1#[allow(dead_code)]
7use crate::error::{OptimError, Result};
8use scirs2_core::ndarray::{Array1, ArrayBase, ScalarOperand};
9use scirs2_core::numeric::Float;
10use std::collections::{HashMap, VecDeque};
11use std::fmt::Debug;
12use std::time::{Duration, Instant};
13
14pub mod adaptive_streaming;
15pub mod concept_drift;
16pub mod enhanced_adaptive_lr;
17pub mod low_latency;
18pub mod streaming_metrics;
19
20pub use concept_drift::{ConceptDriftDetector, DriftDetectorConfig, DriftEvent, DriftStatus};
22pub use enhanced_adaptive_lr::{
23 AdaptationStatistics, AdaptiveLRConfig, EnhancedAdaptiveLRController,
24};
25pub use low_latency::{LowLatencyConfig, LowLatencyMetrics, LowLatencyOptimizer};
26pub use streaming_metrics::{MetricsSample, MetricsSummary, StreamingMetricsCollector};
27
28use crate::optimizers::Optimizer;
29
30#[derive(Debug, Clone)]
32pub struct StreamingConfig {
33 pub buffer_size: usize,
35
36 pub latency_budget_ms: u64,
38
39 pub adaptive_learning_rate: bool,
41
42 pub drift_threshold: f64,
44
45 pub drift_window_size: usize,
47
48 pub gradient_compression: bool,
50
51 pub compression_ratio: f64,
53
54 pub async_updates: bool,
56
57 pub max_staleness: usize,
59
60 pub memory_efficient: bool,
62
63 pub memory_budget_mb: usize,
65
66 pub lr_adaptation: LearningRateAdaptation,
68
69 pub adaptive_batching: bool,
71
72 pub dynamic_buffer_sizing: bool,
74
75 pub enable_priority_scheduling: bool,
77
78 pub advanced_drift_detection: bool,
80
81 pub enable_prediction: bool,
83
84 pub qos_enabled: bool,
86
87 pub multi_stream_coordination: bool,
89
90 pub predictive_streaming: bool,
92
93 pub stream_fusion: bool,
95
96 pub advanced_qos_config: AdvancedQoSConfig,
98
99 pub real_time_config: RealTimeConfig,
101
102 pub pipeline_parallelism_degree: usize,
104
105 pub adaptive_resource_allocation: bool,
107
108 pub distributed_streaming: bool,
110
111 pub processingpriority: StreamPriority,
113}
114
115impl Default for StreamingConfig {
116 fn default() -> Self {
117 Self {
118 buffer_size: 32,
119 latency_budget_ms: 10,
120 adaptive_learning_rate: true,
121 drift_threshold: 0.1,
122 drift_window_size: 1000,
123 gradient_compression: false,
124 compression_ratio: 0.5,
125 async_updates: false,
126 max_staleness: 10,
127 memory_efficient: true,
128 memory_budget_mb: 100,
129 lr_adaptation: LearningRateAdaptation::Adagrad,
130 adaptive_batching: true,
131 dynamic_buffer_sizing: true,
132 enable_priority_scheduling: false,
133 advanced_drift_detection: true,
134 enable_prediction: false,
135 qos_enabled: false,
136 multi_stream_coordination: false,
137 predictive_streaming: true,
138 stream_fusion: true,
139 advanced_qos_config: AdvancedQoSConfig::default(),
140 real_time_config: RealTimeConfig::default(),
141 pipeline_parallelism_degree: 2,
142 adaptive_resource_allocation: true,
143 distributed_streaming: false,
144 processingpriority: StreamPriority::Normal,
145 }
146 }
147}
148
149#[derive(Debug, Clone, Copy)]
151pub enum LearningRateAdaptation {
152 Fixed,
154 Adagrad,
156 RMSprop,
158 PerformanceBased,
160 DriftAware,
162 AdaptiveMomentum,
164 GradientVariance,
166 PredictiveLR,
168}
169
170pub struct StreamingOptimizer<O, A, D>
172where
173 A: Float + Send + Sync + ScalarOperand + Debug,
174 D: scirs2_core::ndarray::Dimension,
175 O: Optimizer<A, D>,
176{
177 baseoptimizer: O,
179
180 config: StreamingConfig,
182
183 data_buffer: VecDeque<StreamingDataPoint<A>>,
185
186 gradient_buffer: Option<Array1<A>>,
188
189 lr_adaptation_state: LearningRateAdaptationState<A>,
191
192 drift_detector: StreamingDriftDetector<A>,
194
195 metrics: StreamingMetrics,
197
198 timing: TimingTracker,
200
201 memory_tracker: MemoryTracker,
203
204 async_state: Option<AsyncUpdateState<A, D>>,
206
207 step_count: usize,
209 multi_stream_coordinator: Option<MultiStreamCoordinator<A>>,
211
212 predictive_engine: Option<PredictiveStreamingEngine<A>>,
214
215 fusion_optimizer: Option<StreamFusionOptimizer<A>>,
217
218 qos_manager: AdvancedQoSManager,
220
221 rt_optimizer: RealTimeOptimizer,
223
224 resource_manager: Option<AdaptiveResourceManager>,
226
227 pipeline_manager: PipelineExecutionManager<A>,
229}
230
231#[derive(Debug, Clone)]
233pub struct StreamingDataPoint<A: Float + Send + Sync> {
234 pub features: Array1<A>,
236
237 pub target: Option<A>,
239
240 pub timestamp: Instant,
242
243 pub weight: A,
245
246 pub metadata: HashMap<String, String>,
248}
249
250#[derive(Debug, Clone)]
252struct LearningRateAdaptationState<A: Float + Send + Sync> {
253 current_lr: A,
255
256 accumulated_gradients: Option<Array1<A>>,
258
259 ema_squared_gradients: Option<Array1<A>>,
261
262 performance_history: VecDeque<A>,
264
265 last_adaptation: Instant,
267
268 adaptation_frequency: Duration,
270}
271
272#[derive(Debug, Clone)]
274struct StreamingDriftDetector<A: Float + Send + Sync> {
275 loss_window: VecDeque<A>,
277
278 historical_mean: A,
280 historical_std: A,
281
282 threshold: A,
284
285 last_drift: Option<Instant>,
287
288 drift_count: usize,
290}
291
292#[derive(Debug, Clone)]
294pub struct StreamingMetrics {
295 pub samples_processed: usize,
297
298 pub processing_rate: f64,
300
301 pub avg_latency_ms: f64,
303
304 pub p95_latency_ms: f64,
306
307 pub memory_usage_mb: f64,
309
310 pub drift_count: usize,
312
313 pub current_loss: f64,
315
316 pub current_learning_rate: f64,
318
319 pub throughput_violations: usize,
321}
322
323#[derive(Debug)]
325struct TimingTracker {
326 latency_samples: VecDeque<Duration>,
328
329 last_start: Option<Instant>,
331
332 batch_start: Option<Instant>,
334
