            rows: results,
        };
        let _ = qres.prepared_statement.reset();
        Ok(qres)
    }

    /// Execute one batch of a query.
    ///
    /// This will execute at most one round-trip to the server. It should be called in a loop
    /// until `is_done()` returns `true`. Note that any one batch execution may not set any results,
    /// since some queries require many server round trips to finish (sorting, for example).
    ///
    /// It is recommended to use [`execute()`](QueryRequest::execute()) instead of this method.
    /// *This method may be deprecated in future releases*.
    pub async fn execute_batch(
        &mut self,
        handle: &Handle,
        results: &mut Vec<MapValue>,
    ) -> Result<(), NoSQLError> {
        let mut _data = ReceiveIterData::default();
        self.execute_batch_internal(handle, results, &mut _data)
            .await
    }

    /// Determine if the query is complete.
    ///
    /// If using [`QueryRequest::execute_batch()`] in a loop, this method determines when
    /// to terminate the loop, specifying that no more results exist for this query execution.
    /// This is only necessary if executing queries in batch looping mode.
    pub fn is_done(&self) -> bool {
        self.is_done
    }

    pub(crate) async fn execute_batch_internal(
        &mut self,
        handle: &Handle,
        results: &mut Vec<MapValue>,
        iter_data: &mut ReceiveIterData,
    ) -> Result<(), NoSQLError> {
        trace!(
            "EBI: batch_counter={} num_results={}",
            self.batch_counter,
            results.len()
        );

        self.reached_limit = false;

        // internal queries do not use plan iterators/etc - they just return plain results.
        if self.is_internal == false {
            /*
             * The following "if" may be true for advanced queries only. For
             * such queries, the "if" will be true (i.e., the QueryRequest will
             * be bound with a QueryDriver) if and only if this is not the 1st
             * execute() call for this query. In this case we just return a new,
             * empty QueryResult. Actual computation of a result batch will take
             * place when the app calls getResults() on the QueryResult.
             */
            if self.has_driver {
                //trace("QueryRequest has QueryDriver", 2);
                return self.get_results(handle, results).await;
            }

            /*
             * If it is an advanced query and we are here, then this must be
             * the 1st execute() call for the query. If the query has been
             * prepared before, we create a QueryDriver and bind it with the
             * QueryRequest. Then, we create and return an empty QueryResult.
             * Actual computation of a result batch will take place when the
             * app calls getResults() on the QueryResult.
             */
            if self.prepared_statement.is_empty() == false
                && self.prepared_statement.is_simple() == false
            {
                //trace("QueryRequest has no QueryDriver, but is prepared", 2);
                self.num_registers = self.prepared_statement.num_registers;
                self.registers = Vec::new();
                for _i in 0..self.num_registers {
                    self.registers.push(FieldValue::Uninitialized);
                }
                self.has_driver = true;
                return self.get_results(handle, results).await;
            }

            /*
             * If we are here, then this is either (a) a simple query or (b) an
             * advanced query that has not been prepared already, which also
             * implies that this is the 1st execute() call on this query. For
             * a non-prepared advanced query, the effect of this 1st execute()
             * call is to send the query to the proxy for compilation, get back
             * the prepared query, but no query results, create a QueryDriver,
             * and bind it with the QueryRequest (see
             * QueryRequestSerializer.deserialize()), and return an empty
             * QueryResult.
             * a non-prepared simple query will return results.
             */
            //trace("QueryRequest has no QueryDriver and is not prepared", 2);
            //self.batch_counter += 1;
        }

        let mut w: Writer = Writer::new();
        w.write_i16(handle.inner.serial_version);
        let timeout = handle.get_timeout(&self.timeout);
        self.serialize_internal(&mut w, &timeout)?;
        let mut opts = SendOptions {
            timeout: timeout,
            retryable: true,
            compartment_id: self.compartment_id.clone(),
            ..Default::default()
        };
        let mut r = handle.send_and_receive(w, &mut opts).await?;
        self.continuation_key = None;
        self.nson_deserialize(&mut r, results, iter_data)?;
        if self.continuation_key.is_none() {
            trace!("continuation key is None, setting is_done");
            self.is_done = true;
        }
        Ok(())
    }

    fn serialize_internal(&self, w: &mut Writer, timeout: &Duration) -> Result<(), NoSQLError> {
        let mut ns = NsonSerializer::start_request(w);
        ns.start_header();
        if self.prepare_only {
            ns.write_header(OpCode::Prepare, timeout, "");
        } else {
            ns.write_header(OpCode::Query, timeout, "");
        }
        ns.end_header();
        ns.start_payload();

