optirs_core/streaming/
mod.rs

1// Streaming optimization for real-time learning
2//
3// This module provides streaming gradient descent and other online optimization
4// algorithms designed for real-time data processing and low-latency inference.
5
6#[allow(dead_code)]
7use crate::error::{OptimError, Result};
8use scirs2_core::ndarray::{Array1, ArrayBase, ScalarOperand};
9use scirs2_core::numeric::Float;
10use std::collections::{HashMap, VecDeque};
11use std::fmt::Debug;
12use std::time::{Duration, Instant};
13
14pub mod adaptive_streaming;
15pub mod concept_drift;
16pub mod enhanced_adaptive_lr;
17pub mod low_latency;
18pub mod streaming_metrics;
19
20// Re-export key types for convenience
21pub use concept_drift::{ConceptDriftDetector, DriftDetectorConfig, DriftEvent, DriftStatus};
22pub use enhanced_adaptive_lr::{
23    AdaptationStatistics, AdaptiveLRConfig, EnhancedAdaptiveLRController,
24};
25pub use low_latency::{LowLatencyConfig, LowLatencyMetrics, LowLatencyOptimizer};
26pub use streaming_metrics::{MetricsSample, MetricsSummary, StreamingMetricsCollector};
27
28use crate::optimizers::Optimizer;
29
30/// Streaming optimization configuration
31#[derive(Debug, Clone)]
32pub struct StreamingConfig {
33    /// Buffer size for mini-batches
34    pub buffer_size: usize,
35
36    /// Maximum latency budget (milliseconds)
37    pub latency_budget_ms: u64,
38
39    /// Enable adaptive learning rates
40    pub adaptive_learning_rate: bool,
41
42    /// Concept drift detection threshold
43    pub drift_threshold: f64,
44
45    /// Window size for drift detection
46    pub drift_window_size: usize,
47
48    /// Enable gradient compression
49    pub gradient_compression: bool,
50
51    /// Compression ratio (0.0 to 1.0)
52    pub compression_ratio: f64,
53
54    /// Enable asynchronous updates
55    pub async_updates: bool,
56
57    /// Maximum staleness for asynchronous updates
58    pub max_staleness: usize,
59
60    /// Enable memory-efficient processing
61    pub memory_efficient: bool,
62
63    /// Target memory usage (MB)
64    pub memory_budget_mb: usize,
65
66    /// Learning rate adaptation strategy
67    pub lr_adaptation: LearningRateAdaptation,
68
69    /// Enable adaptive batching
70    pub adaptive_batching: bool,
71
72    /// Dynamic buffer sizing
73    pub dynamic_buffer_sizing: bool,
74
75    /// Real-time priority levels
76    pub enable_priority_scheduling: bool,
77
78    /// Advanced drift detection
79    pub advanced_drift_detection: bool,
80
81    /// Predictive processing
82    pub enable_prediction: bool,
83
84    /// Quality of service guarantees
85    pub qos_enabled: bool,
86
87    /// Enable multi-stream coordination
88    pub multi_stream_coordination: bool,
89
90    /// Enable predictive streaming algorithms
91    pub predictive_streaming: bool,
92
93    /// Enable stream fusion optimization
94    pub stream_fusion: bool,
95
96    /// Advanced QoS configuration
97    pub advanced_qos_config: AdvancedQoSConfig,
98
99    /// Real-time optimization parameters
100    pub real_time_config: RealTimeConfig,
101
102    /// Pipeline parallelism degree
103    pub pipeline_parallelism_degree: usize,
104
105    /// Enable adaptive resource allocation
106    pub adaptive_resource_allocation: bool,
107
108    /// Enable distributed streaming
109    pub distributed_streaming: bool,
110
111    /// Stream processing priority
112    pub processingpriority: StreamPriority,
113}
114
115impl Default for StreamingConfig {
116    fn default() -> Self {
117        Self {
118            buffer_size: 32,
119            latency_budget_ms: 10,
120            adaptive_learning_rate: true,
121            drift_threshold: 0.1,
122            drift_window_size: 1000,
123            gradient_compression: false,
124            compression_ratio: 0.5,
125            async_updates: false,
126            max_staleness: 10,
127            memory_efficient: true,
128            memory_budget_mb: 100,
129            lr_adaptation: LearningRateAdaptation::Adagrad,
130            adaptive_batching: true,
131            dynamic_buffer_sizing: true,
132            enable_priority_scheduling: false,
133            advanced_drift_detection: true,
134            enable_prediction: false,
135            qos_enabled: false,
136            multi_stream_coordination: false,
137            predictive_streaming: true,
138            stream_fusion: true,
139            advanced_qos_config: AdvancedQoSConfig::default(),
140            real_time_config: RealTimeConfig::default(),
141            pipeline_parallelism_degree: 2,
142            adaptive_resource_allocation: true,
143            distributed_streaming: false,
144            processingpriority: StreamPriority::Normal,
145        }
146    }
147}
148
149/// Learning rate adaptation strategies for streaming
150#[derive(Debug, Clone, Copy)]
151pub enum LearningRateAdaptation {
152    /// Fixed learning rate
153    Fixed,
154    /// AdaGrad-style adaptation
155    Adagrad,
156    /// RMSprop-style adaptation
157    RMSprop,
158    /// Performance-based adaptation
159    PerformanceBased,
160    /// Concept drift aware adaptation
161    DriftAware,
162    /// Adaptive momentum-based
163    AdaptiveMomentum,
164    /// Gradient variance-based
165    GradientVariance,
166    /// Predictive adaptation
167    PredictiveLR,
168}
169
170/// Streaming gradient descent optimizer
171pub struct StreamingOptimizer<O, A, D>
172where
173    A: Float + Send + Sync + ScalarOperand + Debug,
174    D: scirs2_core::ndarray::Dimension,
175    O: Optimizer<A, D>,
176{
177    /// Base optimizer
178    baseoptimizer: O,
179
180    /// Configuration
181    config: StreamingConfig,
182
183    /// Data buffer for mini-batches
184    data_buffer: VecDeque<StreamingDataPoint<A>>,
185
186    /// Gradient buffer
187    gradient_buffer: Option<Array1<A>>,
188
189    /// Learning rate adaptation state
190    lr_adaptation_state: LearningRateAdaptationState<A>,
191
192    /// Concept drift detector
193    drift_detector: StreamingDriftDetector<A>,
194
195    /// Performance metrics
196    metrics: StreamingMetrics,
197
198    /// Timing information
199    timing: TimingTracker,
200
201    /// Memory usage tracker
202    memory_tracker: MemoryTracker,
203
204    /// Asynchronous update state
205    async_state: Option<AsyncUpdateState<A, D>>,
206
207    /// Current step count
208    step_count: usize,
209    /// Multi-stream coordinator
210    multi_stream_coordinator: Option<MultiStreamCoordinator<A>>,
211
212    /// Predictive streaming engine
213    predictive_engine: Option<PredictiveStreamingEngine<A>>,
214
215    /// Stream fusion optimizer
216    fusion_optimizer: Option<StreamFusionOptimizer<A>>,
217
218    /// Advanced QoS manager
219    qos_manager: AdvancedQoSManager,
220
221    /// Real-time performance optimizer
222    rt_optimizer: RealTimeOptimizer,
223
224    /// Resource allocation manager
225    resource_manager: Option<AdaptiveResourceManager>,
226
227    /// Pipeline execution manager
228    pipeline_manager: PipelineExecutionManager<A>,
229}
230
231/// Streaming data point
232#[derive(Debug, Clone)]
233pub struct StreamingDataPoint<A: Float + Send + Sync> {
234    /// Feature vector
235    pub features: Array1<A>,
236
237    /// Target value (for supervised learning)
238    pub target: Option<A>,
239
240    /// Timestamp
241    pub timestamp: Instant,
242
243    /// Sample weight
244    pub weight: A,
245
246    /// Metadata
247    pub metadata: HashMap<String, String>,
248}
249
250/// Learning rate adaptation state
251#[derive(Debug, Clone)]
252struct LearningRateAdaptationState<A: Float + Send + Sync> {
253    /// Current learning rate
254    current_lr: A,
255
256    /// Accumulated squared gradients (for AdaGrad)
257    accumulated_gradients: Option<Array1<A>>,
258
259    /// Exponential moving average of squared gradients (for RMSprop)
260    ema_squared_gradients: Option<Array1<A>>,
261
262    /// Performance history
263    performance_history: VecDeque<A>,
264
265    /// Last adaptation time
266    last_adaptation: Instant,
267
268    /// Adaptation frequency
269    adaptation_frequency: Duration,
270}
271
272/// Streaming concept drift detection
273#[derive(Debug, Clone)]
274struct StreamingDriftDetector<A: Float + Send + Sync> {
275    /// Window of recent losses
276    loss_window: VecDeque<A>,
277
278    /// Historical loss statistics
279    historical_mean: A,
280    historical_std: A,
281
282    /// Drift detection threshold
283    threshold: A,
284
285    /// Last drift detection time
286    last_drift: Option<Instant>,
287
288    /// Drift count
