1use scirs2_core::numeric::Float;
7use std::collections::VecDeque;
8use std::iter::Sum;
9use std::time::{Duration, Instant};
10
11#[allow(unused_imports)]
12use crate::error::Result;
13
14#[derive(Debug, Clone, Copy, PartialEq)]
16#[allow(dead_code)]
17pub enum DriftDetectionMethod {
18 PageHinkley,
20 Adwin,
22 DriftDetectionMethod,
24 EarlyDriftDetection,
26 StatisticalTest,
28 Ensemble,
30}
31
32#[derive(Debug, Clone)]
34#[allow(dead_code)]
35pub struct DriftDetectorConfig {
36 pub method: DriftDetectionMethod,
38 pub min_samples: usize,
40 pub threshold: f64,
42 pub window_size: usize,
44 pub alpha: f64,
46 pub warningthreshold: f64,
48 pub enable_ensemble: bool,
50}
51
52impl Default for DriftDetectorConfig {
53 fn default() -> Self {
54 Self {
55 method: DriftDetectionMethod::PageHinkley,
56 min_samples: 30,
57 threshold: 3.0,
58 window_size: 100,
59 alpha: 0.005,
60 warningthreshold: 2.0,
61 enable_ensemble: false,
62 }
63 }
64}
65
66#[derive(Debug, Clone, Copy, PartialEq)]
68pub enum DriftStatus {
69 Stable,
71 Warning,
73 Drift,
75}
76
77#[derive(Debug, Clone)]
79pub struct DriftEvent<A: Float + Send + Sync> {
80 pub timestamp: Instant,
82 pub confidence: A,
84 pub drift_type: DriftType,
86 pub adaptation_recommendation: AdaptationRecommendation,
88}
89
90#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
92pub enum DriftType {
93 Sudden,
95 Gradual,
97 Incremental,
99 Recurring,
101 Blip,
103}
104
105#[derive(Debug, Clone)]
107pub enum AdaptationRecommendation {
108 Reset,
110 IncreaseLearningRate { factor: f64 },
112 DecreaseLearningRate { factor: f64 },
114 SwitchOptimizer { new_optimizer: String },
116 AdjustWindow { new_size: usize },
118 NoAction,
120}
121
122#[derive(Debug, Clone)]
124pub struct PageHinkleyDetector<A: Float + Send + Sync> {
125 sum: A,
127 min_sum: A,
129 threshold: A,
131 warningthreshold: A,
133 sample_count: usize,
135 last_drift: Option<Instant>,
137}
138
139impl<A: Float + Send + Sync + Send + Sync> PageHinkleyDetector<A> {
140 pub fn new(threshold: A, warningthreshold: A) -> Self {
142 Self {
143 sum: A::zero(),
144 min_sum: A::zero(),
145 threshold,
146 warningthreshold,
147 sample_count: 0,
148 last_drift: None,
149 }
150 }
151
152 pub fn update(&mut self, loss: A) -> DriftStatus {
154 self.sample_count += 1;
155
156 let mean_loss = A::from(0.1).unwrap(); self.sum = self.sum + loss - mean_loss;
159
160 if self.sum < self.min_sum {
162 self.min_sum = self.sum;
163 }
164
165 let test_stat = self.sum - self.min_sum;
167
168 if test_stat > self.threshold {
169 self.last_drift = Some(Instant::now());
170 self.reset();
171 DriftStatus::Drift
172 } else if test_stat > self.warningthreshold {
173 DriftStatus::Warning
174 } else {
175 DriftStatus::Stable
176 }
177 }
178
179 pub fn reset(&mut self) {
181 self.sum = A::zero();
182 self.min_sum = A::zero();
183 self.sample_count = 0;
184 }
185}
186
187#[derive(Debug, Clone)]
189pub struct AdwinDetector<A: Float + Send + Sync> {
190 window: VecDeque<A>,
192 max_windowsize: usize,
194 delta: A,
196 min_window_size: usize,
198}
199
200impl<A: Float + Sum + Send + Sync + Send + Sync> AdwinDetector<A> {
201 pub fn new(delta: A, max_windowsize: usize) -> Self {
203 Self {
204 window: VecDeque::new(),
205 max_windowsize,
206 delta,
207 min_window_size: 10,
208 }
209 }
210
211 pub fn update(&mut self, value: A) -> DriftStatus {
