1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
//! A hierarchical timing wheel based on <https://github.com/Bathtor/rust-hash-wheel-timer>.

mod byte;

use alloc::{boxed::Box, vec::Vec};
use core::{marker::PhantomData, mem, time::Duration};

use byte::ByteWheel;

use crate::resolution::{Milliseconds, Resolution};

/// A hierarchical timing wheel with a given entry type and resolution.
#[must_use]
pub struct TimingWheel<T, R = Milliseconds>
where
    R: Resolution,
{
    primary: Box<ByteWheel<T, [u8; 0]>>,
    secondary: Box<ByteWheel<T, [u8; 1]>>,
    tertiary: Box<ByteWheel<T, [u8; 2]>>,
    quarternary: Box<ByteWheel<T, [u8; 3]>>,
    overflow: Vec<OverflowEntry<T>>,
    _resolution: PhantomData<R>,
}

impl<T, R> Default for TimingWheel<T, R>
where
    R: Resolution,
{
    fn default() -> Self {
        TimingWheel::new()
    }
}

impl<T, R> TimingWheel<T, R>
where
    R: Resolution,
{
    /// Create a new timing wheel.
    pub fn new() -> Self {
        TimingWheel {
            primary: Box::new(ByteWheel::new()),
            secondary: Box::new(ByteWheel::new()),
            tertiary: Box::new(ByteWheel::new()),
            quarternary: Box::new(ByteWheel::new()),
            overflow: Vec::new(),
            _resolution: PhantomData,
        }
    }

    /// Returns the entry if it has already expired.
    #[allow(clippy::cast_possible_truncation)]
    #[tracing::instrument(level = "trace", skip_all)]
    pub fn insert(&mut self, entry: T, delay: Duration) -> Option<T> {
        if delay >= R::MAX_DURATION {
            let remaining_delay = R::steps_as_duration(self.remaining_time_in_cycle());
            let new_delay = delay - remaining_delay;
            let overflow_e = OverflowEntry::new(entry, new_delay);
            self.overflow.push(overflow_e);
            None
        } else {
            let delay = R::cycle_steps(&delay, true);
            let current_time = self.cycle_timestamp();
            let absolute_time = delay.wrapping_add(current_time);
            let absolute_bytes: [u8; 4] = absolute_time.to_be_bytes();
            let zero_time = absolute_time ^ current_time; // a-b%2
            let zero_bytes: [u8; 4] = zero_time.to_be_bytes();
            match zero_bytes {
                [0, 0, 0, 0] => Some(entry),
                [0, 0, 0, _] => {
                    self.primary.insert(absolute_bytes[3], entry, []);
                    None
                }
                [0, 0, _, _] => {
                    self.secondary
                        .insert(absolute_bytes[2], entry, [absolute_bytes[3]]);
                    None
                }
                [0, _, _, _] => {
                    self.tertiary.insert(
                        absolute_bytes[1],
                        entry,
                        [absolute_bytes[2], absolute_bytes[3]],
                    );
                    None
                }
                [_, _, _, _] => {
                    self.quarternary.insert(
                        absolute_bytes[0],
                        entry,
                        [absolute_bytes[1], absolute_bytes[2], absolute_bytes[3]],
                    );
                    None
                }
            }
        }
    }

    /// Advance the timing wheel and collect all entries that have been expired.
    #[tracing::instrument(level = "trace", skip_all)]
    pub fn tick(&mut self) -> Vec<T> {
        let mut res: Vec<T> = Vec::new();
        // primary
        let (move0, current0) = self.primary.tick();
        res.extend(move0.map(|we| we.entry));
        if current0 == 0u8 {
            // secondary
            let (move1, current1) = self.secondary.tick();
            // Don't bother reserving, as most of the values will likely be redistributed over the primary wheel instead of being returned
            for we in move1 {
                if we.rest[0] == 0u8 {
                    res.push(we.entry);
                } else {
                    self.primary.insert(we.rest[0], we.entry, []);
                }
            }
            if current1 == 0u8 {
                // tertiary
                let (move2, current2) = self.tertiary.tick();
                for we in move2 {
                    match we.rest {
                        [0, 0] => {
                            res.push(we.entry);
                        }
                        [0, b0] => {
                            self.primary.insert(b0, we.entry, []);
                        }
                        [b1, b0] => {
                            self.secondary.insert(b1, we.entry, [b0]);
                        }
                    }
                }
                if current2 == 0u8 {
                    // quarternary
                    let (move3, current3) = self.quarternary.tick();
                    for we in move3 {
                        match we.rest {
                            [0, 0, 0] => {
                                res.push(we.entry);
                            }
                            [0, 0, b0] => {
                                self.primary.insert(b0, we.entry, []);
                            }
                            [0, b1, b0] => {
                                self.secondary.insert(b1, we.entry, [b0]);
                            }
                            [b2, b1, b0] => {
                                self.tertiary.insert(b2, we.entry, [b1, b0]);
                            }
                        }
                    }
                    if current3 == 0u8 {
                        // overflow list
                        if !self.overflow.is_empty() {
                            // assume that about half are going to be scheduled now
                            let mut ol: Vec<OverflowEntry<T>> =
                                Vec::with_capacity(self.overflow.len() / 2);
                            mem::swap(&mut self.overflow, &mut ol);
                            for overflow_e in ol {
                                if let Some(entry) =
                                    self.insert(overflow_e.entry, overflow_e.remaining_delay)
                                {
                                    res.push(entry);
                                }
                            }
                        }
                    }
                }
            }
        }
        res
    }