335 max_samples: usize,
337}
338
339#[derive(Debug)]
341struct MemoryTracker {
342 current_usage: usize,
344
345 peak_usage: usize,
347
348 budget: usize,
350
351 usage_history: VecDeque<usize>,
353}
354
355#[derive(Debug)]
357struct AsyncUpdateState<A: Float, D: scirs2_core::ndarray::Dimension> {
358 pending_gradients: Vec<ArrayBase<scirs2_core::ndarray::OwnedRepr<A>, D>>,
360
361 update_queue: VecDeque<AsyncUpdate<A, D>>,
363
364 staleness_counter: HashMap<usize, usize>,
366
367 update_thread: Option<std::thread::JoinHandle<()>>,
369}
370
371#[derive(Debug, Clone)]
373struct AsyncUpdate<A: Float, D: scirs2_core::ndarray::Dimension> {
374 update: ArrayBase<scirs2_core::ndarray::OwnedRepr<A>, D>,
376
377 timestamp: Instant,
379
380 priority: UpdatePriority,
382
383 staleness: usize,
385}
386
387#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
389enum UpdatePriority {
390 Low,
391 Normal,
392 High,
393 Critical,
394}
395
396impl<O, A, D> StreamingOptimizer<O, A, D>
397where
398 A: Float
399 + Default
400 + Clone
401 + Send
402 + Sync
403 + std::fmt::Debug
404 + ScalarOperand
405 + std::iter::Sum
406 + std::ops::DivAssign,
407 D: scirs2_core::ndarray::Dimension,
408 O: Optimizer<A, D> + Send + Sync,
409{
410 pub fn new(baseoptimizer: O, config: StreamingConfig) -> Result<Self> {
412 let lr_adaptation_state = LearningRateAdaptationState {
413 current_lr: A::from(0.01).unwrap(), accumulated_gradients: None,
415 ema_squared_gradients: None,
416 performance_history: VecDeque::with_capacity(100),
417 last_adaptation: Instant::now(),
418 adaptation_frequency: Duration::from_millis(1000),
419 };
420
421 let drift_detector = StreamingDriftDetector {
422 loss_window: VecDeque::with_capacity(config.drift_window_size),
423 historical_mean: A::zero(),
424 historical_std: A::one(),
425 threshold: A::from(config.drift_threshold).unwrap(),
426 last_drift: None,
427 drift_count: 0,
428 };
429
430 let timing = TimingTracker {
431 latency_samples: VecDeque::with_capacity(1000),
432 last_start: None,
433 batch_start: None,
434 max_samples: 1000,
435 };
436
437 let memory_tracker = MemoryTracker {
438 current_usage: 0,
439 peak_usage: 0,
440 budget: config.memory_budget_mb * 1024 * 1024,
441 usage_history: VecDeque::with_capacity(100),
442 };
443
444 let async_state = if config.async_updates {
445 Some(AsyncUpdateState {
446 pending_gradients: Vec::new(),
447 update_queue: VecDeque::new(),
448 staleness_counter: HashMap::new(),
449 update_thread: None,
450 })
451 } else {
452 None
453 };
454
455 let multi_stream_coordinator = if config.multi_stream_coordination {
457 Some(MultiStreamCoordinator::new(&config)?)
458 } else {
459 None
460 };
461
462 let predictive_engine = if config.predictive_streaming {
463 Some(PredictiveStreamingEngine::new(&config)?)
464 } else {
465 None
466 };
467
468 let fusion_optimizer = if config.stream_fusion {
469 Some(StreamFusionOptimizer::new(&config)?)
470 } else {
471 None
472 };
473
474 let qos_manager = AdvancedQoSManager::new(config.advanced_qos_config.clone());
475 let rt_optimizer = RealTimeOptimizer::new(config.real_time_config.clone())?;
476
477 let resource_manager = if config.adaptive_resource_allocation {
478 Some(AdaptiveResourceManager::new(&config)?)
479 } else {
480 None
481 };
482
483 let pipeline_manager = PipelineExecutionManager::new(
484 config.pipeline_parallelism_degree,
485 config.processingpriority,
486 );
487
488 let buffer_size = config.buffer_size;
490
491 Ok(Self {
492 baseoptimizer,
493 config,
494 data_buffer: VecDeque::with_capacity(buffer_size),
495 gradient_buffer: None,
496 lr_adaptation_state,
497 drift_detector,
498 metrics: StreamingMetrics::default(),
499 timing,
500 memory_tracker,
501 async_state,
502 step_count: 0,
503 multi_stream_coordinator,
504 predictive_engine,
505 fusion_optimizer,
506 qos_manager,
507 rt_optimizer,
508 resource_manager,
509 pipeline_manager,
510 })
511 }
512
513 #[allow(clippy::too_many_arguments)]
515 pub fn process_sample(
516 &mut self,
517 data_point: StreamingDataPoint<A>,
518 ) -> Result<Option<Array1<A>>> {
519 let starttime = Instant::now();
520 self.timing.batch_start = Some(starttime);
521
522 self.data_buffer.push_back(data_point);
524 self.update_memory_usage();
525
526 let should_update = self.data_buffer.len() >= self.config.buffer_size
528 || self.should_force_update(starttime);
529
530 if should_update {
531 let result = self.process_buffer()?;
532
533 let latency = starttime.elapsed();
535 self.update_timing_metrics(latency);
536
537 if let Some(ref update) = result {
539 self.check_concept_drift(update)?;
540 }
541
542 Ok(result)
543 } else {
544 Ok(None)
545 }
546 }
547
548 fn should_force_update(&self, starttime: Instant) -> bool {
549 if let Some(batch_start) = self.timing.batch_start {
550 let elapsed = starttime.duration_since(batch_start);
551 elapsed.as_millis() as u64 >= self.config.latency_budget_ms / 2
552 } else {
553 false
554 }
555 }
556
557 fn process_buffer(&mut self) -> Result<Option<Array1<A>>> {
558 if self.data_buffer.is_empty() {
559 return Ok(None);
560 }
561
562 let gradient = self.compute_mini_batch_gradient()?;
564
565 let compressed_gradient = if self.config.gradient_compression {
567 self.compress_gradient(&gradient)?
568 } else {
569 gradient
570 };
571
572 self.adapt_learning_rate(&compressed_gradient)?;
574
575 let current_params = self.get_current_parameters()?;
577 let updated_params = if self.config.async_updates {
578 self.async_update(¤t_params, &compressed_gradient)?
579 } else {
580 self.sync_update(¤t_params, &compressed_gradient)?
