optirs_core/streaming/
enhanced_adaptive_lr.rs

1// Enhanced adaptive learning rate mechanisms for streaming optimization
2//
3// This module provides advanced adaptive learning rate controllers that can
4// dynamically adjust learning rates based on multiple signals including
5// gradient statistics, performance metrics, concept drift, and resource constraints.
6
7use scirs2_core::ndarray::{Array1, Array2};
8use scirs2_core::numeric::Float;
9use std::collections::{HashMap, VecDeque};
10use std::time::{Duration, Instant};
11
12#[allow(unused_imports)]
13use crate::error::Result;
14
15/// Performance metric types for adaptation
16#[derive(Debug, Clone)]
17pub enum PerformanceMetric<A: Float + Send + Sync> {
18    Loss(A),
19    Accuracy(A),
20    F1Score(A),
21    AUC(A),
22    Custom { name: String, value: A },
23}
24
25/// Enhanced adaptive learning rate controller with multiple adaptation mechanisms
26#[derive(Debug, Clone)]
27pub struct EnhancedAdaptiveLRController<A: Float + Send + Sync> {
28    /// Current learning rate
29    current_lr: A,
30
31    /// Base learning rate
32    base_lr: A,
33
34    /// Learning rate bounds
35    min_lr: A,
36    max_lr: A,
37
38    /// Multi-signal adaptation strategy
39    adaptation_strategy: MultiSignalAdaptationStrategy<A>,
40
41    /// Gradient-based adaptation state
42    gradient_adapter: GradientBasedAdapter<A>,
43
44    /// Performance-based adaptation state
45    performance_adapter: PerformanceBasedAdapter<A>,
46
47    /// Drift-aware adaptation
48    drift_adapter: DriftAwareAdapter<A>,
49
50    /// Resource-aware adaptation
51    resource_adapter: ResourceAwareAdapter<A>,
52
53    /// Meta-learning for hyperparameter optimization
54    meta_optimizer: MetaOptimizer<A>,
55
56    /// Adaptation history for analysis
57    adaptation_history: VecDeque<AdaptationEvent<A>>,
58
59    /// Configuration
60    config: AdaptiveLRConfig<A>,
61}
62
63/// Configuration for adaptive learning rate controller
64#[derive(Debug, Clone)]
65pub struct AdaptiveLRConfig<A: Float + Send + Sync> {
66    /// Base learning rate
67    pub base_lr: A,
68
69    /// Minimum allowed learning rate
70    pub min_lr: A,
71
72    /// Maximum allowed learning rate  
73    pub max_lr: A,
74
75    /// Enable gradient-based adaptation
76    pub enable_gradient_adaptation: bool,
77
78    /// Enable performance-based adaptation
79    pub enable_performance_adaptation: bool,
80
81    /// Enable drift-aware adaptation
82    pub enable_drift_adaptation: bool,
83
84    /// Enable resource-aware adaptation
85    pub enable_resource_adaptation: bool,
86
87    /// Enable meta-learning optimization
88    pub enable_meta_learning: bool,
89
90    /// History window size
91    pub history_window_size: usize,
92
93    /// Adaptation frequency (steps)
94    pub adaptation_frequency: usize,
95
96    /// Sensitivity to changes
97    pub adaptation_sensitivity: A,
98
99    /// Use ensemble voting for conflicting signals
100    pub use_ensemble_voting: bool,
101}
102
103/// Multi-signal adaptation strategy
104#[derive(Debug, Clone)]
105pub struct MultiSignalAdaptationStrategy<A: Float + Send + Sync> {
106    /// Weighted voting system for adaptation signals
107    signal_weights: HashMap<AdaptationSignalType, A>,
108
109    /// Signal voting history
110    voting_history: VecDeque<SignalVote<A>>,
111
112    /// Conflict resolution method
113    conflict_resolution: ConflictResolution,
114
115    /// Signal reliability scores
116    signal_reliability: HashMap<AdaptationSignalType, A>,
117
118    /// Last adaptation decision
119    last_decision: Option<AdaptationDecision<A>>,
120}
121
122/// Types of adaptation signals
123#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
124pub enum AdaptationSignalType {
125    GradientMagnitude,
126    GradientVariance,
127    LossProgression,
128    AccuracyTrend,
129    ConceptDrift,
130    ResourceUtilization,
131    ModelComplexity,
132    DataQuality,
133}
134
135/// Signal vote for learning rate adaptation
136#[derive(Debug, Clone)]
137pub struct SignalVote<A: Float + Send + Sync> {
138    signal_type: AdaptationSignalType,
139    recommended_lr_change: A, // Multiplier (1.0 = no change)
140    confidence: A,
141    reasoning: String,
142    timestamp: Instant,
143}
144
145/// Conflict resolution methods for contradictory signals
146#[derive(Debug, Clone, Copy)]
147pub enum ConflictResolution {
148    /// Use weighted average of all signals
149    WeightedAverage,
150    /// Use signal with highest confidence
151    HighestConfidence,
152    /// Use majority vote (requires threshold)
153    MajorityVote { threshold: f64 },
154    /// Use conservative approach (smallest change)
155    Conservative,
156    /// Use meta-learning to resolve conflicts
157    MetaLearned,
158}
159
160/// Adaptation decision with rationale
161#[derive(Debug, Clone)]
162pub struct AdaptationDecision<A: Float + Send + Sync> {
163    new_lr: A,
164    lr_multiplier: A,
165    contributing_signals: Vec<AdaptationSignalType>,
166    confidence: A,
167    rationale: String,
168    timestamp: Instant,
169}
170
171/// Gradient-based adaptation using statistical analysis
172#[derive(Debug, Clone)]
173pub struct GradientBasedAdapter<A: Float + Send + Sync> {
174    /// Gradient magnitude history
175    magnitude_history: VecDeque<A>,
176
177    /// Gradient direction variance
178    direction_variance_history: VecDeque<A>,