289    drift_count: usize,
290}
291
292/// Streaming performance metrics
293#[derive(Debug, Clone)]
294pub struct StreamingMetrics {
295    /// Total samples processed
296    pub samples_processed: usize,
297
298    /// Current processing rate (samples/second)
299    pub processing_rate: f64,
300
301    /// Average latency per sample (milliseconds)
302    pub avg_latency_ms: f64,
303
304    /// 95th percentile latency (milliseconds)
305    pub p95_latency_ms: f64,
306
307    /// Memory usage (MB)
308    pub memory_usage_mb: f64,
309
310    /// Concept drifts detected
311    pub drift_count: usize,
312
313    /// Current loss
314    pub current_loss: f64,
315
316    /// Learning rate
317    pub current_learning_rate: f64,
318
319    /// Throughput violations (exceeded latency budget)
320    pub throughput_violations: usize,
321}
322
323/// Timing tracker for performance monitoring
324#[derive(Debug)]
325struct TimingTracker {
326    /// Latency samples
327    latency_samples: VecDeque<Duration>,
328
329    /// Last processing start time
330    last_start: Option<Instant>,
331
332    /// Processing start time for current batch
333    batch_start: Option<Instant>,
334
335    /// Maximum samples to keep
336    max_samples: usize,
337}
338
339/// Memory usage tracker
340#[derive(Debug)]
341struct MemoryTracker {
342    /// Current estimated usage (bytes)
343    current_usage: usize,
344
345    /// Peak usage
346    peak_usage: usize,
347
348    /// Memory budget (bytes)
349    budget: usize,
350
351    /// Usage history
352    usage_history: VecDeque<usize>,
353}
354
355/// Asynchronous update state
356#[derive(Debug)]
357struct AsyncUpdateState<A: Float, D: scirs2_core::ndarray::Dimension> {
358    /// Pending gradients
359    pending_gradients: Vec<ArrayBase<scirs2_core::ndarray::OwnedRepr<A>, D>>,
360
361    /// Update queue
362    update_queue: VecDeque<AsyncUpdate<A, D>>,
363
364    /// Staleness counter
365    staleness_counter: HashMap<usize, usize>,
366
367    /// Update thread handle
368    update_thread: Option<std::thread::JoinHandle<()>>,
369}
370
371/// Asynchronous update entry
372#[derive(Debug, Clone)]
373struct AsyncUpdate<A: Float, D: scirs2_core::ndarray::Dimension> {
374    /// Parameter update
375    update: ArrayBase<scirs2_core::ndarray::OwnedRepr<A>, D>,
376
377    /// Timestamp
378    timestamp: Instant,
379
380    /// Priority
381    priority: UpdatePriority,
382
383    /// Staleness
384    staleness: usize,
385}
386
387/// Update priority levels
388#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
389enum UpdatePriority {
390    Low,
391    Normal,
392    High,
393    Critical,
394}
395
396impl<O, A, D> StreamingOptimizer<O, A, D>
397where
398    A: Float
399        + Default
400        + Clone
401        + Send
402        + Sync
403        + std::fmt::Debug
404        + ScalarOperand
405        + std::iter::Sum
406        + std::ops::DivAssign,
407    D: scirs2_core::ndarray::Dimension,
408    O: Optimizer<A, D> + Send + Sync,
409{
410    /// Create a new streaming optimizer
411    pub fn new(baseoptimizer: O, config: StreamingConfig) -> Result<Self> {
412        let lr_adaptation_state = LearningRateAdaptationState {
413            current_lr: A::from(0.01).unwrap(), // Default learning rate
414            accumulated_gradients: None,
415            ema_squared_gradients: None,
416            performance_history: VecDeque::with_capacity(100),
417            last_adaptation: Instant::now(),
418            adaptation_frequency: Duration::from_millis(1000),
419        };
420
421        let drift_detector = StreamingDriftDetector {
422            loss_window: VecDeque::with_capacity(config.drift_window_size),
423            historical_mean: A::zero(),
424            historical_std: A::one(),
425            threshold: A::from(config.drift_threshold).unwrap(),
426            last_drift: None,
427            drift_count: 0,
428        };
429
430        let timing = TimingTracker {
431            latency_samples: VecDeque::with_capacity(1000),
432            last_start: None,
433            batch_start: None,
434            max_samples: 1000,
435        };
436
437        let memory_tracker = MemoryTracker {
438            current_usage: 0,
439            peak_usage: 0,
440            budget: config.memory_budget_mb * 1024 * 1024,
441            usage_history: VecDeque::with_capacity(100),
442        };
443
444        let async_state = if config.async_updates {
445            Some(AsyncUpdateState {
446                pending_gradients: Vec::new(),
447                update_queue: VecDeque::new(),
448                staleness_counter: HashMap::new(),
449                update_thread: None,
450            })
451        } else {
452            None
453        };
454
455        // Initialize advanced components
456        let multi_stream_coordinator = if config.multi_stream_coordination {
457            Some(MultiStreamCoordinator::new(&config)?)
458        } else {
459            None
460        };
461
462        let predictive_engine = if config.predictive_streaming {
463            Some(PredictiveStreamingEngine::new(&config)?)
464        } else {
465            None
466        };
467
468        let fusion_optimizer = if config.stream_fusion {
469            Some(StreamFusionOptimizer::new(&config)?)
470        } else {
471            None
472        };
473
474        let qos_manager = AdvancedQoSManager::new(config.advanced_qos_config.clone());
475        let rt_optimizer = RealTimeOptimizer::new(config.real_time_config.clone())?;
476
477        let resource_manager = if config.adaptive_resource_allocation {
478            Some(AdaptiveResourceManager::new(&config)?)
479        } else {
480            None
481        };
482
483        let pipeline_manager = PipelineExecutionManager::new(
484            config.pipeline_parallelism_degree,
485            config.processingpriority,
486        );
487
488        // Save buffer_size before moving config
489        let buffer_size = config.buffer_size;
490
491        Ok(Self {
492            baseoptimizer,
493            config,
494            data_buffer: VecDeque::with_capacity(buffer_size),
495            gradient_buffer: None,
496            lr_adaptation_state,
497            drift_detector,
498            metrics: StreamingMetrics::default(),
499            timing,
500            memory_tracker,
501            async_state,
502            step_count: 0,
503            multi_stream_coordinator,
504            predictive_engine,
505            fusion_optimizer,
506            qos_manager,
507            rt_optimizer,
508            resource_manager,
509            pipeline_manager,
510        })
511    }
512
513    /// Process a single streaming data point
514    #[allow(clippy::too_many_arguments)]
515    pub fn process_sample(
516        &mut self,
517        data_point: StreamingDataPoint<A>,
518    ) -> Result<Option<Array1<A>>> {
519        let starttime = Instant::now();
520        self.timing.batch_start = Some(starttime);
521
522        // Add to buffer
523        self.data_buffer.push_back(data_point);
524        self.update_memory_usage();
525
526        // Check if buffer is full or latency budget is approaching
527        let should_update = self.data_buffer.len() >= self.config.buffer_size
528            || self.should_force_update(starttime);
529
530        if should_update {
531            let result = self.process_buffer()?;
532
533            // Update timing metrics
534            let latency = starttime.elapsed();
535            self.update_timing_metrics(latency);
536
537            // Check for concept drift
538            if let Some(ref update) = result {
539                self.check_concept_drift(update)?;
540            }
541
542            Ok(result)
543        } else {
544            Ok(None)
545        }
546    }
547
548    fn should_force_update(&self, starttime: Instant) -> bool {
549        if let Some(batch_start) = self.timing.batch_start {
550            let elapsed = starttime.duration_since(batch_start);
551            elapsed.as_millis() as u64 >= self.config.latency_budget_ms / 2
552        } else {
553            false
554        }
555    }
556
557    fn process_buffer(&mut self) -> Result<Option<Array1<A>>> {
558        if self.data_buffer.is_empty() {
559            return Ok(None);
560        }
561
562        // Compute mini-batch gradient
563        let gradient = self.compute_mini_batch_gradient()?;
564
565        // Apply gradient compression if enabled
566        let compressed_gradient = if self.config.gradient_compression {
567            self.compress_gradient(&gradient)?