        //TODO writeConsistency(ns, rq.getConsistency());
        //if (rq.getDurability() != null) {
        //writeMapField(ns, DURABILITY,
        //getDurability(rq.getDurability()));
        //}

        if self.max_read_kb > 0 {
            ns.write_i32_field(MAX_READ_KB, self.max_read_kb as i32);
        }
        if self.max_write_kb > 0 {
            ns.write_i32_field(MAX_WRITE_KB, self.max_write_kb as i32);
        }
        //if self.limit > 0 {
        //ns.write_i32_field(NUMBER_LIMIT, self.limit as i32);
        //}

        //writeMapFieldNZ(ns, TRACE_LEVEL, rq.getTraceLevel());
        //if (rq.getTraceLevel() > 0) {
        //writeMapField(ns, TRACE_AT_LOG_FILES, rq.getLogFileTracing());
        //writeMapField(ns, BATCH_COUNTER, rq.getBatchCounter());

        ns.write_i32_field(QUERY_VERSION, 3); // TODO: QUERY_V4
        if self.prepared_statement.is_empty() == false {
            ns.write_bool_field(IS_PREPARED, true);
            ns.write_bool_field(IS_SIMPLE_QUERY, self.prepared_statement.is_simple());
            ns.write_binary_field(PREPARED_QUERY, &self.prepared_statement.statement);
            if self.prepared_statement.data.bind_variables.len() > 0 {
                ns.start_array(BIND_VARIABLES);
                for (k, v) in &self.prepared_statement.data.bind_variables {
                    ns.start_map("");
                    trace!(" BIND: name={} value={:?}", k, v);
                    ns.write_string_field(NAME, k);
                    ns.write_field(VALUE, v);
                    ns.end_map("");
                    ns.incr_size(1);
                }
                ns.end_array(BIND_VARIABLES);
            }
        } else {
            if let Some(s) = &self.statement {
                ns.write_string_field(STATEMENT, &s);
            } else {
                return ia_err!("no statement or prepared statement");
            }
        }
        if let Some(ck) = &self.continuation_key {
            if ck.len() > 0 {
                ns.write_binary_field(CONTINUATION_KEY, ck);
                //println!("Wrote {} byte continuation key", ck.len());
            }
        }

        //writeLongMapFieldNZ(ns, SERVER_MEMORY_CONSUMPTION,
        //rq.getMaxServerMemoryConsumption());
        //writeMathContext(ns, rq.getMathContext());

        if self.shard_id > -1 {
            //println!("Q: SHARD_ID={}", self.shard_id);
            ns.write_i32_field(SHARD_ID, self.shard_id);
        }
        //if (queryVersion >= QueryDriver.QUERY_V4) {
        //if (rq.getQueryName() != null) {
        //writeMapField(ns, QUERY_NAME, rq.getQueryName());
        //}
        //if (rq.getVirtualScan() != null) {
        //writeVirtualScan(ns, rq.getVirtualScan());
        //}
        //}

        ns.end_payload();
        ns.end_request();
        Ok(())
    }

    // TODO
    //theRCB.tallyRateLimitDelayedMs(result.getRateLimitDelayedMs());
    //theRCB.tallyRetryStats(result.getRetryStats());
    // TODO: support deduping of results

    pub(crate) fn add_results(
        &self,
        walker: &mut MapWalker,
        results: &mut Vec<MapValue>,
    ) -> Result<(), NoSQLError> {
        let t = FieldType::try_from_u8(walker.r.read_byte()?)?;
        if t != FieldType::Array {
            return ia_err!("bad type in queryResults: {:?}, should be Array", t);
        }
        walker.r.read_i32()?; // length of array in bytes
        let num_elements = walker.r.read_i32()?;
        trace!("read_results: num_results={}", num_elements);
        if num_elements <= 0 {
            return Ok(());
        }
        for _i in 0..num_elements {
            if let FieldValue::Map(m) = walker.r.read_field_value()? {
                //println!("Result: {:?}", m);
                results.push(m);
            } else {
                return ia_err!("got invalid type of value in query results");
            }
        }
        Ok(())
    }