213 self.window.push_back(value);
214
215 if self.window.len() > self.max_windowsize {
217 self.window.pop_front();
218 }
219
220 if self.window.len() >= self.min_window_size {
222 if self.detect_change() {
223 self.shrink_window();
224 DriftStatus::Drift
225 } else {
226 DriftStatus::Stable
227 }
228 } else {
229 DriftStatus::Stable
230 }
231 }
232
233 fn detect_change(&self) -> bool {
235 let n = self.window.len();
236 if n < 2 {
237 return false;
238 }
239
240 let mid = n / 2;
242
243 let first_half: Vec<_> = self.window.iter().take(mid).cloned().collect();
244 let second_half: Vec<_> = self.window.iter().skip(mid).cloned().collect();
245
246 let mean1 = first_half.iter().cloned().sum::<A>() / A::from(first_half.len()).unwrap();
247 let mean2 = second_half.iter().cloned().sum::<A>() / A::from(second_half.len()).unwrap();
248
249 let var1 = first_half
251 .iter()
252 .map(|&x| {
253 let diff = x - mean1;
254 diff * diff
255 })
256 .sum::<A>()
257 / A::from(first_half.len()).unwrap();
258
259 let var2 = second_half
260 .iter()
261 .map(|&x| {
262 let diff = x - mean2;
263 diff * diff
264 })
265 .sum::<A>()
266 / A::from(second_half.len()).unwrap();
267
268 let diff = (mean1 - mean2).abs();
270 let threshold = (var1 + var2 + A::from(0.01).unwrap()).sqrt();
271
272 diff > threshold
273 }
274
275 fn shrink_window(&mut self) {
277 let new_size = self.window.len() / 2;
278 while self.window.len() > new_size {
279 self.window.pop_front();
280 }
281 }
282}
283
284#[derive(Debug, Clone)]
286pub struct DdmDetector<A: Float + Send + Sync> {
287 error_rate: A,
289 error_std: A,
291 min_error_plus_2_std: A,
293 min_error_plus_3_std: A,
295 sample_count: usize,
297 error_count: usize,
299}
300
301impl<A: Float + Send + Sync + Send + Sync> DdmDetector<A> {
302 pub fn new() -> Self {
304 Self {
305 error_rate: A::zero(),
306 error_std: A::one(),
307 min_error_plus_2_std: A::from(f64::MAX).unwrap(),
308 min_error_plus_3_std: A::from(f64::MAX).unwrap(),
309 sample_count: 0,
310 error_count: 0,
311 }
312 }
313
314 pub fn update(&mut self, iserror: bool) -> DriftStatus {
316 self.sample_count += 1;
317 if iserror {
318 self.error_count += 1;
319 }
320
321 if self.sample_count < 30 {
322 return DriftStatus::Stable;
323 }
324
325 self.error_rate = A::from(self.error_count as f64 / self.sample_count as f64).unwrap();
327 let p = self.error_rate;
328 let n = A::from(self.sample_count as f64).unwrap();
329 self.error_std = (p * (A::one() - p) / n).sqrt();
330
331 let current_level = self.error_rate + A::from(2.0).unwrap() * self.error_std;
332
333 if current_level < self.min_error_plus_2_std {
335 self.min_error_plus_2_std = current_level;
336 self.min_error_plus_3_std = self.error_rate + A::from(3.0).unwrap() * self.error_std;
337 }
338
339 if current_level > self.min_error_plus_3_std {
341 self.reset();
342 DriftStatus::Drift
343 } else if current_level > self.min_error_plus_2_std {
344 DriftStatus::Warning
345 } else {
346 DriftStatus::Stable
347 }
348 }
349
350 pub fn reset(&mut self) {
352 self.sample_count = 0;
353 self.error_count = 0;
354 self.error_rate = A::zero();
355 self.error_std = A::one();
356 self.min_error_plus_2_std = A::from(f64::MAX).unwrap();
357 self.min_error_plus_3_std = A::from(f64::MAX).unwrap();
358 }
359}
360
361impl<A: Float + Send + Sync + Send + Sync> Default for DdmDetector<A> {
362 fn default() -> Self {
363 Self::new()