581 };
582
583 self.data_buffer.clear();
585 self.step_count += 1;
586
587 self.update_metrics();
589
590 Ok(Some(updated_params))
591 }
592
593 fn compute_mini_batch_gradient(&self) -> Result<Array1<A>> {
594 if self.data_buffer.is_empty() {
595 return Err(OptimError::InvalidConfig("Empty data buffer".to_string()));
596 }
597
598 let batch_size = self.data_buffer.len();
599 let featuredim = self.data_buffer[0].features.len();
600 let mut gradient = Array1::zeros(featuredim);
601
602 for data_point in &self.data_buffer {
604 if let Some(target) = data_point.target {
606 let prediction = A::zero(); let error = prediction - target;
608
609 for (i, &feature) in data_point.features.iter().enumerate() {
610 gradient[i] = gradient[i] + error * feature * data_point.weight;
611 }
612 }
613 }
614
615 let batch_size_a = A::from(batch_size).unwrap();
617 gradient.mapv_inplace(|g| g / batch_size_a);
618
619 Ok(gradient)
620 }
621
622 fn compress_gradient(&self, gradient: &Array1<A>) -> Result<Array1<A>> {
623 let k = (gradient.len() as f64 * self.config.compression_ratio) as usize;
624 let mut compressed = gradient.clone();
625
626 let mut abs_values: Vec<(usize, A)> = gradient
628 .iter()
629 .enumerate()
630 .map(|(i, &g)| (i, g.abs()))
631 .collect();
632
633 abs_values.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap());
634
635 for (i, _) in abs_values.iter().skip(k) {
637 compressed[*i] = A::zero();
638 }
639
640 Ok(compressed)
641 }
642
643 fn adapt_learning_rate(&mut self, gradient: &Array1<A>) -> Result<()> {
644 if !self.config.adaptive_learning_rate {
645 return Ok(());
646 }
647
648 match self.config.lr_adaptation {
649 LearningRateAdaptation::Fixed => {
650 }
652 LearningRateAdaptation::Adagrad => {
653 self.adapt_adagrad(gradient)?;
654 }
655 LearningRateAdaptation::RMSprop => {
656 self.adapt_rmsprop(gradient)?;
657 }
658 LearningRateAdaptation::PerformanceBased => {
659 self.adapt_performance_based()?;
660 }
661 LearningRateAdaptation::DriftAware => {
662 self.adapt_drift_aware()?;
663 }
664 LearningRateAdaptation::AdaptiveMomentum => {
665 self.adapt_momentum_based(gradient)?;
666 }
667 LearningRateAdaptation::GradientVariance => {
668 self.adapt_gradient_variance(gradient)?;
669 }
670 LearningRateAdaptation::PredictiveLR => {
671 self.adapt_predictive()?;
672 }
673 }
674
675 Ok(())
676 }
677
678 fn adapt_adagrad(&mut self, gradient: &Array1<A>) -> Result<()> {
679 if self.lr_adaptation_state.accumulated_gradients.is_none() {
680 self.lr_adaptation_state.accumulated_gradients = Some(Array1::zeros(gradient.len()));
681 }
682
683 let acc_grads = self
684 .lr_adaptation_state
685 .accumulated_gradients
686 .as_mut()
687 .unwrap();
688
689 for i in 0..gradient.len() {
691 acc_grads[i] = acc_grads[i] + gradient[i] * gradient[i];
692 }
693
694 let base_lr = A::from(0.01).unwrap();
696 let eps = A::from(1e-8).unwrap();
697 let norm_sum = acc_grads.iter().copied().sum::<A>();
698 let adaptive_factor = (norm_sum + eps).sqrt();
699
700 self.lr_adaptation_state.current_lr = base_lr / adaptive_factor;
701
702 Ok(())
703 }
704
705 fn adapt_rmsprop(&mut self, gradient: &Array1<A>) -> Result<()> {
706 if self.lr_adaptation_state.ema_squared_gradients.is_none() {
707 self.lr_adaptation_state.ema_squared_gradients = Some(Array1::zeros(gradient.len()));
708 }
709
710 let ema_grads = self
711 .lr_adaptation_state
712 .ema_squared_gradients
713 .as_mut()
714 .unwrap();
715 let decay = A::from(0.9).unwrap();
716 let one_minus_decay = A::one() - decay;
717
718 for i in 0..gradient.len() {
720 ema_grads[i] = decay * ema_grads[i] + one_minus_decay * gradient[i] * gradient[i];
721 }
722
723 let base_lr = A::from(0.01).unwrap();
725 let eps = A::from(1e-8).unwrap();
726 let rms = ema_grads.iter().copied().sum::<A>().sqrt();
727
728 self.lr_adaptation_state.current_lr = base_lr / (rms + eps);
729
730 Ok(())
731 }
732
733 fn adapt_performance_based(&mut self) -> Result<()> {
734 if self.lr_adaptation_state.performance_history.len() < 2 {
736 return Ok(());
737 }
738
739 let recent_perf = self.lr_adaptation_state.performance_history.back().unwrap();
740 let prev_perf = self
741 .lr_adaptation_state
742 .performance_history
743 .get(self.lr_adaptation_state.performance_history.len() - 2)
744 .unwrap();
745
746 let improvement = *prev_perf - *recent_perf; if improvement > A::zero() {
749 self.lr_adaptation_state.current_lr =
751 self.lr_adaptation_state.current_lr * A::from(1.01).unwrap();
752 } else {
753 self.lr_adaptation_state.current_lr =
755 self.lr_adaptation_state.current_lr * A::from(0.99).unwrap();
756 }
757
758 Ok(())
759 }
760
761 fn adapt_drift_aware(&mut self) -> Result<()> {
762 if let Some(last_drift) = self.drift_detector.last_drift {
764 let time_since_drift = last_drift.elapsed();
765 if time_since_drift < Duration::from_secs(60) {
766 self.lr_adaptation_state.current_lr =
768 self.lr_adaptation_state.current_lr * A::from(1.5).unwrap();
769 }
770 }
771
772 Ok(())
773 }
774
775 fn check_concept_drift(&mut self, update: &Array1<A>) -> Result<()> {
776 let current_loss = A::from(self.metrics.current_loss).unwrap();
778
779 self.drift_detector.loss_window.push_back(current_loss);
780 if self.drift_detector.loss_window.len() > self.config.drift_window_size {
781 self.drift_detector.loss_window.pop_front();
782 }
783
784 if self.drift_detector.loss_window.len() >= 10 {
785 let mean = self.drift_detector.loss_window.iter().cloned().sum::<A>()
787 / A::from(self.drift_detector.loss_window.len()).unwrap();
788
789 let variance = self
790 .drift_detector
791 .loss_window
792 .iter()
793 .map(|&loss| {
794 let diff = loss - mean;
795 diff * diff
796 })
797 .sum::<A>()
798 / A::from(self.drift_detector.loss_window.len()).unwrap();
799
800 let std = variance.sqrt();
801
802 let z_score = (current_loss - self.drift_detector.historical_mean).abs()
804 / (self.drift_detector.historical_std + A::from(1e-8).unwrap());
805
806 if z_score > self.drift_detector.threshold {
807 self.drift_detector.last_drift = Some(Instant::now());
809 self.drift_detector.drift_count += 1;
810 self.metrics.drift_count = self.drift_detector.drift_count;
811
812 self.drift_detector.historical_mean = mean;
814 self.drift_detector.historical_std = std;
815
816 if matches!(
818 self.config.lr_adaptation,
819 LearningRateAdaptation::DriftAware
820 ) {
821 self.adapt_drift_aware()?;
822 }
823 }
824 }
825
826 Ok(())
827 }
828
829 fn get_current_parameters(&self) -> Result<Array1<A>> {
830 Ok(Array1::zeros(0))
833 }
834
835 fn sync_update(&mut self, params: &Array1<A>, gradient: &Array1<A>) -> Result<Array1<A>> {
836 let params_owned = params.clone();
840 let gradient_owned = gradient.clone();
841
842 let params_generic = params_owned.into_dimensionality::<D>()?;
844 let gradient_generic = gradient_owned.into_dimensionality::<D>()?;
845
846 let result = self
847 .baseoptimizer
848 .step(¶ms_generic, &gradient_generic)?;