    // Deserialize results for a QueryRequest.
    fn nson_deserialize(
        &mut self,
        r: &mut Reader,
        results: &mut Vec<MapValue>,
        iter_data: &mut ReceiveIterData,
    ) -> Result<(), NoSQLError> {
        // TODO short serialVersion
        // TODO short queryVersion

        let is_prepared_request = !self.prepared_statement.is_empty();

        let mut ti = TopologyInfo::default();
        self.continuation_key = None;
        iter_data.continuation_key = None;

        let mut walker = MapWalker::new(r)?;
        while walker.has_next() {
            walker.next()?;
            let name = walker.current_name();
            match name.as_str() {
                ERROR_CODE => {
                    walker.handle_error_code()?;
                }
                CONSUMED => {
                    let cap = walker.read_nson_consumed_capacity()?;
                    self.consumed_capacity.add(&cap);
                }
                QUERY_RESULTS => {
                    self.add_results(&mut walker, results)?;
                }
                CONTINUATION_KEY => {
                    let ck = walker.read_nson_binary()?;
                    if ck.len() > 0 {
                        trace!("Read {} byte continuation key", ck.len());
                        iter_data.continuation_key = Some(ck.clone());
                        self.continuation_key = Some(ck);
                    }
                }
                SORT_PHASE1_RESULTS => {
                    self.read_phase_1_results(iter_data, &walker.read_nson_binary()?)?;
                }
                PREPARED_QUERY => {
                    if is_prepared_request {
                        return ia_err!("got prepared query in result for already prepared query");
                    }
                    self.prepared_statement.statement = walker.read_nson_binary()?;
                }
                DRIVER_QUERY_PLAN => {
                    if is_prepared_request {
                        return ia_err!("got driver plan in result for already prepared query");
                    }
                    let v = walker.read_nson_binary()?;
                    self.get_driver_plan_info(&v)?;
                }
                REACHED_LIMIT => {
                    self.reached_limit = walker.read_nson_boolean()?;
                    trace!("REACHED_LIMIT={}", self.reached_limit);
                }
                TABLE_NAME => {
                    self.prepared_statement.table_name = Some(walker.read_nson_string()?);
                }
                NAMESPACE => {
                    self.prepared_statement.namespace = Some(walker.read_nson_string()?);
                }
                QUERY_PLAN_STRING => {
                    self.prepared_statement.query_plan = walker.read_nson_string()?;
                }
                QUERY_RESULT_SCHEMA => {
                    self.prepared_statement.query_schema = walker.read_nson_string()?;
                }
                QUERY_OPERATION => {
                    // TODO: is this an enum? try_from()?
                    self.prepared_statement.operation = walker.read_nson_i32()? as u8;
                }
                TOPOLOGY_INFO => {
                    //println!("deser: TOPOLOGY_INFO");
                    self.prepared_statement.topology_info = Some(walker.read_nson_topology_info()?);
                }
                /* QUERY_V3 and earlier return topo differently */
                PROXY_TOPO_SEQNUM => {
                    //println!("deser: PROXY_TOPO_SEQNUM");
                    ti.seq_num = walker.read_nson_i32()?;
                }
                SHARD_IDS => {
                    //println!("deser: SHARD_IDS");
                    ti.shard_ids = walker.read_nson_i32_array()?;
                }
                _ => {
                    trace!("   query_response: skipping field '{}'", name);
                    walker.skip_nson_field()?;
                } /*
                  // added in QUERY_V4
                  else if (name.equals(VIRTUAL_SCANS)) {
                      readType(in, Nson.TYPE_ARRAY);
                      in.readInt(); // length of array in bytes
                      int numScans = in.readInt(); // number of array elements
                      virtualScans = new VirtualScan[numScans];
                      for (int i = 0; i < numScans; ++i) {
                          virtualScans[i] = readVirtualScan(in);
                      }