364 }
365}
366
367pub struct ConceptDriftDetector<A: Float + Send + Sync> {
369 config: DriftDetectorConfig,
371
372 ph_detector: PageHinkleyDetector<A>,
374
375 adwin_detector: AdwinDetector<A>,
377
378 ddm_detector: DdmDetector<A>,
380
381 ensemble_history: VecDeque<DriftStatus>,
383
384 drift_events: Vec<DriftEvent<A>>,
386
387 performance_tracker: PerformanceDriftTracker<A>,
389}
390
391impl<A: Float + std::fmt::Debug + Sum + Send + Sync + Send + Sync> ConceptDriftDetector<A> {
392 pub fn new(config: DriftDetectorConfig) -> Self {
394 let threshold = A::from(config.threshold).unwrap();
395 let warningthreshold = A::from(config.warningthreshold).unwrap();
396 let delta = A::from(config.alpha).unwrap();
397
398 Self {
399 ph_detector: PageHinkleyDetector::new(threshold, warningthreshold),
400 adwin_detector: AdwinDetector::new(delta, config.window_size),
401 ddm_detector: DdmDetector::new(),
402 ensemble_history: VecDeque::with_capacity(10),
403 drift_events: Vec::new(),
404 performance_tracker: PerformanceDriftTracker::new(),
405 config,
406 }
407 }
408
409 pub fn update(&mut self, loss: A, is_predictionerror: bool) -> Result<DriftStatus> {
411 let ph_status = self.ph_detector.update(loss);
412 let adwin_status = self.adwin_detector.update(loss);
413 let ddm_status = self.ddm_detector.update(is_predictionerror);
414
415 let final_status = if self.config.enable_ensemble {
416 self.ensemble_vote(ph_status, adwin_status, ddm_status)
417 } else {
418 match self.config.method {
419 DriftDetectionMethod::PageHinkley => ph_status,
420 DriftDetectionMethod::Adwin => adwin_status,
421 DriftDetectionMethod::DriftDetectionMethod => ddm_status,
422 _ => ddm_status, }
424 };
425
426 if final_status == DriftStatus::Drift {
428 let event = DriftEvent {
429 timestamp: Instant::now(),
430 confidence: A::from(0.8).unwrap(), drift_type: self.classify_drift_type(),
432 adaptation_recommendation: self.generate_adaptation_recommendation(),
433 };
434 self.drift_events.push(event);
435 }
436
437 self.performance_tracker.update(loss, final_status);
439
440 Ok(final_status)
441 }
442
443 fn ensemble_vote(
445 &mut self,
446 ph: DriftStatus,
447 adwin: DriftStatus,
448 ddm: DriftStatus,
449 ) -> DriftStatus {
450 let votes = [ph, adwin, ddm];
451
452 let drift_votes = votes.iter().filter(|&&s| s == DriftStatus::Drift).count();
454 let warning_votes = votes.iter().filter(|&&s| s == DriftStatus::Warning).count();
455
456 if drift_votes >= 2 {
457 DriftStatus::Drift
458 } else if warning_votes >= 2 || drift_votes >= 1 {
459 DriftStatus::Warning
460 } else {
461 DriftStatus::Stable
462 }
463 }
464
465 fn classify_drift_type(&self) -> DriftType {
467 if self.drift_events.len() < 2 {
469 return DriftType::Sudden;
470 }
471
472 let recent_events = self.drift_events.iter().rev().take(5);
473 let time_intervals: Vec<_> = recent_events
474 .map(|event| event.timestamp)
475 .collect::<Vec<_>>()
476 .windows(2)
477 .map(|window| window[0].duration_since(window[1]))
478 .collect();
479
480 if time_intervals.iter().all(|&d| d < Duration::from_secs(60)) {
481 DriftType::Sudden
482 } else if time_intervals.len() > 2 {
483 DriftType::Gradual
484 } else {
485 DriftType::Incremental
486 }
487 }
488
489 fn generate_adaptation_recommendation(&self) -> AdaptationRecommendation {
491 let recent_performance = self.performance_tracker.get_recent_performance_change();