568        } else {
569            gradient
570        };
571
572        // Adapt learning rate
573        self.adapt_learning_rate(&compressed_gradient)?;
574
575        // Apply optimizer step
576        let current_params = self.get_current_parameters()?;
577        let updated_params = if self.config.async_updates {
578            self.async_update(&current_params, &compressed_gradient)?
579        } else {
580            self.sync_update(&current_params, &compressed_gradient)?
581        };
582
583        // Clear buffer
584        self.data_buffer.clear();
585        self.step_count += 1;
586
587        // Update metrics
588        self.update_metrics();
589
590        Ok(Some(updated_params))
591    }
592
593    fn compute_mini_batch_gradient(&self) -> Result<Array1<A>> {
594        if self.data_buffer.is_empty() {
595            return Err(OptimError::InvalidConfig("Empty data buffer".to_string()));
596        }
597
598        let batch_size = self.data_buffer.len();
599        let featuredim = self.data_buffer[0].features.len();
600        let mut gradient = Array1::zeros(featuredim);
601
602        // Simplified gradient computation (would depend on loss function)
603        for data_point in &self.data_buffer {
604            // For demonstration: compute a simple linear regression gradient
605            if let Some(target) = data_point.target {
606                let prediction = A::zero(); // Would compute actual prediction
607                let error = prediction - target;
608
609                for (i, &feature) in data_point.features.iter().enumerate() {
610                    gradient[i] = gradient[i] + error * feature * data_point.weight;
611                }
612            }
613        }
614
615        // Average over batch
616        let batch_size_a = A::from(batch_size).unwrap();
617        gradient.mapv_inplace(|g| g / batch_size_a);
618
619        Ok(gradient)
620    }
621
622    fn compress_gradient(&self, gradient: &Array1<A>) -> Result<Array1<A>> {
623        let k = (gradient.len() as f64 * self.config.compression_ratio) as usize;
624        let mut compressed = gradient.clone();
625
626        // Top-k sparsification
627        let mut abs_values: Vec<(usize, A)> = gradient
628            .iter()
629            .enumerate()
630            .map(|(i, &g)| (i, g.abs()))
631            .collect();
632
633        abs_values.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap());
634
635        // Zero out all but top-k elements
636        for (i, _) in abs_values.iter().skip(k) {
637            compressed[*i] = A::zero();
638        }
639
640        Ok(compressed)
641    }
642
643    fn adapt_learning_rate(&mut self, gradient: &Array1<A>) -> Result<()> {
644        if !self.config.adaptive_learning_rate {
645            return Ok(());
646        }
647
648        match self.config.lr_adaptation {
649            LearningRateAdaptation::Fixed => {
650                // Do nothing
651            }
652            LearningRateAdaptation::Adagrad => {
653                self.adapt_adagrad(gradient)?;
654            }
655            LearningRateAdaptation::RMSprop => {
656                self.adapt_rmsprop(gradient)?;
657            }
658            LearningRateAdaptation::PerformanceBased => {
659                self.adapt_performance_based()?;
660            }
661            LearningRateAdaptation::DriftAware => {
662                self.adapt_drift_aware()?;
663            }
664            LearningRateAdaptation::AdaptiveMomentum => {
665                self.adapt_momentum_based(gradient)?;
666            }
667            LearningRateAdaptation::GradientVariance => {
668                self.adapt_gradient_variance(gradient)?;
669            }
670            LearningRateAdaptation::PredictiveLR => {
671                self.adapt_predictive()?;
672            }
673        }
674
675        Ok(())
676    }
677
678    fn adapt_adagrad(&mut self, gradient: &Array1<A>) -> Result<()> {
679        if self.lr_adaptation_state.accumulated_gradients.is_none() {
680            self.lr_adaptation_state.accumulated_gradients = Some(Array1::zeros(gradient.len()));
681        }
682
683        let acc_grads = self
684            .lr_adaptation_state
685            .accumulated_gradients
686            .as_mut()
687            .unwrap();
688
689        // Update accumulated gradients
690        for i in 0..gradient.len() {
691            acc_grads[i] = acc_grads[i] + gradient[i] * gradient[i];
692        }
693
694        // Compute adaptive learning rate (simplified)
695        let base_lr = A::from(0.01).unwrap();
696        let eps = A::from(1e-8).unwrap();
697        let norm_sum = acc_grads.iter().copied().sum::<A>();
698        let adaptive_factor = (norm_sum + eps).sqrt();
699
700        self.lr_adaptation_state.current_lr = base_lr / adaptive_factor;
701
702        Ok(())
703    }
704
705    fn adapt_rmsprop(&mut self, gradient: &Array1<A>) -> Result<()> {
706        if self.lr_adaptation_state.ema_squared_gradients.is_none() {
707            self.lr_adaptation_state.ema_squared_gradients = Some(Array1::zeros(gradient.len()));
708        }
709
710        let ema_grads = self
711            .lr_adaptation_state
712            .ema_squared_gradients
713            .as_mut()
714            .unwrap();
715        let decay = A::from(0.9).unwrap();
716        let one_minus_decay = A::one() - decay;
717
718        // Update exponential moving average
719        for i in 0..gradient.len() {
720            ema_grads[i] = decay * ema_grads[i] + one_minus_decay * gradient[i] * gradient[i];
721        }
722
723        // Compute adaptive learning rate
724        let base_lr = A::from(0.01).unwrap();
725        let eps = A::from(1e-8).unwrap();
726        let rms = ema_grads.iter().copied().sum::<A>().sqrt();
727
728        self.lr_adaptation_state.current_lr = base_lr / (rms + eps);
729
730        Ok(())
731    }
732
733    fn adapt_performance_based(&mut self) -> Result<()> {
734        // Adapt based on recent performance
735        if self.lr_adaptation_state.performance_history.len() < 2 {
736            return Ok(());
737        }
738
739        let recent_perf = self.lr_adaptation_state.performance_history.back().unwrap();
740        let prev_perf = self
741            .lr_adaptation_state
742            .performance_history
743            .get(self.lr_adaptation_state.performance_history.len() - 2)
744            .unwrap();
745
746        let improvement = *prev_perf - *recent_perf; // Assuming lower is better
747
748        if improvement > A::zero() {
749            // Performance improved, slightly increase LR
750            self.lr_adaptation_state.current_lr =
751                self.lr_adaptation_state.current_lr * A::from(1.01).unwrap();
752        } else {
753            // Performance degraded, decrease LR
754            self.lr_adaptation_state.current_lr =
755                self.lr_adaptation_state.current_lr * A::from(0.99).unwrap();
756        }
757
758        Ok(())
759    }
760
761    fn adapt_drift_aware(&mut self) -> Result<()> {
762        // Increase learning rate if drift was recently detected
763        if let Some(last_drift) = self.drift_detector.last_drift {
764            let time_since_drift = last_drift.elapsed();
765            if time_since_drift < Duration::from_secs(60) {
766                // Recent drift detected, increase learning rate
767                self.lr_adaptation_state.current_lr =
768                    self.lr_adaptation_state.current_lr * A::from(1.5).unwrap();
769            }
770        }
771
772        Ok(())
773    }
774
775    fn check_concept_drift(&mut self, update: &Array1<A>) -> Result<()> {
776        // Simplified concept drift detection based on loss
777        let current_loss = A::from(self.metrics.current_loss).unwrap();
778
779        self.drift_detector.loss_window.push_back(current_loss);
780        if self.drift_detector.loss_window.len() > self.config.drift_window_size {
781            self.drift_detector.loss_window.pop_front();
782        }
783
784        if self.drift_detector.loss_window.len() >= 10 {
785            // Compute statistics
786            let mean = self.drift_detector.loss_window.iter().cloned().sum::<A>()
787                / A::from(self.drift_detector.loss_window.len()).unwrap();
788
789            let variance = self
790                .drift_detector
791                .loss_window
792                .iter()
793                .map(|&loss| {
794                    let diff = loss - mean;
795                    diff * diff
796                })
797                .sum::<A>()
798                / A::from(self.drift_detector.loss_window.len()).unwrap();
799
800            let std = variance.sqrt();
801
802            // Check for drift (simplified statistical test)
803            let z_score = (current_loss - self.drift_detector.historical_mean).abs()
804                / (self.drift_detector.historical_std + A::from(1e-8).unwrap());
805
806            if z_score > self.drift_detector.threshold {
807                // Drift detected
808                self.drift_detector.last_drift = Some(Instant::now());
809                self.drift_detector.drift_count += 1;
810                self.metrics.drift_count = self.drift_detector.drift_count;
811
812                // Update historical statistics
813                self.drift_detector.historical_mean = mean;
814                self.drift_detector.historical_std = std;
815
816                // Trigger learning rate adaptation
817                if matches!(
818                    self.config.lr_adaptation,
819                    LearningRateAdaptation::DriftAware
820                ) {
821                    self.adapt_drift_aware()?;
822                }
823            }
824        }
825
826        Ok(())
827    }
828
829    fn get_current_parameters(&self) -> Result<Array1<A>> {
830        // Placeholder - would get actual parameters from model
831        // For now, return an empty Array1 as a placeholder
832        Ok(Array1::zeros(0))
833    }
834
835    fn sync_update(&mut self, params: &Array1<A>, gradient: &Array1<A>) -> Result<Array1<A>> {
836        // Apply gradient update synchronously
837        // We need to ensure proper type conversion from Array1<A> to Array<A, D>
838        // This will only work if D is compatible with Ix1 (1D)
839        let params_owned = params.clone();
840        let gradient_owned = gradient.clone();
841
842        // Convert Array1<A> to Array<A, D> - this requires D to be Ix1
843        let params_generic = params_owned.into_dimensionality::<D>()?;
844        let gradient_generic = gradient_owned.into_dimensionality::<D>()?;
845
846        let result = self
847            .baseoptimizer
848            .step(&params_generic, &gradient_generic)?;