179
180    /// Gradient norm statistics
181    norm_statistics: GradientNormStatistics<A>,
182
183    /// Signal-to-noise ratio estimation
184    snr_estimator: SignalToNoiseEstimator<A>,
185
186    /// Gradient staleness detection
187    staleness_detector: GradientStalenessDetector<A>,
188}
189
190/// Performance-based adaptation using multiple metrics
191#[derive(Debug, Clone)]
192pub struct PerformanceBasedAdapter<A: Float + Send + Sync> {
193    /// Performance metric history
194    metric_history: HashMap<String, VecDeque<A>>,
195
196    /// Performance trend analysis
197    trend_analyzer: PerformanceTrendAnalyzer<A>,
198
199    /// Plateau detection
200    plateau_detector: PlateauDetector<A>,
201
202    /// Overfitting detection
203    overfitting_detector: OverfittingDetector<A>,
204
205    /// Learning efficiency tracker
206    efficiency_tracker: LearningEfficiencyTracker<A>,
207}
208
209/// Drift-aware adaptation for non-stationary data
210#[derive(Debug, Clone)]
211pub struct DriftAwareAdapter<A: Float + Send + Sync> {
212    /// Concept drift detection methods
213    drift_detectors: Vec<ConceptDriftDetector<A>>,
214
215    /// Data distribution shift detection
216    distribution_tracker: DistributionTracker<A>,
217
218    /// Adaptation speed controller
219    adaptation_speed: AdaptationSpeedController<A>,
220
221    /// Drift severity assessment
222    drift_severity: DriftSeverityAssessor<A>,
223}
224
225/// Resource-aware adaptation based on computational constraints
226#[derive(Debug, Clone)]
227pub struct ResourceAwareAdapter<A: Float + Send + Sync> {
228    /// Memory usage tracker
229    memory_tracker: MemoryUsageTracker,
230
231    /// Computation time tracker
232    compute_tracker: ComputationTimeTracker,
233
234    /// Energy consumption tracker
235    energy_tracker: EnergyConsumptionTracker,
236
237    /// Throughput requirements
238    throughput_requirements: ThroughputRequirements<A>,
239
240    /// Resource budget manager
241    budget_manager: ResourceBudgetManager<A>,
242}
243
244/// Meta-learning optimizer for hyperparameter adaptation
245#[derive(Debug, Clone)]
246pub struct MetaOptimizer<A: Float + Send + Sync> {
247    /// Neural network for learning rate prediction
248    lr_predictor: LearningRatePredictorNetwork<A>,
249
250    /// Hyperparameter optimization history
251    optimization_history: VecDeque<HyperparameterUpdate<A>>,
252
253    /// Multi-armed bandit for exploration
254    exploration_strategy: ExplorationStrategy<A>,
255
256    /// Transfer learning from similar tasks
257    transfer_learner: TransferLearner<A>,
258}
259
260/// Adaptation event for tracking and analysis
261#[derive(Debug, Clone)]
262pub struct AdaptationEvent<A: Float + Send + Sync> {
263    timestamp: Instant,
264    old_lr: A,
265    new_lr: A,
266    trigger_signals: Vec<AdaptationSignalType>,
267    adaptation_reason: String,
268    confidence: A,
269    effectiveness_score: Option<A>, // Measured retrospectively
270}
271
272/// Gradient norm statistics for adaptation
273#[derive(Debug, Clone)]
274pub struct GradientNormStatistics<A: Float + Send + Sync> {
275    mean: A,
276    variance: A,
277    skewness: A,
278    kurtosis: A,
279    percentiles: Vec<A>, // 5th, 25th, 50th, 75th, 95th
280    autocorrelation: A,
281}
282
283/// Signal-to-noise ratio estimation for gradients
284#[derive(Debug, Clone)]
285pub struct SignalToNoiseEstimator<A: Float + Send + Sync> {
286    signal_estimate: A,
287    noise_estimate: A,
288    snr_history: VecDeque<A>,
289    estimation_method: SNREstimationMethod,
290}
291
292#[derive(Debug, Clone, Copy)]
293pub enum SNREstimationMethod {
294    MovingAverage,
295    ExponentialSmoothing,
296    RobustEstimation,
297    WaveletDenoising,
298}
299
300/// Gradient staleness detection for distributed settings
301#[derive(Debug, Clone)]
302pub struct GradientStalenessDetector<A: Float + Send + Sync> {
303    staleness_threshold: Duration,
304    gradient_timestamps: VecDeque<Instant>,
305    staleness_impact_model: StalenessImpactModel<A>,
306}
307
308#[derive(Debug, Clone)]
309pub struct StalenessImpactModel<A: Float + Send + Sync> {
310    staleness_penalty: A,
311    compensation_factor: A,
312    impact_history: VecDeque<A>,
313}
314
315/// Performance trend analysis for learning rate adaptation
316#[derive(Debug, Clone)]
317pub struct PerformanceTrendAnalyzer<A: Float + Send + Sync> {
318    trend_detection_window: usize,
319    trend_types: Vec<TrendType>,
320    trend_strength: A,
321    trend_duration: Duration,
322}
323
324#[derive(Debug, Clone, Copy)]
325pub enum TrendType {
326    Improving,
327    Degrading,
328    Oscillating,
329    Plateau,
330    Volatile,
331}
332
333/// Plateau detection in learning curves
334#[derive(Debug, Clone)]
335pub struct PlateauDetector<A: Float + Send + Sync> {
336    plateau_threshold: A,
337    min_plateau_duration: usize,
338    current_plateau_length: usize,
339    plateau_confidence: A,
340}
341
342/// Overfitting detection mechanism
343#[derive(Debug, Clone)]
344pub struct OverfittingDetector<A: Float + Send + Sync> {
345    train_loss_history: VecDeque<A>,
346    val_loss_history: VecDeque<A>,
347    overfitting_threshold: A,
348    early_stopping_patience: usize,
349}
350
351/// Learning efficiency tracking
352#[derive(Debug, Clone)]
353pub struct LearningEfficiencyTracker<A: Float + Send + Sync> {