492
493 if recent_performance > A::from(0.5).unwrap() {
494 AdaptationRecommendation::Reset
496 } else if recent_performance > A::from(0.2).unwrap() {
497 AdaptationRecommendation::IncreaseLearningRate { factor: 1.5 }
499 } else if recent_performance < A::from(-0.1).unwrap() {
500 AdaptationRecommendation::DecreaseLearningRate { factor: 0.8 }
502 } else {
503 AdaptationRecommendation::NoAction
504 }
505 }
506
507 pub fn get_statistics(&self) -> DriftStatistics<A> {
509 DriftStatistics {
510 total_drifts: self.drift_events.len(),
511 recent_drift_rate: self.calculate_recent_drift_rate(),
512 average_drift_confidence: self.calculate_average_confidence(),
513 drift_types_distribution: self.calculate_drift_type_distribution(),
514 time_since_last_drift: self.time_since_last_drift(),
515 }
516 }
517
518 fn calculate_recent_drift_rate(&self) -> f64 {
519 let one_hour_ago = Instant::now() - Duration::from_secs(3600);
521 let recent_drifts = self
522 .drift_events
523 .iter()
524 .filter(|event| event.timestamp > one_hour_ago)
525 .count();
526 recent_drifts as f64 / 3600.0 }
528
529 fn calculate_average_confidence(&self) -> Option<A> {
530 if self.drift_events.is_empty() {
531 None
532 } else {
533 let sum = self
534 .drift_events
535 .iter()
536 .map(|event| event.confidence)
537 .sum::<A>();
538 Some(sum / A::from(self.drift_events.len()).unwrap())
539 }
540 }
541
542 fn calculate_drift_type_distribution(&self) -> std::collections::HashMap<DriftType, usize> {
543 let mut distribution = std::collections::HashMap::new();
544 for event in &self.drift_events {
545 *distribution.entry(event.drift_type).or_insert(0) += 1;
546 }
547 distribution
548 }
549
550 fn time_since_last_drift(&self) -> Option<Duration> {
551 self.drift_events
552 .last()
553 .map(|event| event.timestamp.elapsed())
554 }
555}
556
557#[derive(Debug, Clone)]
559struct PerformanceDriftTracker<A: Float + Send + Sync> {
560 performance_history: VecDeque<(A, DriftStatus, Instant)>,
562 window_size: usize,
564}
565
566impl<A: Float + std::iter::Sum + Send + Sync + Send + Sync> PerformanceDriftTracker<A> {
567 fn new() -> Self {
568 Self {
569 performance_history: VecDeque::new(),
570 window_size: 100,
571 }
572 }
573
574 fn update(&mut self, performance: A, driftstatus: DriftStatus) {
575 self.performance_history
576 .push_back((performance, driftstatus, Instant::now()));
577
578 if self.performance_history.len() > self.window_size {
580 self.performance_history.pop_front();
581 }
582 }
583
584 fn get_recent_performance_change(&self) -> A {
586 if self.performance_history.len() < 10 {
587 return A::zero();
588 }
589
590 let recent: Vec<_> = self.performance_history.iter().rev().take(10).collect();
591 let older: Vec<_> = self
592 .performance_history
593 .iter()
594 .rev()
595 .skip(10)
596 .take(10)
597 .collect();
598
599 if older.is_empty() {
600 return A::zero();
601 }
602
603 let recent_avg =
604 recent.iter().map(|(p, _, _)| *p).sum::<A>() / A::from(recent.len()).unwrap();
605 let older_avg = older.iter().map(|(p, _, _)| *p).sum::<A>() / A::from(older.len()).unwrap();
606
607 recent_avg - older_avg
608 }
609}
610
611#[derive(Debug, Clone)]
613pub struct DriftStatistics<A: Float + Send + Sync> {
614 pub total_drifts: usize,
616 pub recent_drift_rate: f64,
618 pub average_drift_confidence: Option<A>,
620 pub drift_types_distribution: std::collections::HashMap<DriftType, usize>,