849
850 Ok(result.into_dimensionality::<scirs2_core::ndarray::Ix1>()?)
852 }
853
854 fn async_update(&mut self, params: &Array1<A>, gradient: &Array1<A>) -> Result<Array1<A>> {
855 if let Some(ref mut async_state) = self.async_state {
856 let gradient_generic = gradient.clone().into_dimensionality::<D>()?;
858 let update = AsyncUpdate {
859 update: gradient_generic,
860 timestamp: Instant::now(),
861 priority: UpdatePriority::Normal,
862 staleness: 0,
863 };
864
865 async_state.update_queue.push_back(update);
866
867 if async_state.update_queue.len() >= self.config.buffer_size
869 || self.max_staleness_reached()
870 {
871 return self.process_async_updates();
872 }
873 }
874
875 self.get_current_parameters()
877 }
878
879 fn max_staleness_reached(&self) -> bool {
880 if let Some(ref async_state) = self.async_state {
881 async_state
882 .update_queue
883 .iter()
884 .any(|update| update.staleness >= self.config.max_staleness)
885 } else {
886 false
887 }
888 }
889
890 fn process_async_updates(&mut self) -> Result<Array1<A>> {
891 if let Some(ref mut async_state) = self.async_state {
893 if let Some(update) = async_state.update_queue.pop_front() {
894 let current_params = self.get_current_parameters()?;
895 if let (Ok(params_1d), Ok(_update_1d)) = (
897 current_params.into_dimensionality::<scirs2_core::ndarray::Ix1>(),
898 update
899 .update
900 .into_dimensionality::<scirs2_core::ndarray::Ix1>(),
901 ) {
902 return Ok(params_1d);
905 }
906 }
907 }
908
909 self.get_current_parameters()
910 }
911
912 fn update_timing_metrics(&mut self, latency: Duration) {
913 self.timing.latency_samples.push_back(latency);
914 if self.timing.latency_samples.len() > self.timing.max_samples {
915 self.timing.latency_samples.pop_front();
916 }
917
918 if latency.as_millis() as u64 > self.config.latency_budget_ms {
920 self.metrics.throughput_violations += 1;
921 }
922 }
923
924 fn update_memory_usage(&mut self) {
925 let buffer_size = self.data_buffer.len() * std::mem::size_of::<StreamingDataPoint<A>>();
927 let gradient_size = self
928 .gradient_buffer
929 .as_ref()
930 .map(|g| g.len() * std::mem::size_of::<A>())
931 .unwrap_or(0);
932
933 self.memory_tracker.current_usage = buffer_size + gradient_size;
934 self.memory_tracker.peak_usage = self
935 .memory_tracker
936 .peak_usage
937 .max(self.memory_tracker.current_usage);
938
939 self.memory_tracker
940 .usage_history
941 .push_back(self.memory_tracker.current_usage);
942 if self.memory_tracker.usage_history.len() > 100 {
943 self.memory_tracker.usage_history.pop_front();
944 }
945 }
946
947 fn update_metrics(&mut self) {
948 self.metrics.samples_processed += self.data_buffer.len();
949
950 if let Some(batch_start) = self.timing.batch_start {
952 let elapsed = batch_start.elapsed().as_secs_f64();
953 if elapsed > 0.0 {
954 self.metrics.processing_rate = self.data_buffer.len() as f64 / elapsed;
955 }
956 }
957
958 if !self.timing.latency_samples.is_empty() {
960 let sum: Duration = self.timing.latency_samples.iter().sum();
961 self.metrics.avg_latency_ms =
962 sum.as_millis() as f64 / self.timing.latency_samples.len() as f64;
963
964 let mut sorted_latencies: Vec<_> = self.timing.latency_samples.iter().collect();
966 sorted_latencies.sort();
967 let p95_index = (0.95 * sorted_latencies.len() as f64) as usize;
968 if p95_index < sorted_latencies.len() {
969 self.metrics.p95_latency_ms = sorted_latencies[p95_index].as_millis() as f64;
970 }
971 }
972
973 self.metrics.memory_usage_mb = self.memory_tracker.current_usage as f64 / (1024.0 * 1024.0);
975
976 self.metrics.current_learning_rate =
978 self.lr_adaptation_state.current_lr.to_f64().unwrap_or(0.0);
979 }
980
981 pub fn get_metrics(&self) -> &StreamingMetrics {
983 &self.metrics
984 }
985
986 pub fn is_healthy(&self) -> StreamingHealthStatus {
988 let mut warnings = Vec::new();
989 let mut is_healthy = true;
990
991 if self.metrics.avg_latency_ms > self.config.latency_budget_ms as f64 {
993 warnings.push("Average latency exceeds budget".to_string());
994 is_healthy = false;
995 }
996
997 if self.memory_tracker.current_usage > self.memory_tracker.budget {
999 warnings.push("Memory usage exceeds budget".to_string());
1000 is_healthy = false;
1001 }
1002
1003 if self.metrics.drift_count > 10 && self.step_count > 0 {
1005 let drift_rate = self.metrics.drift_count as f64 / self.step_count as f64;
1006 if drift_rate > 0.1 {
1007 warnings.push("High concept drift rate detected".to_string());
1008 }
1009 }
1010
1011 StreamingHealthStatus {
1012 is_healthy,
1013 warnings,
1014 metrics: self.metrics.clone(),
1015 }
1016 }
1017
1018 pub fn flush(&mut self) -> Result<Option<Array1<A>>> {
1020 if !self.data_buffer.is_empty() {
1021 self.process_buffer()
1022 } else {
1023 Ok(None)
1024 }
1025 }
1026
1027 fn adapt_momentum_based(&mut self, gradient: &Array1<A>) -> Result<()> {
1029 if self.lr_adaptation_state.ema_squared_gradients.is_none() {
1031 self.lr_adaptation_state.ema_squared_gradients = Some(Array1::zeros(gradient.len()));
1032 }
1033
1034 let momentum = self
1035 .lr_adaptation_state
1036 .ema_squared_gradients
1037 .as_mut()
1038 .unwrap();
1039 let beta = A::from(0.9).unwrap();
1040 let one_minus_beta = A::one() - beta;
1041
1042 for i in 0..gradient.len() {
1044 momentum[i] = beta * momentum[i] + one_minus_beta * gradient[i];
1045 }
1046
1047 let momentum_norm = momentum.iter().map(|&m| m * m).sum::<A>().sqrt();
1049 let base_lr = A::from(0.01).unwrap();
1050 let adaptation_factor = A::one() + momentum_norm * A::from(0.1).unwrap();
1051