354    loss_reduction_per_step: VecDeque<A>,
355    parameter_change_magnitude: VecDeque<A>,
356    efficiency_score: A,
357    efficiency_trend: TrendType,
358}
359
360/// Concept drift detection methods
361#[derive(Debug, Clone)]
362pub struct ConceptDriftDetector<A: Float + Send + Sync> {
363    detection_method: DriftDetectionMethod,
364    drift_threshold: A,
365    window_size: usize,
366    drift_confidence: A,
367    last_drift_time: Option<Instant>,
368}
369
370#[derive(Debug, Clone, Copy)]
371pub enum DriftDetectionMethod {
372    ADWIN,
373    DDM,
374    EDDM,
375    PageHinkley,
376    KSWIN,
377    Statistical,
378}
379
380/// Data distribution tracking
381#[derive(Debug, Clone)]
382pub struct DistributionTracker<A: Float + Send + Sync> {
383    feature_distributions: HashMap<usize, FeatureDistribution<A>>,
384    kl_divergence_threshold: A,
385    wasserstein_distance_threshold: A,
386    distribution_drift_score: A,
387}
388
389#[derive(Debug, Clone)]
390pub struct FeatureDistribution<A: Float + Send + Sync> {
391    mean: A,
392    variance: A,
393    histogram: Vec<A>,
394    last_update: Instant,
395}
396
397/// Adaptation speed controller for drift response
398#[derive(Debug, Clone)]
399pub struct AdaptationSpeedController<A: Float + Send + Sync> {
400    base_adaptation_rate: A,
401    current_adaptation_rate: A,
402    acceleration_factor: A,
403    deceleration_factor: A,
404    momentum: A,
405}
406
407/// Drift severity assessment
408#[derive(Debug, Clone)]
409pub struct DriftSeverityAssessor<A: Float + Send + Sync> {
410    severity_levels: Vec<DriftSeverityLevel<A>>,
411    current_severity: DriftSeverityLevel<A>,
412    severity_history: VecDeque<DriftSeverityLevel<A>>,
413}
414
415#[derive(Debug, Clone)]
416pub struct DriftSeverityLevel<A: Float + Send + Sync> {
417    level: DriftSeverity,
418    magnitude: A,
419    recommended_lr_adjustment: A,
420    adaptation_urgency: A,
421}
422
423#[derive(Debug, Clone, Copy, PartialEq)]
424pub enum DriftSeverity {
425    None,
426    Mild,
427    Moderate,
428    Severe,
429    Critical,
430}
431
432/// Resource usage tracking components
433#[derive(Debug, Clone, Default)]
434pub struct MemoryUsageTracker {
435    current_usage_mb: f64,
436    peak_usage_mb: f64,
437    usage_history: VecDeque<f64>,
438    memory_pressure: f64,
439}
440
441#[derive(Debug, Clone, Default)]
442pub struct ComputationTimeTracker {
443    step_times: VecDeque<Duration>,
444    average_step_time: Duration,
445    time_budget: Duration,
446    time_pressure: f64,
447}
448
449#[derive(Debug, Clone, Default)]
450pub struct EnergyConsumptionTracker {
451    energy_per_step: VecDeque<f64>,
452    cumulative_energy: f64,
453    energy_budget: f64,
454    energy_efficiency: f64,
455}
456
457#[derive(Debug, Clone)]
458pub struct ThroughputRequirements<A: Float + Send + Sync> {
459    min_samples_per_second: A,
460    target_samples_per_second: A,
461    current_throughput: A,
462    throughput_deficit: A,
463}
464
465#[derive(Debug, Clone)]
466pub struct ResourceBudgetManager<A: Float + Send + Sync> {
467    memory_budget_mb: f64,
468    compute_budget_seconds: f64,
469    energy_budget_joules: f64,
470    budget_utilization: A,
471    budget_violations: usize,
472}
473
474/// Learning rate predictor neural network
475#[derive(Debug, Clone)]
476pub struct LearningRatePredictorNetwork<A: Float + Send + Sync> {
477    input_features: Vec<FeatureType>,
478    hidden_layers: Vec<usize>,
479    weights: Vec<Array2<A>>,
480    biases: Vec<Array1<A>>,
481    prediction_confidence: A,
482}
483
484#[derive(Debug, Clone, Copy)]
485pub enum FeatureType {
486    GradientNorm,
487    LossValue,
488    LossGradient,
489    ParameterNorm,
490    UpdateMagnitude,
491    LearningProgress,
492    ResourceUtilization,
493    DataCharacteristics,
494}
495
496/// Hyperparameter update record
497#[derive(Debug, Clone)]
498pub struct HyperparameterUpdate<A: Float + Send + Sync> {
499    timestamp: Instant,
500    old_lr: A,
501    new_lr: A,
502    features: Array1<A>,
503    reward: A, // Performance improvement
504    exploration_bonus: A,
505}
506
507/// Exploration strategy for hyperparameter optimization
508#[derive(Debug, Clone)]
509pub struct ExplorationStrategy<A: Float + Send + Sync> {
510    strategy_type: ExplorationStrategyType,
511    exploration_rate: A,
512    exploitation_rate: A,
513    arm_rewards: HashMap<usize, A>,
514    arm_counts: HashMap<usize, usize>,
515}
516
517#[derive(Debug, Clone, Copy)]
518pub enum ExplorationStrategyType {
519    EpsilonGreedy,
520    UCB1,
521    ThompsonSampling,
522    LinUCB,
523    ContextualBandit,
524}
525
526/// Transfer learning for hyperparameter optimization
527#[derive(Debug, Clone)]
528pub struct TransferLearner<A: Float + Send + Sync> {
529    source_task_data: Vec<TaskData<A>>,
530    similarity_metrics: Vec<TaskSimilarityMetric<A>>,
531    transfer_weights: Array1<A>,
532    transfer_confidence: A,
533}
534
535#[derive(Debug, Clone)]
536pub struct TaskData<A: Float + Send + Sync> {
537    task_id: String,
538    optimal_lr_sequence: Vec<A>,
539    task_features: Array1<A>,
540    performance_curve: Vec<A>,
541}
542
543#[derive(Debug, Clone)]
544pub struct TaskSimilarityMetric<A: Float + Send + Sync> {
545    metric_type: SimilarityMetricType,
546    similarity_score: A,
547    weight: A,
548}
549
550#[derive(Debug, Clone, Copy)]