                  /* added in QUERY_V4 */
                  } else if (name.equals(QUERY_BATCH_TRACES)) {
                      readType(in, Nson.TYPE_ARRAY);
                      in.readInt(); // length of array in bytes
                      int numTraces = in.readInt() / 2; // number of array elements
                      queryTraces = new TreeMap<String,String>();
                      for (int i = 0; i < numTraces; ++i) {
                          String batchName = Nson.readNsonString(in);
                          String batchTrace = Nson.readNsonString(in);
                          queryTraces.put(batchName, batchTrace);
                      }
                  }
                  */
            }
        }

        if ti.is_valid() {
            self.prepared_statement.topology_info = Some(ti);
        }

        if let Some(ti) = &self.prepared_statement.topology_info {
            //println!("deser: got TI={:?}", ti);
            self.topology_info = ti.clone();
        } else {
            trace!("deser: NO VALID TOPOLOGY RECEIVED");
        }

        if self.prepare_only == true {
            if self.prepared_statement.is_empty() {
                return ia_err!("got no prepared statement when prepare_only was set");
            }
            self.is_done = true;
        } else {
            if !self.prepared_statement.is_simple() && self.continuation_key.is_none() {
                // dummy cont key so is_done won't be set
                trace!("Adding dummy continuation key");
                self.continuation_key = Some(Vec::new());
            }
        }

        Ok(())
    }

    fn get_driver_plan_info(&mut self, v: &Vec<u8>) -> Result<(), NoSQLError> {
        if v.len() == 0 {
            return Ok(());
        }
        let mut r = Reader::new().from_bytes(v);
        self.prepared_statement.driver_query_plan = deserialize_plan_iter(&mut r)?;
        //println!(
        //"driver query plan:\n{:?}",
        //self.prepared_statement.driver_query_plan
        //);
        if self.prepared_statement.driver_query_plan.get_kind() == PlanIterKind::Empty {
            return Ok(());
        }
        self.prepared_statement.num_iterators = r.read_i32()?;
        //println!(
        //"   QUERY_PLAN: iterators={}",
        //self.prepared_statement.num_iterators
        //);
        self.prepared_statement.num_registers = r.read_i32()?;
        //println!(
        //"   QUERY_PLAN: registers={}",
        //self.prepared_statement.num_registers
        //);
        let len = r.read_i32()?;
        if len <= 0 {
            return Ok(());
        }
        let mut hm: HashMap<String, i32> = HashMap::with_capacity(len as usize);
        for _i in 0..len {
            let name = r.read_string()?;
            let id = r.read_i32()?;
            hm.insert(name, id);
        }
        self.prepared_statement.variable_to_ids = Some(hm);
        Ok(())
    }

    fn read_phase_1_results(
        &mut self,
        iter_data: &mut ReceiveIterData,
        arr: &Vec<u8>,
    ) -> Result<(), NoSQLError> {
        let mut r: Reader = Reader::new().from_bytes(arr);
        iter_data.in_sort_phase_1 = r.read_bool()?;
        iter_data.pids = r.read_i32_array()?;
        if iter_data.pids.len() > 0 {
            iter_data.num_results_per_pid = r.read_i32_array()?;
            iter_data.part_continuation_keys = Vec::new();
            for _x in 0..iter_data.num_results_per_pid.len() {
                iter_data.part_continuation_keys.push(r.read_binary()?);
            }
        }
        Ok(())
    }

    pub(crate) fn get_result(&mut self, reg: i32) -> FieldValue {
        if self.num_registers <= reg {
            panic!("INVALID GET REGISTER ACCESS");
        }
        //println!(
        //" get_result register {}: {:?}",
        //reg, self.registers[reg as usize]
        //);
        std::mem::take(&mut self.registers[reg as usize])
    }

    pub(crate) fn get_result_ref(&self, reg: i32) -> &FieldValue {
        //println!(
        //" get_result_ref register {}: {:?}",
        //reg, self.registers[reg as usize]
        //);
        &self.registers[reg as usize]
    }

    pub(crate) fn set_result(&mut self, reg: i32, val: FieldValue) {
        if self.num_registers <= reg {
            panic!("INVALID SET REGISTER ACCESS");
        }
        //println!(" set_result register {}: {:?}", reg, val);
        self.registers[reg as usize] = val;
    }
}