849
850        // Convert back to Array1
851        Ok(result.into_dimensionality::<scirs2_core::ndarray::Ix1>()?)
852    }
853
854    fn async_update(&mut self, params: &Array1<A>, gradient: &Array1<A>) -> Result<Array1<A>> {
855        if let Some(ref mut async_state) = self.async_state {
856            // Add to update queue
857            let gradient_generic = gradient.clone().into_dimensionality::<D>()?;
858            let update = AsyncUpdate {
859                update: gradient_generic,
860                timestamp: Instant::now(),
861                priority: UpdatePriority::Normal,
862                staleness: 0,
863            };
864
865            async_state.update_queue.push_back(update);
866
867            // Process updates if queue is full or max staleness reached
868            if async_state.update_queue.len() >= self.config.buffer_size
869                || self.max_staleness_reached()
870            {
871                return self.process_async_updates();
872            }
873        }
874
875        // Return current parameters for now
876        self.get_current_parameters()
877    }
878
879    fn max_staleness_reached(&self) -> bool {
880        if let Some(ref async_state) = self.async_state {
881            async_state
882                .update_queue
883                .iter()
884                .any(|update| update.staleness >= self.config.max_staleness)
885        } else {
886            false
887        }
888    }
889
890    fn process_async_updates(&mut self) -> Result<Array1<A>> {
891        // Simplified async update processing
892        if let Some(ref mut async_state) = self.async_state {
893            if let Some(update) = async_state.update_queue.pop_front() {
894                let current_params = self.get_current_parameters()?;
895                // Only works for 1D arrays, need to handle differently for other dimensions
896                if let (Ok(params_1d), Ok(_update_1d)) = (
897                    current_params.into_dimensionality::<scirs2_core::ndarray::Ix1>(),
898                    update
899                        .update
900                        .into_dimensionality::<scirs2_core::ndarray::Ix1>(),
901                ) {
902                    // This only works if D = Ix1, need a better approach
903                    // For now, just return the current parameters
904                    return Ok(params_1d);
905                }
906            }
907        }
908
909        self.get_current_parameters()
910    }
911
912    fn update_timing_metrics(&mut self, latency: Duration) {
913        self.timing.latency_samples.push_back(latency);
914        if self.timing.latency_samples.len() > self.timing.max_samples {
915            self.timing.latency_samples.pop_front();
916        }
917
918        // Check for throughput violations
919        if latency.as_millis() as u64 > self.config.latency_budget_ms {
920            self.metrics.throughput_violations += 1;
921        }
922    }
923
924    fn update_memory_usage(&mut self) {
925        // Estimate memory usage
926        let buffer_size = self.data_buffer.len() * std::mem::size_of::<StreamingDataPoint<A>>();
927        let gradient_size = self
928            .gradient_buffer
929            .as_ref()
930            .map(|g| g.len() * std::mem::size_of::<A>())
931            .unwrap_or(0);
932
933        self.memory_tracker.current_usage = buffer_size + gradient_size;
934        self.memory_tracker.peak_usage = self
935            .memory_tracker
936            .peak_usage
937            .max(self.memory_tracker.current_usage);
938
939        self.memory_tracker
940            .usage_history
941            .push_back(self.memory_tracker.current_usage);
942        if self.memory_tracker.usage_history.len() > 100 {
943            self.memory_tracker.usage_history.pop_front();
944        }
945    }
946
947    fn update_metrics(&mut self) {
948        self.metrics.samples_processed += self.data_buffer.len();
949
950        // Update processing rate
951        if let Some(batch_start) = self.timing.batch_start {
952            let elapsed = batch_start.elapsed().as_secs_f64();
953            if elapsed > 0.0 {
954                self.metrics.processing_rate = self.data_buffer.len() as f64 / elapsed;
955            }
956        }
957
958        // Update latency metrics
959        if !self.timing.latency_samples.is_empty() {
960            let sum: Duration = self.timing.latency_samples.iter().sum();
961            self.metrics.avg_latency_ms =
962                sum.as_millis() as f64 / self.timing.latency_samples.len() as f64;
963
964            // Compute 95th percentile
965            let mut sorted_latencies: Vec<_> = self.timing.latency_samples.iter().collect();
966            sorted_latencies.sort();
967            let p95_index = (0.95 * sorted_latencies.len() as f64) as usize;
968            if p95_index < sorted_latencies.len() {
969                self.metrics.p95_latency_ms = sorted_latencies[p95_index].as_millis() as f64;
970            }
971        }
972
973        // Update memory metrics
974        self.metrics.memory_usage_mb = self.memory_tracker.current_usage as f64 / (1024.0 * 1024.0);
975
976        // Update learning rate
977        self.metrics.current_learning_rate =
978            self.lr_adaptation_state.current_lr.to_f64().unwrap_or(0.0);
979    }
980
981    /// Get current streaming metrics
982    pub fn get_metrics(&self) -> &StreamingMetrics {
983        &self.metrics
984    }
985
986    /// Check if streaming optimizer is healthy (within budgets)
987    pub fn is_healthy(&self) -> StreamingHealthStatus {
988        let mut warnings = Vec::new();
989        let mut is_healthy = true;
990
991        // Check latency budget
992        if self.metrics.avg_latency_ms > self.config.latency_budget_ms as f64 {
993            warnings.push("Average latency exceeds budget".to_string());
994            is_healthy = false;
995        }
996
997        // Check memory budget
998        if self.memory_tracker.current_usage > self.memory_tracker.budget {
999            warnings.push("Memory usage exceeds budget".to_string());
1000            is_healthy = false;
1001        }
1002
1003        // Check for frequent concept drift
1004        if self.metrics.drift_count > 10 && self.step_count > 0 {
1005            let drift_rate = self.metrics.drift_count as f64 / self.step_count as f64;
1006            if drift_rate > 0.1 {
1007                warnings.push("High concept drift rate detected".to_string());
1008            }
1009        }
1010
1011        StreamingHealthStatus {
1012            is_healthy,
1013            warnings,
1014            metrics: self.metrics.clone(),
1015        }
1016    }
1017
1018    /// Force processing of current buffer
1019    pub fn flush(&mut self) -> Result<Option<Array1<A>>> {
1020        if !self.data_buffer.is_empty() {
1021            self.process_buffer()
1022        } else {
1023            Ok(None)
1024        }
1025    }
1026
1027    /// Adaptive momentum-based learning rate adaptation
1028    fn adapt_momentum_based(&mut self, gradient: &Array1<A>) -> Result<()> {
1029        // Initialize momentum if needed
1030        if self.lr_adaptation_state.ema_squared_gradients.is_none() {
1031            self.lr_adaptation_state.ema_squared_gradients = Some(Array1::zeros(gradient.len()));
1032        }
1033
1034        let momentum = self
1035            .lr_adaptation_state
1036            .ema_squared_gradients
1037            .as_mut()
1038            .unwrap();
1039        let beta = A::from(0.9).unwrap();
1040        let one_minus_beta = A::one() - beta;
1041
1042        // Update momentum
1043        for i in 0..gradient.len() {
1044            momentum[i] = beta * momentum[i] + one_minus_beta * gradient[i];
1045        }
1046
1047        // Adapt learning rate based on momentum magnitude
1048        let momentum_norm = momentum.iter().map(|&m| m * m).sum::<A>().sqrt();
1049        let base_lr = A::from(0.01).unwrap();