622 pub time_since_last_drift: Option<Duration>,
624}
625
626pub mod advanced_drift_analysis {
628 use super::*;
629 use std::collections::HashMap;
630
631 #[derive(Debug)]
633 pub struct AdvancedDriftDetector<A: Float + Send + Sync> {
634 base_detectors: Vec<Box<dyn DriftDetectorTrait<A>>>,
636
637 pattern_analyzer: DriftPatternAnalyzer<A>,
639
640 threshold_manager: AdaptiveThresholdManager<A>,
642
643 context_detector: ContextAwareDriftDetector<A>,
645
646 impact_analyzer: DriftImpactAnalyzer<A>,
648
649 adaptation_selector: AdaptationStrategySelector<A>,
651
652 drift_database: DriftDatabase<A>,
654 }
655
656 pub trait DriftDetectorTrait<A: Float + Send + Sync>: std::fmt::Debug {
658 fn update(&mut self, value: A) -> DriftStatus;
659 fn reset(&mut self);
660 fn get_confidence(&self) -> A;
661 }
662
663 #[derive(Debug)]
665 pub struct DriftPatternAnalyzer<A: Float + Send + Sync> {
666 pattern_buffer: VecDeque<PatternFeatures<A>>,
668
669 known_patterns: HashMap<String, DriftPattern<A>>,
671
672 matching_threshold: A,
674
675 feature_extractors: Vec<Box<dyn FeatureExtractor<A>>>,
677 }
678
679 #[derive(Debug, Clone)]
681 pub struct PatternFeatures<A: Float + Send + Sync> {
682 pub mean: A,
684 pub variance: A,
685 pub skewness: A,
686 pub kurtosis: A,
687
688 pub trend_slope: A,
690 pub trend_strength: A,
691
692 pub dominant_frequency: A,
694 pub spectral_entropy: A,
695
696 pub temporal_locality: A,
698 pub persistence: A,
699
700 pub entropy: A,
702 pub fractal_dimension: A,
703 }
704
705 #[derive(Debug, Clone)]
707 pub struct DriftPattern<A: Float + Send + Sync> {
708 pub id: String,
710
711 pub features: PatternFeatures<A>,
713
714 pub pattern_type: DriftType,
716
717 pub typical_duration: Duration,
719
720 pub optimal_adaptation: AdaptationRecommendation,
722
723 pub adaptation_success_rate: A,
725
726 pub occurrence_count: usize,
728 }
729
730 pub trait FeatureExtractor<A: Float + Send + Sync>: std::fmt::Debug {
732 fn extract(&self, data: &[A]) -> A;
733 fn name(&self) -> &str;
734 }
735
736 #[derive(Debug)]
738 pub struct AdaptiveThresholdManager<A: Float + Send + Sync> {
739 thresholds: HashMap<String, A>,
741
742 threshold_history: VecDeque<ThresholdUpdate<A>>,
744
745 performance_feedback: VecDeque<PerformanceFeedback<A>>,
747
748 learning_rate: A,
750 }
751
752 #[derive(Debug, Clone)]
754 pub struct ThresholdUpdate<A: Float + Send + Sync> {
755 pub detector_name: String,
756 pub old_threshold: A,
757 pub new_threshold: A,
758 pub timestamp: Instant,
759 pub reason: String,
760 }
761
762 #[derive(Debug, Clone)]
764 pub struct PerformanceFeedback<A: Float + Send + Sync> {
765 pub true_positive_rate: A,
766 pub false_positive_rate: A,
767 pub detection_delay: Duration,
768 pub adaptation_effectiveness: A,
769 pub timestamp: Instant,
770 }
771
772 #[derive(Debug)]
774 pub struct ContextAwareDriftDetector<A: Float + Send + Sync> {
775 context_features: Vec<ContextFeature<A>>,
777
778 context_models: HashMap<String, Box<dyn DriftDetectorTrait<A>>>,
780
781 current_context: Option<String>,
783
784 transition_matrix: HashMap<(String, String), A>,
786 }
787
788 #[derive(Debug, Clone)]
790 pub struct ContextFeature<A: Float + Send + Sync> {
791 pub name: String,
792 pub value: A,
793 pub importance_weight: A,
794 pub temporal_stability: A,
795 }
796
797 #[derive(Debug)]