1052 self.lr_adaptation_state.current_lr = base_lr / adaptation_factor;
1053
1054 Ok(())
1055 }
1056
1057 fn adapt_gradient_variance(&mut self, gradient: &Array1<A>) -> Result<()> {
1059 if self.lr_adaptation_state.accumulated_gradients.is_none() {
1061 self.lr_adaptation_state.accumulated_gradients = Some(Array1::zeros(gradient.len()));
1062 self.lr_adaptation_state.ema_squared_gradients = Some(Array1::zeros(gradient.len()));
1063 }
1064
1065 let mean_grad = self
1066 .lr_adaptation_state
1067 .accumulated_gradients
1068 .as_mut()
1069 .unwrap();
1070 let mean_squared_grad = self
1071 .lr_adaptation_state
1072 .ema_squared_gradients
1073 .as_mut()
1074 .unwrap();
1075
1076 let alpha = A::from(0.99).unwrap(); let one_minus_alpha = A::one() - alpha;
1078
1079 for i in 0..gradient.len() {
1081 mean_grad[i] = alpha * mean_grad[i] + one_minus_alpha * gradient[i];
1082 mean_squared_grad[i] =
1083 alpha * mean_squared_grad[i] + one_minus_alpha * gradient[i] * gradient[i];
1084 }
1085
1086 let variance = mean_squared_grad
1088 .iter()
1089 .zip(mean_grad.iter())
1090 .map(|(&sq, &m)| sq - m * m)
1091 .sum::<A>()
1092 / A::from(gradient.len()).unwrap();
1093
1094 let base_lr = A::from(0.01).unwrap();
1096 let var_factor = A::one() + variance.sqrt() * A::from(10.0).unwrap();
1097
1098 self.lr_adaptation_state.current_lr = base_lr / var_factor;
1099
1100 Ok(())
1101 }
1102
1103 fn adapt_predictive(&mut self) -> Result<()> {
1105 if self.lr_adaptation_state.performance_history.len() < 3 {
1107 return Ok(());
1108 }
1109
1110 let history = &self.lr_adaptation_state.performance_history;
1111 let n = history.len();
1112
1113 let recent_trend = if n >= 3 {
1115 let last = history[n - 1];
1116 let second_last = history[n - 2];
1117 let third_last = history[n - 3];
1118
1119 let first_diff = last - second_last;
1121 let second_diff = second_last - third_last;
1122
1123 first_diff - second_diff
1124 } else {
1125 A::zero()
1126 };
1127
1128 let adjustment = if recent_trend > A::zero() {
1130 A::from(0.95).unwrap()
1132 } else {
1133 A::from(1.02).unwrap()
1135 };
1136
1137 self.lr_adaptation_state.current_lr = self.lr_adaptation_state.current_lr * adjustment;
1138
1139 let min_lr = A::from(1e-6).unwrap();
1141 let max_lr = A::from(1.0).unwrap();
1142
1143 self.lr_adaptation_state.current_lr =
1144 self.lr_adaptation_state.current_lr.max(min_lr).min(max_lr);
1145
1146 Ok(())
1147 }
1148}
1149
1150impl Default for StreamingMetrics {
1151 fn default() -> Self {
1152 Self {
1153 samples_processed: 0,
1154 processing_rate: 0.0,
1155 avg_latency_ms: 0.0,
1156 p95_latency_ms: 0.0,
1157 memory_usage_mb: 0.0,
1158 drift_count: 0,
1159 current_loss: 0.0,
1160 current_learning_rate: 0.01,
1161 throughput_violations: 0,
1162 }
1163 }
1164}
1165
1166#[derive(Debug, Clone)]
1168pub struct StreamingHealthStatus {
1169 pub is_healthy: bool,
1170 pub warnings: Vec<String>,
1171 pub metrics: StreamingMetrics,
1172}
1173
1174#[derive(Debug, Clone)]
1176pub struct QoSStatus {
1177 pub is_compliant: bool,
1178 pub violations: Vec<QoSViolation>,
1179 pub timestamp: Instant,
1180}
1181
1182#[derive(Debug, Clone)]
1184pub enum QoSViolation {
1185 LatencyExceeded { actual: f64, target: f64 },
1186 MemoryExceeded { actual: f64, target: f64 },
1187 ThroughputDegraded { violation_rate: f64 },
1188 PredictionAccuracyDegraded { current: f64, target: f64 },
1189 ResourceUtilizationLow { utilization: f64, target: f64 },
1190 StreamSynchronizationLoss { delay_ms: f64 },
1191}
1192
1193#[derive(Debug, Clone)]
1195pub struct AdvancedQoSConfig {
1196 pub strict_latency_bounds: bool,
1198
1199 pub quality_degradation_tolerance: f64,
1201
1202 pub resource_reservation: ResourceReservationStrategy,
1204
1205 pub adaptive_adjustment: bool,
1207
1208 pub priority_scheduling: bool,
1210
1211 pub service_level_objectives: Vec<ServiceLevelObjective>,
1213}
1214
1215impl Default for AdvancedQoSConfig {
1216 fn default() -> Self {
1217 Self {
1218 strict_latency_bounds: true,
1219 quality_degradation_tolerance: 0.05,
1220 resource_reservation: ResourceReservationStrategy::Adaptive,
1221 adaptive_adjustment: true,
1222 priority_scheduling: true,
1223 service_level_objectives: vec![
1224 ServiceLevelObjective {
1225 metric: QoSMetric::Latency,
1226 target_value: 10.0,
1227 tolerance: 0.1,
1228 },
1229 ServiceLevelObjective {
1230 metric: QoSMetric::Throughput,
1231 target_value: 1000.0,
1232 tolerance: 0.05,
1233 },
1234 ],
1235 }
1236 }
1237}
1238
1239#[derive(Debug, Clone, Copy)]
1241pub enum ResourceReservationStrategy {
1242 Static,
1243 Dynamic,
1244 Adaptive,
1245 PredictiveBased,
1246}
1247
1248#[derive(Debug, Clone)]
1250pub struct ServiceLevelObjective {
1251 pub metric: QoSMetric,
1252 pub target_value: f64,
1253 pub tolerance: f64,
1254}
1255
1256#[derive(Debug, Clone, Copy)]
1258pub enum QoSMetric {
1259 Latency,
1260 Throughput,
1261 MemoryUsage,
1262 CpuUtilization,
1263 PredictionAccuracy,
1264 StreamSynchronization,
1265}
1266
1267#[derive(Debug, Clone)]
1269pub struct RealTimeConfig {
1270 pub scheduling_priority: i32,
1272
1273 pub cpu_affinity: Option<Vec<usize>>,
1275
1276 pub memory_preallocation_mb: usize,
1278
1279 pub numa_optimization: bool,
1281
1282 pub deadline_us: u64,
1284
1285 pub lock_free_structures: bool,
1287
1288 pub interrupt_strategy: InterruptStrategy,
1290}
1291
1292impl Default for RealTimeConfig {
1293 fn default() -> Self {
1294 Self {
1295 scheduling_priority: 50,
1296 cpu_affinity: None,
1297 memory_preallocation_mb: 64,
1298 numa_optimization: true,