1050        let adaptation_factor = A::one() + momentum_norm * A::from(0.1).unwrap();
1051
1052        self.lr_adaptation_state.current_lr = base_lr / adaptation_factor;
1053
1054        Ok(())
1055    }
1056
1057    /// Gradient variance-based learning rate adaptation
1058    fn adapt_gradient_variance(&mut self, gradient: &Array1<A>) -> Result<()> {
1059        // Track gradient variance
1060        if self.lr_adaptation_state.accumulated_gradients.is_none() {
1061            self.lr_adaptation_state.accumulated_gradients = Some(Array1::zeros(gradient.len()));
1062            self.lr_adaptation_state.ema_squared_gradients = Some(Array1::zeros(gradient.len()));
1063        }
1064
1065        let mean_grad = self
1066            .lr_adaptation_state
1067            .accumulated_gradients
1068            .as_mut()
1069            .unwrap();
1070        let mean_squared_grad = self
1071            .lr_adaptation_state
1072            .ema_squared_gradients
1073            .as_mut()
1074            .unwrap();
1075
1076        let alpha = A::from(0.99).unwrap(); // Decay for moving average
1077        let one_minus_alpha = A::one() - alpha;
1078
1079        // Update running means
1080        for i in 0..gradient.len() {
1081            mean_grad[i] = alpha * mean_grad[i] + one_minus_alpha * gradient[i];
1082            mean_squared_grad[i] =
1083                alpha * mean_squared_grad[i] + one_minus_alpha * gradient[i] * gradient[i];
1084        }
1085
1086        // Compute variance
1087        let variance = mean_squared_grad
1088            .iter()
1089            .zip(mean_grad.iter())
1090            .map(|(&sq, &m)| sq - m * m)
1091            .sum::<A>()
1092            / A::from(gradient.len()).unwrap();
1093
1094        // Adapt learning rate inversely to variance
1095        let base_lr = A::from(0.01).unwrap();
1096        let var_factor = A::one() + variance.sqrt() * A::from(10.0).unwrap();
1097
1098        self.lr_adaptation_state.current_lr = base_lr / var_factor;
1099
1100        Ok(())
1101    }
1102
1103    /// Predictive learning rate adaptation
1104    fn adapt_predictive(&mut self) -> Result<()> {
1105        // Use performance history to predict optimal learning rate
1106        if self.lr_adaptation_state.performance_history.len() < 3 {
1107            return Ok(());
1108        }
1109
1110        let history = &self.lr_adaptation_state.performance_history;
1111        let n = history.len();
1112
1113        // Simple linear prediction of next performance
1114        let recent_trend = if n >= 3 {
1115            let last = history[n - 1];
1116            let second_last = history[n - 2];
1117            let third_last = history[n - 3];
1118
1119            // Compute second derivative (acceleration)
1120            let first_diff = last - second_last;
1121            let second_diff = second_last - third_last;
1122
1123            first_diff - second_diff
1124        } else {
1125            A::zero()
1126        };
1127
1128        // Adjust learning rate based on predicted trend
1129        let adjustment = if recent_trend > A::zero() {
1130            // Performance is accelerating (getting worse), decrease LR
1131            A::from(0.95).unwrap()
1132        } else {
1133            // Performance is improving or stable, slightly increase LR
1134            A::from(1.02).unwrap()
1135        };
1136
1137        self.lr_adaptation_state.current_lr = self.lr_adaptation_state.current_lr * adjustment;
1138
1139        // Clamp to reasonable bounds
1140        let min_lr = A::from(1e-6).unwrap();
1141        let max_lr = A::from(1.0).unwrap();
1142
1143        self.lr_adaptation_state.current_lr =
1144            self.lr_adaptation_state.current_lr.max(min_lr).min(max_lr);
1145
1146        Ok(())
1147    }
1148}
1149
1150impl Default for StreamingMetrics {
1151    fn default() -> Self {
1152        Self {
1153            samples_processed: 0,
1154            processing_rate: 0.0,
1155            avg_latency_ms: 0.0,
1156            p95_latency_ms: 0.0,
1157            memory_usage_mb: 0.0,
1158            drift_count: 0,
1159            current_loss: 0.0,
1160            current_learning_rate: 0.01,
1161            throughput_violations: 0,
1162        }
1163    }
1164}
1165
1166/// Health status of streaming optimizer
1167#[derive(Debug, Clone)]
1168pub struct StreamingHealthStatus {
1169    pub is_healthy: bool,
1170    pub warnings: Vec<String>,
1171    pub metrics: StreamingMetrics,
1172}
1173
1174/// Quality of Service status
1175#[derive(Debug, Clone)]
1176pub struct QoSStatus {
1177    pub is_compliant: bool,
1178    pub violations: Vec<QoSViolation>,
1179    pub timestamp: Instant,
1180}
1181
1182/// Quality of Service violation types
1183#[derive(Debug, Clone)]
1184pub enum QoSViolation {
1185    LatencyExceeded { actual: f64, target: f64 },
1186    MemoryExceeded { actual: f64, target: f64 },
1187    ThroughputDegraded { violation_rate: f64 },
1188    PredictionAccuracyDegraded { current: f64, target: f64 },
1189    ResourceUtilizationLow { utilization: f64, target: f64 },
1190    StreamSynchronizationLoss { delay_ms: f64 },
1191}
1192
1193/// Advanced Quality of Service configuration
1194#[derive(Debug, Clone)]
1195pub struct AdvancedQoSConfig {
1196    /// Strict latency guarantees
1197    pub strict_latency_bounds: bool,
1198
1199    /// Quality degradation tolerance
1200    pub quality_degradation_tolerance: f64,
1201
1202    /// Resource reservation strategy
1203    pub resource_reservation: ResourceReservationStrategy,
1204
1205    /// Adaptive QoS adjustment
1206    pub adaptive_adjustment: bool,
1207
1208    /// Priority-based scheduling
1209    pub priority_scheduling: bool,
1210
1211    /// Service level objectives
1212    pub service_level_objectives: Vec<ServiceLevelObjective>,
1213}
1214
1215impl Default for AdvancedQoSConfig {
1216    fn default() -> Self {
1217        Self {
1218            strict_latency_bounds: true,
1219            quality_degradation_tolerance: 0.05,
1220            resource_reservation: ResourceReservationStrategy::Adaptive,
1221            adaptive_adjustment: true,
1222            priority_scheduling: true,
1223            service_level_objectives: vec![
1224                ServiceLevelObjective {
1225                    metric: QoSMetric::Latency,
1226                    target_value: 10.0,
1227                    tolerance: 0.1,
1228                },
1229                ServiceLevelObjective {
1230                    metric: QoSMetric::Throughput,
1231                    target_value: 1000.0,
1232                    tolerance: 0.05,
1233                },
1234            ],
1235        }
1236    }
1237}
1238
1239/// Resource reservation strategies
1240#[derive(Debug, Clone, Copy)]
1241pub enum ResourceReservationStrategy {
1242    Static,
1243    Dynamic,
1244    Adaptive,
1245    PredictiveBased,
1246}
1247
1248/// Service level objective
1249#[derive(Debug, Clone)]
1250pub struct ServiceLevelObjective {
1251    pub metric: QoSMetric,
1252    pub target_value: f64,
1253    pub tolerance: f64,
1254}
1255
1256/// Quality of Service metrics
1257#[derive(Debug, Clone, Copy)]
1258pub enum QoSMetric {
1259    Latency,
1260    Throughput,
1261    MemoryUsage,
1262    CpuUtilization,
1263    PredictionAccuracy,
1264    StreamSynchronization,
1265}
1266
1267/// Real-time optimization configuration
1268#[derive(Debug, Clone)]
1269pub struct RealTimeConfig {
1270    /// Real-time scheduling priority
1271    pub scheduling_priority: i32,
1272
1273    /// CPU affinity mask
1274    pub cpu_affinity: Option<Vec<usize>>,
1275
1276    /// Memory pre-allocation size
1277    pub memory_preallocation_mb: usize,
1278
1279    /// Enable NUMA optimization
1280    pub numa_optimization: bool,
1281
1282    /// Real-time deadline (microseconds)
1283    pub deadline_us: u64,
1284
1285    /// Enable lock-free data structures
1286    pub lock_free_structures: bool,
1287
1288    /// Interrupt handling strategy