551pub enum SimilarityMetricType {
552    DatasetSize,
553    ModelArchitecture,
554    LossFunction,
555    DataDistribution,
556    OptimizationLandscape,
557}
558
559/// Adaptation statistics for monitoring and analysis
560#[derive(Debug, Clone, Default)]
561pub struct AdaptationStatistics<A: Float + Send + Sync> {
562    /// Total number of adaptations
563    pub total_adaptations: usize,
564
565    /// Successful adaptations (led to improvement)
566    pub successful_adaptations: usize,
567
568    /// Average adaptation frequency
569    pub avg_adaptation_frequency: A,
570
571    /// Learning rate volatility
572    pub lr_volatility: A,
573
574    /// Signal reliability scores
575    pub signal_reliability_scores: HashMap<AdaptationSignalType, A>,
576
577    /// Adaptation effectiveness by signal type
578    pub signal_effectiveness: HashMap<AdaptationSignalType, A>,
579
580    /// Resource efficiency improvements
581    pub resource_efficiency_gains: A,
582
583    /// Convergence speed improvement
584    pub convergence_speed_improvement: A,
585}
586
587impl<A: Float + Default + Clone + Send + Sync + Send + Sync> EnhancedAdaptiveLRController<A> {
588    /// Create a new enhanced adaptive learning rate controller
589    pub fn new(config: AdaptiveLRConfig<A>) -> Result<Self> {
590        let adaptation_strategy = MultiSignalAdaptationStrategy::new(&config)?;
591        let gradient_adapter = GradientBasedAdapter::new(&config)?;
592        let performance_adapter = PerformanceBasedAdapter::new(&config)?;
593        let drift_adapter = DriftAwareAdapter::new(&config)?;
594        let resource_adapter = ResourceAwareAdapter::new(&config)?;
595        let meta_optimizer = MetaOptimizer::new(&config)?;
596
597        Ok(Self {
598            current_lr: config.base_lr,
599            base_lr: config.base_lr,
600            min_lr: config.min_lr,
601            max_lr: config.max_lr,
602            adaptation_strategy,
603            gradient_adapter,
604            performance_adapter,
605            drift_adapter,
606            resource_adapter,
607            meta_optimizer,
608            adaptation_history: VecDeque::with_capacity(config.history_window_size),
609            config,
610        })
611    }
612
613    /// Update learning rate based on multiple adaptation signals
614    pub fn update_learning_rate(
615        &mut self,
616        gradients: &Array1<A>,
617        loss: A,
618        metrics: &HashMap<String, A>,
619        step: usize,
620    ) -> Result<A> {
621        // Collect adaptation signals from all components
622        let mut signals = Vec::new();
623
624        if self.config.enable_gradient_adaptation {
625            if let Ok(signal) = self.gradient_adapter.generate_signal(gradients, step) {
626                signals.push(signal);
627            }
628        }
629
630        if self.config.enable_performance_adaptation {
631            if let Ok(signal) = self
632                .performance_adapter
633                .generate_signal(loss, metrics, step)
634            {
635                signals.push(signal);
636            }
637        }
638
639        if self.config.enable_drift_adaptation {
640            if let Ok(signal) = self.drift_adapter.generate_signal(gradients, step) {
641                signals.push(signal);
642            }
643        }
644
645        if self.config.enable_resource_adaptation {
646            if let Ok(signal) = self.resource_adapter.generate_signal(step) {
647                signals.push(signal);
648            }
649        }
650
651        // Resolve conflicts and make adaptation decision
652        let decision = self.adaptation_strategy.resolve_signals(signals, step)?;
653
654        // Apply meta-learning if enabled
655        if self.config.enable_meta_learning {
656            let meta_adjustment = self.meta_optimizer.meta_optimize(&decision, step)?;
657            self.current_lr = self.apply_meta_adjustment(decision.new_lr, meta_adjustment);
658        } else {
659            self.current_lr = decision.new_lr;
660        }
661
662        // Ensure learning rate is within bounds
663        self.current_lr = self
664            .current_lr
665            .clamp(self.config.min_lr, self.config.max_lr);
666
667        // Record adaptation event
668        let event = AdaptationEvent {
669            timestamp: Instant::now(),
670            old_lr: decision.new_lr, // Store for comparison
671            new_lr: self.current_lr,
672            trigger_signals: decision.contributing_signals,
673            adaptation_reason: decision.rationale,
674            confidence: decision.confidence,
675            effectiveness_score: None, // Will be updated later
676        };
677
678        self.adaptation_history.push_back(event);
679        if self.adaptation_history.len() > self.config.history_window_size {
680            self.adaptation_history.pop_front();
681        }
682
683        Ok(self.current_lr)
684    }
685
686    /// Get current learning rate
687    pub fn get_current_lr(&self) -> A {
688        self.current_lr
689    }
690
691    /// Get adaptation statistics
692    pub fn get_adaptation_statistics(&self) -> AdaptationStatistics<A> {
693        let total_adaptations = self.adaptation_history.len();
694        let successful_adaptations = self
695            .adaptation_history
696            .iter()
697            .filter(|event| {
698                event