1299 deadline_us: 10000, lock_free_structures: true,
1301 interrupt_strategy: InterruptStrategy::Deferred,
1302 }
1303 }
1304}
1305
1306#[derive(Debug, Clone, Copy)]
1308pub enum InterruptStrategy {
1309 Immediate,
1310 Deferred,
1311 Batched,
1312 Adaptive,
1313}
1314
1315#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
1317pub enum StreamPriority {
1318 Background,
1319 Low,
1320 Normal,
1321 High,
1322 Critical,
1323 RealTime,
1324}
1325
1326#[allow(dead_code)]
1328pub struct MultiStreamCoordinator<A: Float + Send + Sync> {
1329 stream_configs: HashMap<String, StreamConfig<A>>,
1331
1332 sync_buffer: HashMap<String, VecDeque<StreamingDataPoint<A>>>,
1334
1335 global_clock: Instant,
1337
1338 max_sync_window_ms: u64,
1340
1341 stream_priorities: HashMap<String, StreamPriority>,
1343
1344 load_balancer: LoadBalancingStrategy,
1346}
1347
1348impl<A: Float + Send + Sync + Send + Sync> MultiStreamCoordinator<A> {
1349 pub fn new(config: &StreamingConfig) -> Result<Self> {
1350 Ok(Self {
1351 stream_configs: HashMap::new(),
1352 sync_buffer: HashMap::new(),
1353 global_clock: Instant::now(),
1354 max_sync_window_ms: config.latency_budget_ms * 2,
1355 stream_priorities: HashMap::new(),
1356 load_balancer: LoadBalancingStrategy::RoundRobin,
1357 })
1358 }
1359
1360 pub fn add_stream(
1362 &mut self,
1363 stream_id: String,
1364 config: StreamConfig<A>,
1365 priority: StreamPriority,
1366 ) {
1367 self.stream_configs.insert(stream_id.clone(), config);
1368 self.sync_buffer.insert(stream_id.clone(), VecDeque::new());
1369 self.stream_priorities.insert(stream_id, priority);
1370 }
1371
1372 pub fn coordinate_streams(&mut self) -> Result<Vec<StreamingDataPoint<A>>> {
1374 let mut coordinated_data = Vec::new();
1375 let current_time = Instant::now();
1376
1377 for (stream_id, buffer) in &mut self.sync_buffer {
1379 let window_start = current_time - Duration::from_millis(self.max_sync_window_ms);
1380
1381 buffer.retain(|point| point.timestamp >= window_start);
1383
1384 if let Some(priority) = self.stream_priorities.get(stream_id) {
1386 match priority {
1387 StreamPriority::RealTime | StreamPriority::Critical => {
1388 coordinated_data.extend(buffer.drain(..));
1390 }
1391 _ => {
1392 if buffer.len() >= 10 {
1394 coordinated_data.extend(buffer.drain(..buffer.len() / 2));
1395 }
1396 }
1397 }
1398 }
1399 }
1400
1401 Ok(coordinated_data)
1402 }
1403}
1404
1405#[derive(Debug, Clone)]
1407pub struct StreamConfig<A: Float + Send + Sync> {
1408 pub buffer_size: usize,
1409 pub latency_tolerance_ms: u64,
1410 pub throughput_target: f64,
1411 pub quality_threshold: A,
1412}
1413
1414#[derive(Debug, Clone, Copy)]
1416pub enum LoadBalancingStrategy {
1417 RoundRobin,
1418 WeightedRoundRobin,
1419 LeastConnections,
1420 PriorityBased,
1421 AdaptiveLoadAware,
1422}
1423
1424#[allow(dead_code)]
1426pub struct PredictiveStreamingEngine<A: Float + Send + Sync> {
1427 prediction_model: PredictionModel<A>,
1429
1430 historical_buffer: VecDeque<StreamingDataPoint<A>>,
1432
1433 prediction_horizon: usize,
1435
1436 confidence_threshold: A,
1438
1439 adaptation_rate: A,
1441}
1442
1443impl<A: Float + Send + Sync + Send + Sync> PredictiveStreamingEngine<A> {
1444 pub fn new(config: &StreamingConfig) -> Result<Self> {
1445 Ok(Self {
1446 prediction_model: PredictionModel::new(config.buffer_size)?,
1447 historical_buffer: VecDeque::with_capacity(config.buffer_size * 2),
1448 prediction_horizon: 10,
1449 confidence_threshold: A::from(0.8).unwrap(),
1450 adaptation_rate: A::from(0.1).unwrap(),
1451 })
1452 }
1453
1454 pub fn predict_next(
1456 &mut self,
1457 current_data: &[StreamingDataPoint<A>],
1458 ) -> Result<Vec<StreamingDataPoint<A>>> {
1459 for data_point in current_data {
1461 self.historical_buffer.push_back(data_point.clone());
1462 if self.historical_buffer.len() > self.historical_buffer.capacity() {
1463 self.historical_buffer.pop_front();
1464 }
1465 }
1466
1467 self.prediction_model
1469 .predict(&self.historical_buffer, self.prediction_horizon)
1470 }
1471}
1472
1473pub struct PredictionModel<A: Float + Send + Sync> {
1475 weights: Array1<A>,
1477
1478 featuredim: usize,
1480
1481 model_order: usize,
1483}
1484
1485impl<A: Float + Send + Sync + Send + Sync> PredictionModel<A> {
1486 pub fn new(featuredim: usize) -> Result<Self> {
1487 Ok(Self {
1488 weights: Array1::zeros(featuredim),
1489 featuredim,
1490 model_order: 3,
1491 })
1492 }
1493
1494 pub fn predict(
1495 &self,
1496 data: &VecDeque<StreamingDataPoint<A>>,
1497 horizon: usize,
1498 ) -> Result<Vec<StreamingDataPoint<A>>> {
1499 let mut predictions = Vec::new();
1500
1501 if data.len() < self.model_order {
1502 return Ok(predictions);
1503 }
1504
1505 for i in 0..horizon {
1507 let recent_data: Vec<_> = data.iter().rev().take(self.model_order).collect();
1508
1509 if recent_data.len() >= self.model_order {
1510 let predicted_features = recent_data[0].features.clone(); let predicted_point = StreamingDataPoint {
1513 features: predicted_features,
1514 target: recent_data[0].target,
1515 timestamp: Instant::now() + Duration::from_millis((i + 1) as u64 * 100),
1516 weight: A::one(),
1517 metadata: HashMap::new(),
1518 };
1519 predictions.push(predicted_point);
1520 }
1521 }
1522
1523 Ok(predictions)
1524 }
1525}
1526
1527#[allow(dead_code)]
1529pub struct StreamFusionOptimizer<A: Float + Send + Sync> {
1530 fusion_strategy: FusionStrategy,
1532
1533 stream_weights: HashMap<String, A>,
1535
1536 fusion_buffer: VecDeque<FusedOptimizationStep<A>>,
1538
1539 consensus_mechanism: ConsensusAlgorithm,