1289    pub interrupt_strategy: InterruptStrategy,
1290}
1291
1292impl Default for RealTimeConfig {
1293    fn default() -> Self {
1294        Self {
1295            scheduling_priority: 50,
1296            cpu_affinity: None,
1297            memory_preallocation_mb: 64,
1298            numa_optimization: true,
1299            deadline_us: 10000, // 10ms
1300            lock_free_structures: true,
1301            interrupt_strategy: InterruptStrategy::Deferred,
1302        }
1303    }
1304}
1305
1306/// Interrupt handling strategies for real-time processing
1307#[derive(Debug, Clone, Copy)]
1308pub enum InterruptStrategy {
1309    Immediate,
1310    Deferred,
1311    Batched,
1312    Adaptive,
1313}
1314
1315/// Stream processing priority levels
1316#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
1317pub enum StreamPriority {
1318    Background,
1319    Low,
1320    Normal,
1321    High,
1322    Critical,
1323    RealTime,
1324}
1325
1326/// Multi-stream coordinator for synchronizing multiple data streams
1327#[allow(dead_code)]
1328pub struct MultiStreamCoordinator<A: Float + Send + Sync> {
1329    /// Stream configurations
1330    stream_configs: HashMap<String, StreamConfig<A>>,
1331
1332    /// Synchronization buffer
1333    sync_buffer: HashMap<String, VecDeque<StreamingDataPoint<A>>>,
1334
1335    /// Global clock for synchronization
1336    global_clock: Instant,
1337
1338    /// Maximum synchronization window
1339    max_sync_window_ms: u64,
1340
1341    /// Stream priorities
1342    stream_priorities: HashMap<String, StreamPriority>,
1343
1344    /// Load balancing strategy
1345    load_balancer: LoadBalancingStrategy,
1346}
1347
1348impl<A: Float + Send + Sync + Send + Sync> MultiStreamCoordinator<A> {
1349    pub fn new(config: &StreamingConfig) -> Result<Self> {
1350        Ok(Self {
1351            stream_configs: HashMap::new(),
1352            sync_buffer: HashMap::new(),
1353            global_clock: Instant::now(),
1354            max_sync_window_ms: config.latency_budget_ms * 2,
1355            stream_priorities: HashMap::new(),
1356            load_balancer: LoadBalancingStrategy::RoundRobin,
1357        })
1358    }
1359
1360    /// Add a new stream
1361    pub fn add_stream(
1362        &mut self,
1363        stream_id: String,
1364        config: StreamConfig<A>,
1365        priority: StreamPriority,
1366    ) {
1367        self.stream_configs.insert(stream_id.clone(), config);
1368        self.sync_buffer.insert(stream_id.clone(), VecDeque::new());
1369        self.stream_priorities.insert(stream_id, priority);
1370    }
1371
1372    /// Coordinate data from multiple streams
1373    pub fn coordinate_streams(&mut self) -> Result<Vec<StreamingDataPoint<A>>> {
1374        let mut coordinated_data = Vec::new();
1375        let current_time = Instant::now();
1376
1377        // Collect data within synchronization window
1378        for (stream_id, buffer) in &mut self.sync_buffer {
1379            let window_start = current_time - Duration::from_millis(self.max_sync_window_ms);
1380
1381            // Remove expired data
1382            buffer.retain(|point| point.timestamp >= window_start);
1383
1384            // Extract synchronized data based on priority
1385            if let Some(priority) = self.stream_priorities.get(stream_id) {
1386                match priority {
1387                    StreamPriority::RealTime | StreamPriority::Critical => {
1388                        // Process immediately
1389                        coordinated_data.extend(buffer.drain(..));
1390                    }
1391                    _ => {
1392                        // Buffer for batch processing
1393                        if buffer.len() >= 10 {
1394                            coordinated_data.extend(buffer.drain(..buffer.len() / 2));
1395                        }
1396                    }
1397                }
1398            }
1399        }
1400
1401        Ok(coordinated_data)
1402    }
1403}
1404
1405/// Stream configuration for individual streams
1406#[derive(Debug, Clone)]
1407pub struct StreamConfig<A: Float + Send + Sync> {
1408    pub buffer_size: usize,
1409    pub latency_tolerance_ms: u64,
1410    pub throughput_target: f64,
1411    pub quality_threshold: A,
1412}
1413
1414/// Load balancing strategies for multi-stream processing
1415#[derive(Debug, Clone, Copy)]
1416pub enum LoadBalancingStrategy {
1417    RoundRobin,
1418    WeightedRoundRobin,
1419    LeastConnections,
1420    PriorityBased,
1421    AdaptiveLoadAware,
1422}
1423
1424/// Predictive streaming engine for anticipating data patterns
1425#[allow(dead_code)]
1426pub struct PredictiveStreamingEngine<A: Float + Send + Sync> {
1427    /// Prediction model state
1428    prediction_model: PredictionModel<A>,
1429
1430    /// Historical data for pattern learning
1431    historical_buffer: VecDeque<StreamingDataPoint<A>>,
1432
1433    /// Prediction horizon (time steps)
1434    prediction_horizon: usize,
1435
1436    /// Confidence threshold for predictions
1437    confidence_threshold: A,
1438
1439    /// Adaptation rate for model updates
1440    adaptation_rate: A,
1441}
1442
1443impl<A: Float + Send + Sync + Send + Sync> PredictiveStreamingEngine<A> {
1444    pub fn new(config: &StreamingConfig) -> Result<Self> {
1445        Ok(Self {
1446            prediction_model: PredictionModel::new(config.buffer_size)?,
1447            historical_buffer: VecDeque::with_capacity(config.buffer_size * 2),
1448            prediction_horizon: 10,
1449            confidence_threshold: A::from(0.8).unwrap(),
1450            adaptation_rate: A::from(0.1).unwrap(),
1451        })
1452    }
1453
1454    /// Predict future data points
1455    pub fn predict_next(
1456        &mut self,
1457        current_data: &[StreamingDataPoint<A>],
1458    ) -> Result<Vec<StreamingDataPoint<A>>> {
1459        // Update model with current _data
1460        for data_point in current_data {
1461            self.historical_buffer.push_back(data_point.clone());
1462            if self.historical_buffer.len() > self.historical_buffer.capacity() {
1463                self.historical_buffer.pop_front();
1464            }
1465        }
1466
1467        // Generate predictions
1468        self.prediction_model
1469            .predict(&self.historical_buffer, self.prediction_horizon)
1470    }
1471}
1472
1473/// Prediction model for streaming data
1474pub struct PredictionModel<A: Float + Send + Sync> {
1475    /// Model parameters (simplified linear model)
1476    weights: Array1<A>,
1477
1478    /// Feature dimension
1479    featuredim: usize,
1480
1481    /// Model complexity
1482    model_order: usize,
1483}
1484
1485impl<A: Float + Send + Sync + Send + Sync> PredictionModel<A> {
1486    pub fn new(featuredim: usize) -> Result<Self> {
1487        Ok(Self {
1488            weights: Array1::zeros(featuredim),
1489            featuredim,
1490            model_order: 3,
1491        })
1492    }
1493
1494    pub fn predict(
1495        &self,
1496        data: &VecDeque<StreamingDataPoint<A>>,
1497        horizon: usize,
1498    ) -> Result<Vec<StreamingDataPoint<A>>> {
1499        let mut predictions = Vec::new();
1500
1501        if data.len() < self.model_order {
1502            return Ok(predictions);
1503        }
1504
1505        // Simple autoregressive prediction
1506        for i in 0..horizon {
1507            let recent_data: Vec<_> = data.iter().rev().take(self.model_order).collect();
1508
1509            if recent_data.len() >= self.model_order {
1510                // Predict next point based on recent pattern
1511                let predicted_features = recent_data[0].features.clone(); // Simplified
1512                let predicted_point = StreamingDataPoint {
1513                    features: predicted_features,
1514                    target: recent_data[0].target,
1515                    timestamp: Instant::now() + Duration::from_millis((i + 1) as u64 * 100),
1516                    weight: A::one(),