699                    .effectiveness_score
700                    .is_some_and(|score| score > A::zero())
701            })
702            .count();
703
704        let lr_volatility = if !self.adaptation_history.is_empty() {
705            let lr_values: Vec<A> = self
706                .adaptation_history
707                .iter()
708                .map(|event| event.new_lr)
709                .collect();
710
711            let mean_lr = lr_values.iter().fold(A::zero(), |acc, &lr| acc + lr)
712                / A::from(lr_values.len()).unwrap();
713
714            let variance = lr_values
715                .iter()
716                .map(|&lr| {
717                    let diff = lr - mean_lr;
718                    diff * diff
719                })
720                .fold(A::zero(), |acc, var| acc + var)
721                / A::from(lr_values.len()).unwrap();
722
723            variance.sqrt()
724        } else {
725            A::zero()
726        };
727
728        AdaptationStatistics {
729            total_adaptations,
730            successful_adaptations,
731            lr_volatility,
732            ..Default::default()
733        }
734    }
735
736    /// Apply meta-learning adjustment to base decision
737    fn apply_meta_adjustment(&self, base_lr: A, meta_adjustment: A) -> A {
738        // Combine base decision with meta-learning recommendation
739        let alpha = A::from(0.7).unwrap(); // Weight for base decision
740        let beta = A::from(0.3).unwrap(); // Weight for meta-learning
741
742        alpha * base_lr + beta * meta_adjustment
743    }
744
745    /// Evaluate adaptation effectiveness retrospectively
746    pub fn evaluate_adaptation_effectiveness(&mut self, performance_improvement: A) {
747        if let Some(last_event) = self.adaptation_history.back_mut() {
748            last_event.effectiveness_score = Some(performance_improvement);
749
750            // Update signal reliability based on effectiveness
751            for signal_type in &last_event.trigger_signals {
752                self.adaptation_strategy
753                    .update_signal_reliability(*signal_type, performance_improvement);
754            }
755        }
756    }
757
758    /// Reset controller state
759    pub fn reset(&mut self) {
760        self.current_lr = self.base_lr;
761        self.adaptation_history.clear();
762        self.gradient_adapter.reset();
763        self.performance_adapter.reset();
764        self.drift_adapter.reset();
765        self.resource_adapter.reset();
766        self.meta_optimizer.reset();
767    }
768}
769
770// Implementation stubs for the various components
771// In a full implementation, these would contain sophisticated algorithms
772
773impl<A: Float + Default + Clone + Send + Sync + Send + Sync> MultiSignalAdaptationStrategy<A> {
774    fn new(config: &AdaptiveLRConfig<A>) -> Result<Self> {
775        Ok(Self {
776            signal_weights: HashMap::new(),
777            voting_history: VecDeque::new(),
778            conflict_resolution: ConflictResolution::WeightedAverage,
779            signal_reliability: HashMap::new(),
780            last_decision: None,
781        })
782    }
783
784    fn resolve_signals(
785        &mut self,
786        signals: Vec<SignalVote<A>>,
787        _step: usize,
788    ) -> Result<AdaptationDecision<A>> {
789        if signals.is_empty() {
790            return Ok(AdaptationDecision {
791                new_lr: A::from(0.001).unwrap(),
792                lr_multiplier: A::one(),
793                contributing_signals: vec![],
794                confidence: A::zero(),
795                rationale: "No signals available".to_string(),
796                timestamp: Instant::now(),
797            });
798        }
799
800        // Simplified conflict resolution using weighted average
801        let total_weight = signals
802            .iter()
803            .map(|s| s.confidence)
804            .fold(A::zero(), |acc, c| acc + c);
805
806        let weighted_change = signals
807            .iter()
808            .map(|s| s.recommended_lr_change * s.confidence)
809            .fold(A::zero(), |acc, change| acc + change)
810            / total_weight;
811
812        let contributing_signals = signals.iter().map(|s| s.signal_type).collect();
813
814        Ok(AdaptationDecision {
815            new_lr: A::from(0.001).unwrap() * weighted_change,
816            lr_multiplier: weighted_change,
817            contributing_signals,
818            confidence: total_weight / A::from(signals.len()).unwrap(),
819            rationale: "Weighted average of adaptation signals".to_string(),
820            timestamp: Instant::now(),
821        })
822    }
823
824    fn update_signal_reliability(&mut self, signal_type: AdaptationSignalType, effectiveness: A) {
825        let reliability = self
826            .signal_reliability
827            .entry(signal_type)
828            .or_insert(A::from(0.5).unwrap());
829
830        // Update reliability using exponential moving average
831        let alpha = A::from(0.1).unwrap();
832        *reliability = (*reliability) * (A::one() - alpha) + effectiveness * alpha;
833    }
834}
835
836impl<A: Float + Default + Clone + Send + Sync + Send + Sync> GradientBasedAdapter<A> {
837    fn new(config: &AdaptiveLRConfig<A>) -> Result<Self> {
838        Ok(Self {
839            magnitude_history: VecDeque::new(),