799 pub struct DriftImpactAnalyzer<A: Float + Send + Sync> {
800 impact_history: VecDeque<DriftImpact<A>>,
802
803 severity_classifier: SeverityClassifier<A>,
805
806 recovery_predictor: RecoveryTimePredictor<A>,
808
809 business_impact_estimator: BusinessImpactEstimator<A>,
811 }
812
813 #[derive(Debug, Clone)]
815 pub struct DriftImpact<A: Float + Send + Sync> {
816 pub performance_degradation: A,
818
819 pub affected_metrics: Vec<String>,
821
822 pub estimated_recovery_time: Duration,
824
825 pub confidence: A,
827
828 pub business_impact_score: A,
830
831 pub urgency_level: UrgencyLevel,
833 }
834
835 #[derive(Debug, Clone, Copy, PartialEq)]
837 pub enum UrgencyLevel {
838 Low,
839 Medium,
840 High,
841 Critical,
842 }
843
844 #[derive(Debug)]
846 pub struct AdaptationStrategySelector<A: Float + Send + Sync> {
847 strategies: Vec<AdaptationStrategy<A>>,
849
850 strategy_performance: HashMap<String, StrategyPerformance<A>>,
852
853 bandit: EpsilonGreedyBandit<A>,
855
856 context_strategy_map: HashMap<String, Vec<String>>,
858 }
859
860 #[derive(Debug, Clone)]
862 pub struct AdaptationStrategy<A: Float + Send + Sync> {
863 pub id: String,
865
866 pub strategy_type: AdaptationStrategyType,
868
869 pub parameters: HashMap<String, A>,
871
872 pub applicability_conditions: Vec<ApplicabilityCondition<A>>,
874
875 pub expected_effectiveness: A,
877
878 pub computational_cost: A,
880 }
881
882 #[derive(Debug, Clone, Copy)]
884 pub enum AdaptationStrategyType {
885 ParameterTuning,
886 ModelReplacement,
887 EnsembleReweighting,
888 ArchitectureChange,
889 DataAugmentation,
890 FeatureSelection,
891 Hybrid,
892 }
893
894 #[derive(Debug, Clone)]
896 pub struct ApplicabilityCondition<A: Float + Send + Sync> {
897 pub feature_name: String,
898 pub operator: ComparisonOperator,
899 pub threshold: A,
900 pub weight: A,
901 }
902
903 #[derive(Debug, Clone, Copy)]
904 pub enum ComparisonOperator {
905 GreaterThan,
906 LessThan,
907 Equal,
908 NotEqual,
909 GreaterEqual,
910 LessEqual,
911 }
912
913 #[derive(Debug, Clone)]
915 pub struct StrategyPerformance<A: Float + Send + Sync> {
916 pub success_rate: A,
917 pub average_improvement: A,
918 pub average_adaptation_time: Duration,
919 pub stability_after_adaptation: A,
920 pub usage_count: usize,
921 }
922
923 #[derive(Debug)]
925 pub struct EpsilonGreedyBandit<A: Float + Send + Sync> {
926 epsilon: A,
927 action_values: HashMap<String, A>,
928 action_counts: HashMap<String, usize>,
929 total_trials: usize,
930 }
931
932 #[derive(Debug)]
934 pub struct DriftDatabase<A: Float + Send + Sync> {
935 drift_events: Vec<StoredDriftEvent<A>>,
937
938 pattern_outcomes: HashMap<String, Vec<AdaptationOutcome<A>>>,
940
941 seasonal_patterns: HashMap<String, SeasonalPattern<A>>,
943
944 similarity_index: SimilarityIndex<A>,
946 }
947
948 #[derive(Debug, Clone)]
950 pub struct StoredDriftEvent<A: Float + Send + Sync> {
951 pub features: PatternFeatures<A>,
952 pub context: Vec<ContextFeature<A>>,
953 pub applied_strategy: String,
954 pub outcome: AdaptationOutcome<A>,
955 pub timestamp: Instant,
956 }
957
958 #[derive(Debug, Clone)]
960 pub struct AdaptationOutcome<A: Float + Send + Sync> {
961 pub success: bool,
962 pub performance_improvement: A,
963 pub adaptation_time: Duration,
964 pub stability_period: Duration,
965 pub side_effects: Vec<String>,
966 }
967
968 #[derive(Debug, Clone)]