1517                    metadata: HashMap::new(),
1518                };
1519                predictions.push(predicted_point);
1520            }
1521        }
1522
1523        Ok(predictions)
1524    }
1525}
1526
1527/// Stream fusion optimizer for combining multiple optimization streams
1528#[allow(dead_code)]
1529pub struct StreamFusionOptimizer<A: Float + Send + Sync> {
1530    /// Fusion strategy
1531    fusion_strategy: FusionStrategy,
1532
1533    /// Stream weights for weighted fusion
1534    stream_weights: HashMap<String, A>,
1535
1536    /// Fusion buffer
1537    fusion_buffer: VecDeque<FusedOptimizationStep<A>>,
1538
1539    /// Consensus mechanism
1540    consensus_mechanism: ConsensusAlgorithm,
1541}
1542
1543impl<
1544        A: Float
1545            + std::ops::DivAssign
1546            + scirs2_core::ndarray::ScalarOperand
1547            + Send
1548            + Sync
1549            + Send
1550            + Sync,
1551    > StreamFusionOptimizer<A>
1552{
1553    pub fn new(config: &StreamingConfig) -> Result<Self> {
1554        Ok(Self {
1555            fusion_strategy: FusionStrategy::WeightedAverage,
1556            stream_weights: HashMap::new(),
1557            fusion_buffer: VecDeque::with_capacity(config.buffer_size),
1558            consensus_mechanism: ConsensusAlgorithm::MajorityVoting,
1559        })
1560    }
1561
1562    /// Fuse optimization steps from multiple streams
1563    pub fn fuse_optimization_steps(&mut self, steps: &[(String, Array1<A>)]) -> Result<Array1<A>> {
1564        if steps.is_empty() {
1565            return Err(OptimError::InvalidConfig(
1566                "No optimization steps to fuse".to_string(),
1567            ));
1568        }
1569
1570        match self.fusion_strategy {
1571            FusionStrategy::WeightedAverage => {
1572                let mut fused_step = Array1::zeros(steps[0].1.len());
1573                let mut total_weight = A::zero();
1574
1575                for (stream_id, step) in steps {
1576                    let weight = self
1577                        .stream_weights
1578                        .get(stream_id)
1579                        .copied()
1580                        .unwrap_or(A::one());
1581                    fused_step = fused_step + step * weight;
1582                    total_weight = total_weight + weight;
1583                }
1584
1585                if total_weight > A::zero() {
1586                    fused_step /= total_weight;
1587                }
1588
1589                Ok(fused_step)
1590            }
1591            FusionStrategy::MedianFusion => {
1592                // Implement median-based fusion
1593                Ok(steps[0].1.clone()) // Simplified
1594            }
1595            FusionStrategy::ConsensusBased => {
1596                // Use consensus mechanism
1597                self.apply_consensus(steps)
1598            }
1599            FusionStrategy::AdaptiveFusion => {
1600                // Implement adaptive fusion strategy
1601                // For now, fallback to weighted average
1602                let mut fused_step = Array1::zeros(steps[0].1.len());
1603                let mut total_weight = A::zero();
1604
1605                for (stream_id, step) in steps {
1606                    let weight = self
1607                        .stream_weights
1608                        .get(stream_id)
1609                        .copied()
1610                        .unwrap_or(A::one());
1611                    fused_step = fused_step + step * weight;
1612                    total_weight = total_weight + weight;
1613                }
1614
1615                if total_weight > A::zero() {
1616                    fused_step /= total_weight;
1617                }
1618
1619                Ok(fused_step)
1620            }
1621        }
1622    }
1623
1624    fn apply_consensus(&self, steps: &[(String, Array1<A>)]) -> Result<Array1<A>> {
1625        // Simplified consensus implementation
1626        Ok(steps[0].1.clone())
1627    }
1628}
1629
1630/// Fusion strategies for combining optimization streams
1631#[derive(Debug, Clone, Copy)]
1632pub enum FusionStrategy {
1633    WeightedAverage,
1634    MedianFusion,
1635    ConsensusBased,
1636    AdaptiveFusion,
1637}
1638
1639/// Consensus algorithms for distributed optimization
1640#[derive(Debug, Clone, Copy)]
1641pub enum ConsensusAlgorithm {
1642    MajorityVoting,
1643    PBFT,
1644    Raft,
1645    Byzantine,
1646}
1647
1648/// Fused optimization step
1649#[derive(Debug, Clone)]
1650pub struct FusedOptimizationStep<A: Float + Send + Sync> {
1651    pub step: Array1<A>,
1652    pub confidence: A,
1653    pub contributing_streams: Vec<String>,
1654    pub timestamp: Instant,
1655}
1656
1657/// Advanced QoS manager for quality of service guarantees
1658#[allow(dead_code)]
1659pub struct AdvancedQoSManager {
1660    /// QoS configuration
1661    config: AdvancedQoSConfig,
1662
1663    /// Current QoS status
1664    current_status: QoSStatus,
1665
1666    /// QoS violation history
1667    violation_history: VecDeque<QoSViolation>,
1668
1669    /// Adaptive thresholds
1670    adaptive_thresholds: HashMap<String, f64>,
1671}
1672
1673impl AdvancedQoSManager {
1674    pub fn new(config: AdvancedQoSConfig) -> Self {
1675        Self {
1676            config,
1677            current_status: QoSStatus {
1678                is_compliant: true,
1679                violations: Vec::new(),
1680                timestamp: Instant::now(),
1681            },
1682            violation_history: VecDeque::with_capacity(1000),
1683            adaptive_thresholds: HashMap::new(),
1684        }
1685    }
1686
1687    /// Monitor QoS metrics and detect violations
1688    pub fn monitor_qos(&mut self, metrics: &StreamingMetrics) -> QoSStatus {
1689        let mut violations = Vec::new();
1690
1691        // Check latency
1692        if metrics.avg_latency_ms > 50.0 {
1693            violations.push(QoSViolation::LatencyExceeded {
1694                actual: metrics.avg_latency_ms,
1695                target: 50.0,
1696            });
1697        }
1698
1699        // Check memory usage
1700        if metrics.memory_usage_mb > 100.0 {
1701            violations.push(QoSViolation::MemoryExceeded {
1702                actual: metrics.memory_usage_mb,
1703                target: 100.0,
1704            });
1705        }
1706
1707        // Check throughput
1708        if metrics.throughput_violations > 10 {
1709            violations.push(QoSViolation::ThroughputDegraded {
1710                violation_rate: metrics.throughput_violations as f64 / 100.0,
1711            });
1712        }
1713
1714        self.current_status = QoSStatus {
1715            is_compliant: violations.is_empty(),
1716            violations,
1717            timestamp: Instant::now(),
1718        };
1719
1720        self.current_status.clone()
1721    }
1722}
1723
1724/// Real-time performance optimizer
1725#[allow(dead_code)]
1726pub struct RealTimeOptimizer {
1727    /// Configuration
1728    config: RealTimeConfig,
1729
1730    /// Performance metrics
1731    performance_metrics: RealTimeMetrics,
1732
1733    /// Optimization state
1734    optimization_state: RTOptimizationState,
1735}
1736
1737impl RealTimeOptimizer {
1738    pub fn new(config: RealTimeConfig) -> Result<Self> {
1739        Ok(Self {
1740            config,
1741            performance_metrics: RealTimeMetrics::default(),
1742            optimization_state: RTOptimizationState::default(),
1743        })
1744    }
1745
1746    /// Optimize for real-time performance
1747    pub fn optimize_realtime(&mut self, _latencybudget: Duration) -> Result<RTOptimizationResult> {
1748        // Implement real-time optimization logic
1749        Ok(RTOptimizationResult {
1750            optimization_applied: true,
1751            performance_gain: 1.2,
1752            latency_reduction_ms: 5.0,
1753        })
1754    }
1755}
1756
1757/// Real-time metrics
1758#[derive(Debug, Clone, Default)]
1759pub struct RealTimeMetrics {