840            direction_variance_history: VecDeque::new(),
841            norm_statistics: GradientNormStatistics::default(),
842            snr_estimator: SignalToNoiseEstimator::default(),
843            staleness_detector: GradientStalenessDetector::default(),
844        })
845    }
846
847    fn generate_signal(&mut self, gradients: &Array1<A>, step: usize) -> Result<SignalVote<A>> {
848        let magnitude = gradients
849            .iter()
850            .map(|&g| g * g)
851            .fold(A::zero(), |acc, x| acc + x)
852            .sqrt();
853        self.magnitude_history.push_back(magnitude);
854
855        if self.magnitude_history.len() > 100 {
856            self.magnitude_history.pop_front();
857        }
858
859        // Simple adaptation based on gradient magnitude
860        let recommended_change = if magnitude > A::from(1.0).unwrap() {
861            A::from(0.9).unwrap() // Decrease LR for large gradients
862        } else if magnitude < A::from(0.01).unwrap() {
863            A::from(1.1).unwrap() // Increase LR for small gradients
864        } else {
865            A::one() // No change
866        };
867
868        Ok(SignalVote {
869            signal_type: AdaptationSignalType::GradientMagnitude,
870            recommended_lr_change: recommended_change,
871            confidence: A::from(0.7).unwrap(),
872            reasoning: "Gradient magnitude-based adaptation".to_string(),
873            timestamp: Instant::now(),
874        })
875    }
876
877    fn reset(&mut self) {
878        self.magnitude_history.clear();
879        self.direction_variance_history.clear();
880    }
881}
882
883impl<A: Float + Default + Clone + Send + Sync + Send + Sync> PerformanceBasedAdapter<A> {
884    fn new(config: &AdaptiveLRConfig<A>) -> Result<Self> {
885        Ok(Self {
886            metric_history: HashMap::new(),
887            trend_analyzer: PerformanceTrendAnalyzer::default(),
888            plateau_detector: PlateauDetector::default(),
889            overfitting_detector: OverfittingDetector::default(),
890            efficiency_tracker: LearningEfficiencyTracker::default(),
891        })
892    }
893
894    fn generate_signal(
895        &mut self,
896        loss: A,
897        metrics: &HashMap<String, A>,
898        _step: usize,
899    ) -> Result<SignalVote<A>> {
900        let loss_history = self.metric_history.entry("loss".to_string()).or_default();
901
902        loss_history.push_back(loss);
903        if loss_history.len() > 50 {
904            loss_history.pop_front();
905        }
906
907        // Simple trend analysis
908        let recommended_change = if loss_history.len() >= 2 {
909            let recent_loss = loss_history.back().unwrap();
910            let prev_loss = loss_history.get(loss_history.len() - 2).unwrap();
911
912            if *recent_loss > *prev_loss {
913                A::from(0.95).unwrap() // Decrease LR if loss increased
914            } else {
915                A::from(1.02).unwrap() // Slight increase if loss decreased
916            }
917        } else {
918            A::one()
919        };
920
921        Ok(SignalVote {
922            signal_type: AdaptationSignalType::LossProgression,
923            recommended_lr_change: recommended_change,
924            confidence: A::from(0.8).unwrap(),
925            reasoning: "Loss progression analysis".to_string(),
926            timestamp: Instant::now(),
927        })
928    }
929
930    fn reset(&mut self) {
931        self.metric_history.clear();
932    }
933}
934
935impl<A: Float + Default + Clone + Send + Sync + Send + Sync> DriftAwareAdapter<A> {
936    fn new(config: &AdaptiveLRConfig<A>) -> Result<Self> {
937        Ok(Self {
938            drift_detectors: vec![],
939            distribution_tracker: DistributionTracker::default(),
940            adaptation_speed: AdaptationSpeedController::default(),
941            drift_severity: DriftSeverityAssessor::default(),
942        })
943    }
944
945    fn generate_signal(&mut self, gradients: &Array1<A>, step: usize) -> Result<SignalVote<A>> {
946        // Simplified drift detection
947        Ok(SignalVote {
948            signal_type: AdaptationSignalType::ConceptDrift,
949            recommended_lr_change: A::one(),
950            confidence: A::from(0.5).unwrap(),
951            reasoning: "No drift detected".to_string(),
952            timestamp: Instant::now(),
953        })
954    }
955
956    fn reset(&mut self) {
957        // Reset drift detection state
958    }
959}
960
961impl<A: Float + Default + Clone + Send + Sync + Send + Sync> ResourceAwareAdapter<A> {
962    fn new(config: &AdaptiveLRConfig<A>) -> Result<Self> {
963        Ok(Self {
964            memory_tracker: MemoryUsageTracker::default(),
965            compute_tracker: ComputationTimeTracker::default(),
966            energy_tracker: EnergyConsumptionTracker::default(),
967            throughput_requirements: ThroughputRequirements {
968                min_samples_per_second: A::from(100.0).unwrap(),
969                target_samples_per_second: A::from(1000.0).unwrap(),
970                current_throughput: A::from(500.0).unwrap(),
971                throughput_deficit: A::zero(),
972            },
973            budget_manager: ResourceBudgetManager {
974                memory_budget_mb: 1000.0,
975                compute_budget_seconds: 3600.0,
976                energy_budget_joules: 1000.0,