1541}
1542
1543impl<
1544 A: Float
1545 + std::ops::DivAssign
1546 + scirs2_core::ndarray::ScalarOperand
1547 + Send
1548 + Sync
1549 + Send
1550 + Sync,
1551 > StreamFusionOptimizer<A>
1552{
1553 pub fn new(config: &StreamingConfig) -> Result<Self> {
1554 Ok(Self {
1555 fusion_strategy: FusionStrategy::WeightedAverage,
1556 stream_weights: HashMap::new(),
1557 fusion_buffer: VecDeque::with_capacity(config.buffer_size),
1558 consensus_mechanism: ConsensusAlgorithm::MajorityVoting,
1559 })
1560 }
1561
1562 pub fn fuse_optimization_steps(&mut self, steps: &[(String, Array1<A>)]) -> Result<Array1<A>> {
1564 if steps.is_empty() {
1565 return Err(OptimError::InvalidConfig(
1566 "No optimization steps to fuse".to_string(),
1567 ));
1568 }
1569
1570 match self.fusion_strategy {
1571 FusionStrategy::WeightedAverage => {
1572 let mut fused_step = Array1::zeros(steps[0].1.len());
1573 let mut total_weight = A::zero();
1574
1575 for (stream_id, step) in steps {
1576 let weight = self
1577 .stream_weights
1578 .get(stream_id)
1579 .copied()
1580 .unwrap_or(A::one());
1581 fused_step = fused_step + step * weight;
1582 total_weight = total_weight + weight;
1583 }
1584
1585 if total_weight > A::zero() {
1586 fused_step /= total_weight;
1587 }
1588
1589 Ok(fused_step)
1590 }
1591 FusionStrategy::MedianFusion => {
1592 Ok(steps[0].1.clone()) }
1595 FusionStrategy::ConsensusBased => {
1596 self.apply_consensus(steps)
1598 }
1599 FusionStrategy::AdaptiveFusion => {
1600 let mut fused_step = Array1::zeros(steps[0].1.len());
1603 let mut total_weight = A::zero();
1604
1605 for (stream_id, step) in steps {
1606 let weight = self
1607 .stream_weights
1608 .get(stream_id)
1609 .copied()
1610 .unwrap_or(A::one());
1611 fused_step = fused_step + step * weight;
1612 total_weight = total_weight + weight;
1613 }
1614
1615 if total_weight > A::zero() {
1616 fused_step /= total_weight;
1617 }
1618
1619 Ok(fused_step)
1620 }
1621 }
1622 }
1623
1624 fn apply_consensus(&self, steps: &[(String, Array1<A>)]) -> Result<Array1<A>> {
1625 Ok(steps[0].1.clone())
1627 }
1628}
1629
1630#[derive(Debug, Clone, Copy)]
1632pub enum FusionStrategy {
1633 WeightedAverage,
1634 MedianFusion,
1635 ConsensusBased,
1636 AdaptiveFusion,
1637}
1638
1639#[derive(Debug, Clone, Copy)]
1641pub enum ConsensusAlgorithm {
1642 MajorityVoting,
1643 PBFT,
1644 Raft,
1645 Byzantine,
1646}
1647
1648#[derive(Debug, Clone)]
1650pub struct FusedOptimizationStep<A: Float + Send + Sync> {
1651 pub step: Array1<A>,
1652 pub confidence: A,
1653 pub contributing_streams: Vec<String>,
1654 pub timestamp: Instant,
1655}
1656
1657#[allow(dead_code)]
1659pub struct AdvancedQoSManager {
1660 config: AdvancedQoSConfig,
1662
1663 current_status: QoSStatus,
1665
1666 violation_history: VecDeque<QoSViolation>,
1668
1669 adaptive_thresholds: HashMap<String, f64>,
1671}
1672
1673impl AdvancedQoSManager {
1674 pub fn new(config: AdvancedQoSConfig) -> Self {
1675 Self {
1676 config,
1677 current_status: QoSStatus {
1678 is_compliant: true,
1679 violations: Vec::new(),
1680 timestamp: Instant::now(),
1681 },
1682 violation_history: VecDeque::with_capacity(1000),
1683 adaptive_thresholds: HashMap::new(),
1684 }
1685 }
1686
1687 pub fn monitor_qos(&mut self, metrics: &StreamingMetrics) -> QoSStatus {
1689 let mut violations = Vec::new();
1690
1691 if metrics.avg_latency_ms > 50.0 {
1693 violations.push(QoSViolation::LatencyExceeded {
1694 actual: metrics.avg_latency_ms,
1695 target: 50.0,
1696 });
1697 }
1698
1699 if metrics.memory_usage_mb > 100.0 {
1701 violations.push(QoSViolation::MemoryExceeded {
1702 actual: metrics.memory_usage_mb,
1703 target: 100.0,
1704 });
1705 }
1706
1707 if metrics.throughput_violations > 10 {
1709 violations.push(QoSViolation::ThroughputDegraded {
1710 violation_rate: metrics.throughput_violations as f64 / 100.0,
1711 });
1712 }
1713
1714 self.current_status = QoSStatus {
1715 is_compliant: violations.is_empty(),
1716 violations,
1717 timestamp: Instant::now(),
1718 };
1719
1720 self.current_status.clone()
1721 }
1722}
1723
1724#[allow(dead_code)]
1726pub struct RealTimeOptimizer {
1727 config: RealTimeConfig,
1729
1730 performance_metrics: RealTimeMetrics,
1732
1733 optimization_state: RTOptimizationState,
1735}
1736
1737impl RealTimeOptimizer {
1738 pub fn new(config: RealTimeConfig) -> Result<Self> {
1739 Ok(Self {
1740 config,
1741 performance_metrics: RealTimeMetrics::default(),
1742 optimization_state: RTOptimizationState::default(),
1743 })
1744 }
1745
1746 pub fn optimize_realtime(&mut self, _latencybudget: Duration) -> Result<RTOptimizationResult> {
1748 Ok(RTOptimizationResult {
1750 optimization_applied: true,
1751 performance_gain: 1.2,
1752 latency_reduction_ms: 5.0,
1753 })
1754 }
1755}
1756
1757#[derive(Debug, Clone, Default)]
1759pub struct RealTimeMetrics {
1760 pub avg_processing_time_us: f64,
1761 pub worst_case_latency_us: f64,
1762 pub deadline_misses: usize,
1763 pub cpu_utilization: f64,
1764 pub memory_pressure: f64,
1765}
1766
1767#[derive(Debug, Clone, Default)]
1769pub struct RTOptimizationState {
1770 pub current_priority: i32,
1771 pub cpu_affinity_mask: u64,
1772 pub memory_pools: Vec<usize>,
1773 pub optimization_level: u8,
1774}
1775
1776#[derive(Debug, Clone)]
1778pub struct RTOptimizationResult {
1779 pub optimization_applied: bool,
1780 pub performance_gain: f64,
1781 pub latency_reduction_ms: f64,
1782}
1783
1784#[allow(dead_code)]
1786pub struct AdaptiveResourceManager {
1787 allocation_strategy: ResourceAllocationStrategy,
1789