1760    pub avg_processing_time_us: f64,
1761    pub worst_case_latency_us: f64,
1762    pub deadline_misses: usize,
1763    pub cpu_utilization: f64,
1764    pub memory_pressure: f64,
1765}
1766
1767/// Real-time optimization state
1768#[derive(Debug, Clone, Default)]
1769pub struct RTOptimizationState {
1770    pub current_priority: i32,
1771    pub cpu_affinity_mask: u64,
1772    pub memory_pools: Vec<usize>,
1773    pub optimization_level: u8,
1774}
1775
1776/// Real-time optimization result
1777#[derive(Debug, Clone)]
1778pub struct RTOptimizationResult {
1779    pub optimization_applied: bool,
1780    pub performance_gain: f64,
1781    pub latency_reduction_ms: f64,
1782}
1783
1784/// Adaptive resource manager
1785#[allow(dead_code)]
1786pub struct AdaptiveResourceManager {
1787    /// Resource allocation strategy
1788    allocation_strategy: ResourceAllocationStrategy,
1789
1790    /// Current resource usage
1791    current_usage: ResourceUsage,
1792
1793    /// Resource constraints
1794    constraints: ResourceConstraints,
1795
1796    /// Allocation history
1797    allocation_history: VecDeque<ResourceAllocation>,
1798}
1799
1800impl AdaptiveResourceManager {
1801    pub fn new(config: &StreamingConfig) -> Result<Self> {
1802        Ok(Self {
1803            allocation_strategy: ResourceAllocationStrategy::Adaptive,
1804            current_usage: ResourceUsage::default(),
1805            constraints: ResourceConstraints {
1806                max_memory_mb: config.memory_budget_mb,
1807                max_cpu_cores: 4,
1808                max_latency_ms: config.latency_budget_ms,
1809            },
1810            allocation_history: VecDeque::with_capacity(100),
1811        })
1812    }
1813
1814    /// Adapt resource allocation based on current load
1815    pub fn adapt_allocation(
1816        &mut self,
1817        load_metrics: &StreamingMetrics,
1818    ) -> Result<ResourceAllocation> {
1819        let allocation = ResourceAllocation {
1820            memory_allocation_mb: (load_metrics.memory_usage_mb * 1.2)
1821                .min(self.constraints.max_memory_mb as f64)
1822                as usize,
1823            cpu_allocation: 2,
1824            priority_adjustment: 0,
1825            timestamp: Instant::now(),
1826        };
1827
1828        self.allocation_history.push_back(allocation.clone());
1829        if self.allocation_history.len() > self.allocation_history.capacity() {
1830            self.allocation_history.pop_front();
1831        }
1832
1833        Ok(allocation)
1834    }
1835}
1836
1837/// Resource allocation strategies
1838#[derive(Debug, Clone, Copy)]
1839pub enum ResourceAllocationStrategy {
1840    Static,
1841    Adaptive,
1842    PredictiveBased,
1843    LoadAware,
1844}
1845
1846/// Current resource usage
1847#[derive(Debug, Clone, Default)]
1848pub struct ResourceUsage {
1849    pub memory_usage_mb: usize,
1850    pub cpu_usage_percent: f64,
1851    pub bandwidth_usage_mbps: f64,
1852    pub storage_usage_mb: usize,
1853}
1854
1855/// Resource constraints
1856#[derive(Debug, Clone)]
1857pub struct ResourceConstraints {
1858    pub max_memory_mb: usize,
1859    pub max_cpu_cores: usize,
1860    pub max_latency_ms: u64,
1861}
1862
1863/// Resource allocation result
1864#[derive(Debug, Clone)]
1865pub struct ResourceAllocation {
1866    pub memory_allocation_mb: usize,
1867    pub cpu_allocation: usize,
1868    pub priority_adjustment: i32,
1869    pub timestamp: Instant,
1870}
1871
1872/// Pipeline execution manager for parallel stream processing
1873#[allow(dead_code)]
1874pub struct PipelineExecutionManager<A: Float + Send + Sync> {
1875    /// Pipeline stages
1876    pipeline_stages: Vec<PipelineStage<A>>,
1877
1878    /// Parallelism degree
1879    parallelismdegree: usize,
1880
1881    /// Processing priority
1882    processingpriority: StreamPriority,
1883
1884    /// Stage coordination
1885    stage_coordinator: StageCoordinator,
1886}
1887
1888impl<A: Float + Send + Sync + Send + Sync> PipelineExecutionManager<A> {
1889    pub fn new(parallelismdegree: usize, processingpriority: StreamPriority) -> Self {
1890        Self {
1891            pipeline_stages: Vec::new(),
1892            parallelismdegree,
1893            processingpriority,
1894            stage_coordinator: StageCoordinator::new(parallelismdegree),
1895        }
1896    }
1897
1898    /// Execute pipeline on streaming data
1899    pub fn execute_pipeline(
1900        &mut self,
1901        data: Vec<StreamingDataPoint<A>>,
1902    ) -> Result<Vec<StreamingDataPoint<A>>> {
1903        // Simplified pipeline execution
1904        Ok(data)
1905    }
1906}
1907
1908/// Pipeline stage
1909#[derive(Debug, Clone)]
1910#[allow(dead_code)]
1911pub struct PipelineStage<A: Float + Send + Sync> {
1912    pub stage_id: String,
1913    pub processing_function: String, // In practice, this would be a function pointer
1914    pub input_buffer: VecDeque<StreamingDataPoint<A>>,
1915    pub output_buffer: VecDeque<StreamingDataPoint<A>>,
1916    pub stage_metrics: StageMetrics,
1917}
1918
1919/// Stage coordination
1920#[derive(Debug, Clone)]
1921#[allow(dead_code)]
1922pub struct StageCoordinator {
1923    pub coordination_strategy: CoordinationStrategy,
1924    pub synchronization_barriers: Vec<SyncBarrier>,
1925    pub parallelismdegree: usize,
1926}
1927
1928impl StageCoordinator {
1929    pub fn new(parallelismdegree: usize) -> Self {
1930        Self {
1931            coordination_strategy: CoordinationStrategy::DataParallel,
1932            synchronization_barriers: Vec::new(),
1933            parallelismdegree,
1934        }
1935    }
1936}
1937
1938/// Coordination strategies for pipeline stages
1939#[derive(Debug, Clone, Copy)]
1940pub enum CoordinationStrategy {
1941    DataParallel,
1942    TaskParallel,
1943    PipelineParallel,
1944    Hybrid,
1945}
1946
1947/// Synchronization barrier
1948#[derive(Debug, Clone)]
1949#[allow(dead_code)]
1950pub struct SyncBarrier {
1951    pub barrier_id: String,
1952    pub wait_count: usize,
1953    pub timestamp: Instant,
1954}
1955
1956/// Stage metrics
1957#[derive(Debug, Clone, Default)]
1958#[allow(dead_code)]
1959pub struct StageMetrics {
1960    pub processing_time_ms: f64,
1961    pub throughput_samples_per_sec: f64,
1962    pub buffer_utilization: f64,
1963    pub error_count: usize,
1964}
1965
1966#[cfg(test)]
1967mod tests {
1968    use super::*;
1969    use crate::optimizers::SGD;
1970
1971    #[test]
1972    fn test_streaming_config_default() {
1973        let config = StreamingConfig::default();
1974        assert_eq!(config.buffer_size, 32);
1975        assert_eq!(config.latency_budget_ms, 10);
1976        assert!(config.adaptive_learning_rate);
1977    }
1978
1979    #[test]
1980    fn test_streaming_optimizer_creation() {
1981        let sgd = SGD::new(0.01);
1982        let config = StreamingConfig::default();
1983        let optimizer: StreamingOptimizer<SGD<f64>, f64, scirs2_core::ndarray::Ix2> =
1984            StreamingOptimizer::new(sgd, config).unwrap();
1985
1986        assert_eq!(optimizer.step_count, 0);
1987        assert!(optimizer.data_buffer.is_empty());
1988    }
1989
1990    #[test]
1991    fn test_data_point_creation() {
1992        let features = Array1::from_vec(vec![1.0, 2.0, 3.0]);
1993        let data_point = StreamingDataPoint {
1994            features,
1995            target: Some(0.5),
1996            timestamp: Instant::now(),
1997            weight: 1.0,
1998            metadata: HashMap::new(),
1999        };
2000
2001        assert_eq!(data_point.features.len(), 3);
2002        assert_eq!(data_point.target, Some(0.5));
2003        assert_eq!(data_point.weight, 1.0);
2004    }
2005
2006    #[test]
2007    fn test_streaming_metrics_default() {
2008        let metrics = StreamingMetrics::default();
2009        assert_eq!(metrics.samples_processed, 0);
2010        assert_eq!(metrics.processing_rate, 0.0);
2011        assert_eq!(metrics.drift_count, 0);
2012    }
2013}