977                budget_utilization: A::from(0.5).unwrap(),
978                budget_violations: 0,
979            },
980        })
981    }
982
983    fn generate_signal(&mut self, step: usize) -> Result<SignalVote<A>> {
984        // Simplified resource-based adaptation
985        let memory_pressure = self.memory_tracker.memory_pressure;
986
987        let recommended_change = if memory_pressure > 0.8 {
988            A::from(0.9).unwrap() // Reduce LR to decrease memory usage
989        } else if memory_pressure < 0.3 {
990            A::from(1.05).unwrap() // Can afford to increase LR
991        } else {
992            A::one()
993        };
994
995        Ok(SignalVote {
996            signal_type: AdaptationSignalType::ResourceUtilization,
997            recommended_lr_change: recommended_change,
998            confidence: A::from(0.6).unwrap(),
999            reasoning: format!("Memory pressure: {:.2}", memory_pressure),
1000            timestamp: Instant::now(),
1001        })
1002    }
1003
1004    fn reset(&mut self) {
1005        self.memory_tracker = MemoryUsageTracker::default();
1006        self.compute_tracker = ComputationTimeTracker::default();
1007        self.energy_tracker = EnergyConsumptionTracker::default();
1008    }
1009}
1010
1011impl<A: Float + Default + Clone + Send + Sync + Send + Sync> MetaOptimizer<A> {
1012    fn new(config: &AdaptiveLRConfig<A>) -> Result<Self> {
1013        Ok(Self {
1014            lr_predictor: LearningRatePredictorNetwork::default(),
1015            optimization_history: VecDeque::new(),
1016            exploration_strategy: ExplorationStrategy::default(),
1017            transfer_learner: TransferLearner::default(),
1018        })
1019    }
1020
1021    fn meta_optimize(&mut self, decision: &AdaptationDecision<A>, step: usize) -> Result<A> {
1022        // Simplified meta-optimization
1023        Ok(A::from(0.001).unwrap())
1024    }
1025
1026    fn reset(&mut self) {
1027        self.optimization_history.clear();
1028    }
1029}
1030
1031// Default implementations for various structures
1032impl<A: Float + Default + Send + Sync + Send + Sync> Default for GradientNormStatistics<A> {
1033    fn default() -> Self {
1034        Self {
1035            mean: A::default(),
1036            variance: A::default(),
1037            skewness: A::default(),
1038            kurtosis: A::default(),
1039            percentiles: vec![A::default(); 5],
1040            autocorrelation: A::default(),
1041        }
1042    }
1043}
1044
1045impl<A: Float + Default + Send + Sync + Send + Sync> Default for SignalToNoiseEstimator<A> {
1046    fn default() -> Self {
1047        Self {
1048            signal_estimate: A::default(),
1049            noise_estimate: A::default(),
1050            snr_history: VecDeque::new(),
1051            estimation_method: SNREstimationMethod::MovingAverage,
1052        }
1053    }
1054}
1055
1056impl<A: Float + Default + Send + Sync + Send + Sync> Default for GradientStalenessDetector<A> {
1057    fn default() -> Self {
1058        Self {
1059            staleness_threshold: Duration::from_secs(1),
1060            gradient_timestamps: VecDeque::new(),
1061            staleness_impact_model: StalenessImpactModel::default(),
1062        }
1063    }
1064}
1065
1066impl<A: Float + Default + Send + Sync + Send + Sync> Default for StalenessImpactModel<A> {
1067    fn default() -> Self {
1068        Self {
1069            staleness_penalty: A::default(),
1070            compensation_factor: A::default(),
1071            impact_history: VecDeque::new(),
1072        }
1073    }
1074}
1075
1076impl<A: Float + Default + Send + Sync + Send + Sync> Default for PerformanceTrendAnalyzer<A> {
1077    fn default() -> Self {
1078        Self {
1079            trend_detection_window: 10,
1080            trend_types: vec![],
1081            trend_strength: A::default(),
1082            trend_duration: Duration::from_secs(0),
1083        }
1084    }
1085}
1086
1087impl<A: Float + Default + Send + Sync + Send + Sync> Default for PlateauDetector<A> {
1088    fn default() -> Self {
1089        Self {
1090            plateau_threshold: A::default(),
1091            min_plateau_duration: 5,
1092            current_plateau_length: 0,
1093            plateau_confidence: A::default(),
1094        }
1095    }
1096}
1097
1098impl<A: Float + Default + Send + Sync + Send + Sync> Default for OverfittingDetector<A> {
1099    fn default() -> Self {
1100        Self {
1101            train_loss_history: VecDeque::new(),
1102            val_loss_history: VecDeque::new(),
1103            overfitting_threshold: A::default(),
1104            early_stopping_patience: 10,
1105        }
1106    }
1107}
1108
1109impl<A: Float + Default + Send + Sync + Send + Sync> Default for LearningEfficiencyTracker<A> {
1110    fn default() -> Self {
1111        Self {
1112            loss_reduction_per_step: VecDeque::new(),
1113            parameter_change_magnitude: VecDeque::new(),
1114            efficiency_score: A::default(),
1115            efficiency_trend: TrendType::Improving,
1116        }
1117    }
1118}
1119
1120impl<A: Float + Default + Send + Sync + Send + Sync> Default for DistributionTracker<A> {
1121    fn default() -> Self {
1122        Self {
1123            feature_distributions: HashMap::new(),
1124            kl_divergence_threshold: A::default(),