970 pub struct SeasonalPattern<A: Float + Send + Sync> {
971 pub period: Duration,
972 pub amplitude: A,
973 pub phase_offset: Duration,
974 pub pattern_strength: A,
975 pub last_occurrence: Instant,
976 }
977
978 #[derive(Debug)]
980 pub struct SimilarityIndex<A: Float + Send + Sync> {
981 feature_vectors: Vec<(String, Vec<A>)>,
983
984 similarity_threshold: A,
986
987 distance_metric: DistanceMetric,
989 }
990
991 #[derive(Debug, Clone, Copy)]
992 pub enum DistanceMetric {
993 Euclidean,
994 Manhattan,
995 Cosine,
996 Mahalanobis,
997 }
998
999 impl<
1000 A: Float + Default + Clone + std::fmt::Debug + std::iter::Sum + Send + Sync + Send + Sync,
1001 > AdvancedDriftDetector<A>
1002 {
1003 pub fn new(config: DriftDetectorConfig) -> Self {
1005 let base_detectors: Vec<Box<dyn DriftDetectorTrait<A>>> = vec![
1006 ];
1008
1009 Self {
1010 base_detectors,
1011 pattern_analyzer: DriftPatternAnalyzer::new(),
1012 threshold_manager: AdaptiveThresholdManager::new(),
1013 context_detector: ContextAwareDriftDetector::new(),
1014 impact_analyzer: DriftImpactAnalyzer::new(),
1015 adaptation_selector: AdaptationStrategySelector::new(),
1016 drift_database: DriftDatabase::new(),
1017 }
1018 }
1019
1020 pub fn detect_drift_advanced(
1022 &mut self,
1023 value: A,
1024 context_features: &[ContextFeature<A>],
1025 ) -> Result<AdvancedDriftResult<A>> {
1026 self.context_detector.update_context(context_features);
1028
1029 let base_results: Vec<_> = self
1031 .base_detectors
1032 .iter_mut()
1033 .map(|detector| detector.update(value))
1034 .collect();
1035
1036 let pattern_features = self.pattern_analyzer.extract_features(&[value])?;
1038 let matched_pattern = self.pattern_analyzer.match_pattern(&pattern_features);
1039
1040 self.threshold_manager
1042 .update_thresholds(&base_results, &pattern_features);
1043
1044 let combined_result = self.combine_detection_results(&base_results, &matched_pattern);
1046
1047 let impact = if combined_result.status == DriftStatus::Drift {
1049 Some(
1050 self.impact_analyzer
1051 .analyze_impact(&pattern_features, &matched_pattern)?,
1052 )
1053 } else {
1054 None
1055 };
1056
1057 let adaptation_strategy = if let Some(ref impact) = impact {
1059 self.adaptation_selector.select_strategy(
1060 &pattern_features,
1061 impact,
1062 &matched_pattern,
1063 )?
1064 } else {
1065 None
1066 };
1067
1068 if combined_result.status == DriftStatus::Drift {
1070 self.drift_database.store_event(
1071 &pattern_features,
1072 context_features,
1073 &adaptation_strategy,
1074 );
1075 }
1076
1077 Ok(AdvancedDriftResult {
1078 status: combined_result.status,
1079 confidence: combined_result.confidence,
1080 matched_pattern,
1081 impact,
1082 recommended_strategy: adaptation_strategy,
1083 feature_importance: self.calculate_feature_importance(&pattern_features),
1084 prediction_horizon: self.estimate_drift_duration(&pattern_features),
1085 })
1086 }
1087
1088 fn combine_detection_results(
1089 &self,
1090 base_results: &[DriftStatus],
1091 matched_pattern: &Option<DriftPattern<A>>,
1092 ) -> CombinedDetectionResult<A> {
1093 let drift_votes = base_results
1095 .iter()
1096 .filter(|&&s| s == DriftStatus::Drift)
1097 .count();
1098 let warning_votes = base_results
1099 .iter()
1100 .filter(|&&s| s == DriftStatus::Warning)
1101 .count();
1102
1103 let pattern_confidence = matched_pattern
1105 .as_ref()
1106 .map(|p| p.adaptation_success_rate)