    /// Skip `amount` steps, note that this will succeed
    /// and no checks will take place.
    ///
    /// Use [`TimingWheel::can_skip`] to determine if this function
    /// can be used without silently dropping any entries that
    /// have not been expired.
    #[tracing::instrument(level = "trace", skip_all)]
    pub fn skip(&mut self, amount: u32) {
        let new_time = self.cycle_timestamp().wrapping_add(amount);
        let new_time_bytes: [u8; 4] = new_time.to_be_bytes();
        self.primary.set_current(new_time_bytes[3]);
        self.secondary.set_current(new_time_bytes[2]);
        self.tertiary.set_current(new_time_bytes[1]);
        self.quarternary.set_current(new_time_bytes[0]);
    }

    /// Returns how many steps can be skipped safely without
    /// missing entries.
    #[must_use]
    #[allow(clippy::cast_possible_truncation, clippy::cast_lossless)]
    #[tracing::instrument(level = "trace", skip_all)]
    pub fn can_skip(&self) -> u32 {
        if self.primary.is_empty() {
            if self.secondary.is_empty() {
                if self.tertiary.is_empty() {
                    if self.quarternary.is_empty() {
                        if self.overflow.is_empty() {
                            0
                        } else {
                            (self.remaining_time_in_cycle() - 1u64) as u32
                        }
                    } else {
                        let tertiary_current = self.cycle_timestamp() & (TERTIARY_LENGTH - 1u32);
                        let rem = TERTIARY_LENGTH - tertiary_current;
                        rem - 1u32
                    }
                } else {
                    let secondary_current = self.cycle_timestamp() & (SECONDARY_LENGTH - 1u32);
                    let rem = SECONDARY_LENGTH - secondary_current;
                    rem - 1u32
                }
            } else {
                let primary_current = self.primary.current() as u32;
                let rem = PRIMARY_LENGTH - primary_current;
                rem - 1u32
            }
        } else {
            0
        }
    }

    /// Return the amount of entries in the wheel.
    #[must_use]
    pub fn len(&self) -> usize {
        self.primary.len()
            + self.secondary.len()
            + self.tertiary.len()
            + self.quarternary.len()
            + self.overflow.len()
    }

    /// Return whether the wheel is empty.
    #[must_use]
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    #[allow(clippy::cast_lossless)]
    fn remaining_time_in_cycle(&self) -> u64 {
        CYCLE_LENGTH - (self.cycle_timestamp() as u64)
    }

    #[must_use]
    fn cycle_timestamp(&self) -> u32 {
        let time_bytes = [
            self.quarternary.current(),
            self.tertiary.current(),
            self.secondary.current(),
            self.primary.current(),
        ];
        u32::from_be_bytes(time_bytes)
    }
}

const CYCLE_LENGTH: u64 = 1 << 32; // 2^32
const PRIMARY_LENGTH: u32 = 1 << 8; // 2^8
const SECONDARY_LENGTH: u32 = 1 << 16; // 2^16
const TERTIARY_LENGTH: u32 = 1 << 24; // 2^24

struct OverflowEntry<T> {
    entry: T,
    remaining_delay: Duration,
}
impl<T> OverflowEntry<T> {
    fn new(entry: T, remaining_delay: Duration) -> Self {
        OverflowEntry {
            entry,
            remaining_delay,
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::resolution::Milliseconds;

    #[test]
    fn smoke_millis() {
        let mut wheel: TimingWheel<usize, Milliseconds> = TimingWheel::new();
        assert!(wheel.insert(0, Duration::ZERO).is_some());

        assert!(wheel.insert(0, Duration::from_millis(1)).is_none());
        assert_eq!(wheel.len(), 1);
        assert_eq!(wheel.tick().pop().unwrap(), 0);

        assert!(wheel.insert(0, Duration::from_millis(10)).is_none());
        assert_eq!(wheel.len(), 1);
        assert_eq!(wheel.can_skip(), 0);
    }

    #[test]
    fn skip_millis() {
        let mut wheel: TimingWheel<usize, Milliseconds> = TimingWheel::new();

        assert!(wheel.insert(0, Duration::from_millis(255)).is_none());
        assert_eq!(wheel.len(), 1);
        assert_eq!(wheel.can_skip(), 0);

        let mut wheel: TimingWheel<usize, Milliseconds> = TimingWheel::new();
        assert!(wheel.insert(0, Duration::from_millis(256)).is_none());
        assert_eq!(wheel.len(), 1);
        assert_eq!(wheel.can_skip(), 255);
        wheel.skip(255);
        assert_eq!(wheel.tick().pop().unwrap(), 0);

        let mut wheel: TimingWheel<usize, Milliseconds> = TimingWheel::new();
        assert!(wheel.insert(0, Duration::from_millis(65536)).is_none());
        assert_eq!(wheel.len(), 1);
        assert_eq!(wheel.can_skip(), 65535);
        wheel.skip(65535);
        assert_eq!(wheel.tick().pop().unwrap(), 0);
    }
}