1125            wasserstein_distance_threshold: A::default(),
1126            distribution_drift_score: A::default(),
1127        }
1128    }
1129}
1130
1131impl<A: Float + Default + Send + Sync + Send + Sync> Default for AdaptationSpeedController<A> {
1132    fn default() -> Self {
1133        Self {
1134            base_adaptation_rate: A::from(0.1).unwrap_or_default(),
1135            current_adaptation_rate: A::from(0.1).unwrap_or_default(),
1136            acceleration_factor: A::from(1.1).unwrap_or_default(),
1137            deceleration_factor: A::from(0.9).unwrap_or_default(),
1138            momentum: A::default(),
1139        }
1140    }
1141}
1142
1143impl<A: Float + Default + Send + Sync + Send + Sync> Default for DriftSeverityAssessor<A> {
1144    fn default() -> Self {
1145        Self {
1146            severity_levels: vec![],
1147            current_severity: DriftSeverityLevel::default(),
1148            severity_history: VecDeque::new(),
1149        }
1150    }
1151}
1152
1153impl<A: Float + Default + Send + Sync + Send + Sync> Default for DriftSeverityLevel<A> {
1154    fn default() -> Self {
1155        Self {
1156            level: DriftSeverity::None,
1157            magnitude: A::default(),
1158            recommended_lr_adjustment: A::one(),
1159            adaptation_urgency: A::default(),
1160        }
1161    }
1162}
1163
1164impl<A: Float + Default + Send + Sync + Send + Sync> Default for LearningRatePredictorNetwork<A> {
1165    fn default() -> Self {
1166        Self {
1167            input_features: vec![],
1168            hidden_layers: vec![],
1169            weights: vec![],
1170            biases: vec![],
1171            prediction_confidence: A::default(),
1172        }
1173    }
1174}
1175
1176impl<A: Float + Default + Send + Sync + Send + Sync> Default for ExplorationStrategy<A> {
1177    fn default() -> Self {
1178        Self {
1179            strategy_type: ExplorationStrategyType::EpsilonGreedy,
1180            exploration_rate: A::from(0.1).unwrap_or_default(),
1181            exploitation_rate: A::from(0.9).unwrap_or_default(),
1182            arm_rewards: HashMap::new(),
1183            arm_counts: HashMap::new(),
1184        }
1185    }
1186}
1187
1188impl<A: Float + Default + Send + Sync + Send + Sync> Default for TransferLearner<A> {
1189    fn default() -> Self {
1190        Self {
1191            source_task_data: vec![],
1192            similarity_metrics: vec![],
1193            transfer_weights: Array1::from_vec(vec![]),
1194            transfer_confidence: A::default(),
1195        }
1196    }
1197}
1198
1199#[cfg(test)]
1200mod tests {
1201    use super::*;
1202    use scirs2_core::ndarray::Array1;
1203
1204    #[test]
1205    fn test_enhanced_adaptive_lr_controller_creation() {
1206        let config = AdaptiveLRConfig {
1207            base_lr: 0.01,
1208            min_lr: 1e-6,
1209            max_lr: 1.0,
1210            enable_gradient_adaptation: true,
1211            enable_performance_adaptation: true,
1212            enable_drift_adaptation: false,
1213            enable_resource_adaptation: false,
1214            enable_meta_learning: false,
1215            history_window_size: 100,
1216            adaptation_frequency: 10,
1217            adaptation_sensitivity: 0.1,
1218            use_ensemble_voting: true,
1219        };
1220
1221        let controller = EnhancedAdaptiveLRController::<f32>::new(config);
1222        assert!(controller.is_ok());
1223    }
1224
1225    #[test]
1226    fn test_learning_rate_update() {
1227        let config = AdaptiveLRConfig {
1228            base_lr: 0.01,
1229            min_lr: 1e-6,
1230            max_lr: 1.0,
1231            enable_gradient_adaptation: true,
1232            enable_performance_adaptation: true,
1233            enable_drift_adaptation: false,
1234            enable_resource_adaptation: false,
1235            enable_meta_learning: false,
1236            history_window_size: 100,
1237            adaptation_frequency: 10,
1238            adaptation_sensitivity: 0.1,
1239            use_ensemble_voting: true,
1240        };
1241
1242        let mut controller = EnhancedAdaptiveLRController::<f32>::new(config).unwrap();
1243        let gradients = Array1::from_vec(vec![0.1, 0.2, 0.05]);
1244        let loss = 0.5;
1245        let metrics = HashMap::new();
1246
1247        let new_lr = controller.update_learning_rate(&gradients, loss, &metrics, 1);
1248        assert!(new_lr.is_ok());
1249        assert!(new_lr.unwrap() > 0.0);
1250    }
1251
1252    #[test]
1253    fn test_adaptation_statistics() {
1254        let config = AdaptiveLRConfig {
1255            base_lr: 0.01,
1256            min_lr: 1e-6,
1257            max_lr: 1.0,
1258            enable_gradient_adaptation: true,
1259            enable_performance_adaptation: true,
1260            enable_drift_adaptation: false,
1261            enable_resource_adaptation: false,
1262            enable_meta_learning: false,
1263            history_window_size: 100,
1264            adaptation_frequency: 10,
1265            adaptation_sensitivity: 0.1,
1266            use_ensemble_voting: true,
1267        };
1268
1269        let controller = EnhancedAdaptiveLRController::<f32>::new(config).unwrap();
1270        let stats = controller.get_adaptation_statistics();
1271
1272        assert_eq!(stats.total_adaptations, 0);
1273        assert_eq!(stats.successful_adaptations, 0);
1274    }
1275}