1790 current_usage: ResourceUsage,
1792
1793 constraints: ResourceConstraints,
1795
1796 allocation_history: VecDeque<ResourceAllocation>,
1798}
1799
1800impl AdaptiveResourceManager {
1801 pub fn new(config: &StreamingConfig) -> Result<Self> {
1802 Ok(Self {
1803 allocation_strategy: ResourceAllocationStrategy::Adaptive,
1804 current_usage: ResourceUsage::default(),
1805 constraints: ResourceConstraints {
1806 max_memory_mb: config.memory_budget_mb,
1807 max_cpu_cores: 4,
1808 max_latency_ms: config.latency_budget_ms,
1809 },
1810 allocation_history: VecDeque::with_capacity(100),
1811 })
1812 }
1813
1814 pub fn adapt_allocation(
1816 &mut self,
1817 load_metrics: &StreamingMetrics,
1818 ) -> Result<ResourceAllocation> {
1819 let allocation = ResourceAllocation {
1820 memory_allocation_mb: (load_metrics.memory_usage_mb * 1.2)
1821 .min(self.constraints.max_memory_mb as f64)
1822 as usize,
1823 cpu_allocation: 2,
1824 priority_adjustment: 0,
1825 timestamp: Instant::now(),
1826 };
1827
1828 self.allocation_history.push_back(allocation.clone());
1829 if self.allocation_history.len() > self.allocation_history.capacity() {
1830 self.allocation_history.pop_front();
1831 }
1832
1833 Ok(allocation)
1834 }
1835}
1836
1837#[derive(Debug, Clone, Copy)]
1839pub enum ResourceAllocationStrategy {
1840 Static,
1841 Adaptive,
1842 PredictiveBased,
1843 LoadAware,
1844}
1845
1846#[derive(Debug, Clone, Default)]
1848pub struct ResourceUsage {
1849 pub memory_usage_mb: usize,
1850 pub cpu_usage_percent: f64,
1851 pub bandwidth_usage_mbps: f64,
1852 pub storage_usage_mb: usize,
1853}
1854
1855#[derive(Debug, Clone)]
1857pub struct ResourceConstraints {
1858 pub max_memory_mb: usize,
1859 pub max_cpu_cores: usize,
1860 pub max_latency_ms: u64,
1861}
1862
1863#[derive(Debug, Clone)]
1865pub struct ResourceAllocation {
1866 pub memory_allocation_mb: usize,
1867 pub cpu_allocation: usize,
1868 pub priority_adjustment: i32,
1869 pub timestamp: Instant,
1870}
1871
1872#[allow(dead_code)]
1874pub struct PipelineExecutionManager<A: Float + Send + Sync> {
1875 pipeline_stages: Vec<PipelineStage<A>>,
1877
1878 parallelismdegree: usize,
1880
1881 processingpriority: StreamPriority,
1883
1884 stage_coordinator: StageCoordinator,
1886}
1887
1888impl<A: Float + Send + Sync + Send + Sync> PipelineExecutionManager<A> {
1889 pub fn new(parallelismdegree: usize, processingpriority: StreamPriority) -> Self {
1890 Self {
1891 pipeline_stages: Vec::new(),
1892 parallelismdegree,
1893 processingpriority,
1894 stage_coordinator: StageCoordinator::new(parallelismdegree),
1895 }
1896 }
1897
1898 pub fn execute_pipeline(
1900 &mut self,
1901 data: Vec<StreamingDataPoint<A>>,
1902 ) -> Result<Vec<StreamingDataPoint<A>>> {
1903 Ok(data)
1905 }
1906}
1907
1908#[derive(Debug, Clone)]
1910#[allow(dead_code)]
1911pub struct PipelineStage<A: Float + Send + Sync> {
1912 pub stage_id: String,
1913 pub processing_function: String, pub input_buffer: VecDeque<StreamingDataPoint<A>>,
1915 pub output_buffer: VecDeque<StreamingDataPoint<A>>,
1916 pub stage_metrics: StageMetrics,
1917}
1918
1919#[derive(Debug, Clone)]
1921#[allow(dead_code)]
1922pub struct StageCoordinator {
1923 pub coordination_strategy: CoordinationStrategy,
1924 pub synchronization_barriers: Vec<SyncBarrier>,
1925 pub parallelismdegree: usize,
1926}
1927
1928impl StageCoordinator {
1929 pub fn new(parallelismdegree: usize) -> Self {
1930 Self {
1931 coordination_strategy: CoordinationStrategy::DataParallel,
1932 synchronization_barriers: Vec::new(),
1933 parallelismdegree,
1934 }
1935 }
1936}
1937
1938#[derive(Debug, Clone, Copy)]
1940pub enum CoordinationStrategy {
1941 DataParallel,
1942 TaskParallel,
1943 PipelineParallel,
1944 Hybrid,
1945}
1946
1947#[derive(Debug, Clone)]
1949#[allow(dead_code)]
1950pub struct SyncBarrier {
1951 pub barrier_id: String,
1952 pub wait_count: usize,
1953 pub timestamp: Instant,
1954}
1955
1956#[derive(Debug, Clone, Default)]
1958#[allow(dead_code)]
1959pub struct StageMetrics {
1960 pub processing_time_ms: f64,
1961 pub throughput_samples_per_sec: f64,
1962 pub buffer_utilization: f64,
1963 pub error_count: usize,
1964}
1965
1966#[cfg(test)]
1967mod tests {
1968 use super::*;
1969 use crate::optimizers::SGD;
1970
1971 #[test]
1972 fn test_streaming_config_default() {
1973 let config = StreamingConfig::default();
1974 assert_eq!(config.buffer_size, 32);
1975 assert_eq!(config.latency_budget_ms, 10);
1976 assert!(config.adaptive_learning_rate);
1977 }
1978
1979 #[test]
1980 fn test_streaming_optimizer_creation() {
1981 let sgd = SGD::new(0.01);
1982 let config = StreamingConfig::default();
1983 let optimizer: StreamingOptimizer<SGD<f64>, f64, scirs2_core::ndarray::Ix2> =
1984 StreamingOptimizer::new(sgd, config).unwrap();
1985
1986 assert_eq!(optimizer.step_count, 0);
1987 assert!(optimizer.data_buffer.is_empty());
1988 }
1989
1990 #[test]
1991 fn test_data_point_creation() {
1992 let features = Array1::from_vec(vec![1.0, 2.0, 3.0]);
1993 let data_point = StreamingDataPoint {
1994 features,
1995 target: Some(0.5),
1996 timestamp: Instant::now(),
1997 weight: 1.0,
1998 metadata: HashMap::new(),
1999 };
2000
2001 assert_eq!(data_point.features.len(), 3);
2002 assert_eq!(data_point.target, Some(0.5));
2003 assert_eq!(data_point.weight, 1.0);
2004 }
2005
2006 #[test]
2007 fn test_streaming_metrics_default() {
2008 let metrics = StreamingMetrics::default();
2009 assert_eq!(metrics.samples_processed, 0);
2010 assert_eq!(metrics.processing_rate, 0.0);
2011 assert_eq!(metrics.drift_count, 0);
2012 }
2013}