1107 .unwrap_or(A::from(0.5).unwrap());
1108
1109 let status = if drift_votes >= 2 {
1110 DriftStatus::Drift
1111 } else if warning_votes >= 2
1112 || (drift_votes >= 1 && pattern_confidence > A::from(0.7).unwrap())
1113 {
1114 DriftStatus::Warning
1115 } else {
1116 DriftStatus::Stable
1117 };
1118
1119 let confidence = A::from(drift_votes as f64 / base_results.len() as f64).unwrap()
1120 * pattern_confidence;
1121
1122 CombinedDetectionResult { status, confidence }
1123 }
1124
1125 fn calculate_feature_importance(
1126 &self,
1127 features: &PatternFeatures<A>,
1128 ) -> HashMap<String, A> {
1129 let mut importance = HashMap::new();
1131 importance.insert("variance".to_string(), features.variance);
1132 importance.insert("trend_slope".to_string(), features.trend_slope.abs());
1133 importance.insert("entropy".to_string(), features.entropy);
1134 importance
1135 }
1136
1137 fn estimate_drift_duration(&self, features: &PatternFeatures<A>) -> Duration {
1138 let base_duration = Duration::from_secs(300); let duration_multiplier = features.trend_strength * features.persistence;
1143 let adjustment = duration_multiplier.to_f64().unwrap_or(1.0);
1144
1145 Duration::from_secs((base_duration.as_secs() as f64 * adjustment) as u64)
1146 }
1147 }
1148
1149 #[derive(Debug, Clone)]
1151 pub struct AdvancedDriftResult<A: Float + Send + Sync> {
1152 pub status: DriftStatus,
1153 pub confidence: A,
1154 pub matched_pattern: Option<DriftPattern<A>>,
1155 pub impact: Option<DriftImpact<A>>,
1156 pub recommended_strategy: Option<AdaptationStrategy<A>>,
1157 pub feature_importance: HashMap<String, A>,
1158 pub prediction_horizon: Duration,
1159 }
1160
1161 #[derive(Debug, Clone)]
1162 struct CombinedDetectionResult<A: Float + Send + Sync> {
1163 status: DriftStatus,
1164 confidence: A,
1165 }
1166
1167 impl<A: Float + std::iter::Sum + Send + Sync + Send + Sync> DriftPatternAnalyzer<A> {
1170 fn new() -> Self {
1171 Self {
1172 pattern_buffer: VecDeque::new(),
1173 known_patterns: HashMap::new(),
1174 matching_threshold: A::from(0.8).unwrap(),
1175 feature_extractors: Vec::new(),
1176 }
1177 }
1178
1179 fn extract_features(&mut self, data: &[A]) -> Result<PatternFeatures<A>> {
1180 let mean = data.iter().cloned().sum::<A>() / A::from(data.len()).unwrap();
1182 let variance = data.iter().map(|&x| (x - mean) * (x - mean)).sum::<A>()
1183 / A::from(data.len()).unwrap();
1184
1185 Ok(PatternFeatures {
1186 mean,
1187 variance,
1188 skewness: A::zero(), kurtosis: A::zero(),
1190 trend_slope: A::zero(),
1191 trend_strength: A::zero(),
1192 dominant_frequency: A::zero(),
1193 spectral_entropy: A::zero(),
1194 temporal_locality: A::zero(),
1195 persistence: A::zero(),
1196 entropy: variance.ln().abs(), fractal_dimension: A::from(1.5).unwrap(), })
1199 }
1200
1201 fn match_pattern(&self, features: &PatternFeatures<A>) -> Option<DriftPattern<A>> {
1202 self.known_patterns
1204 .values()
1205 .find(|pattern| {
1206 self.calculate_similarity(&pattern.features, features) > self.matching_threshold
1207 })
1208 .cloned()
1209 }
1210
1211 fn calculate_similarity(&self, p1: &PatternFeatures<A>, p2: &PatternFeatures<A>) -> A {
1212 let mean_diff = (p1.mean - p2.mean).abs();
1214 let var_diff = (p1.variance - p2.variance).abs();
1215 A::one() - (mean_diff + var_diff) / A::from(2.0).unwrap()
1216 }
1217 }
1218
1219 impl<A: Float + Send + Sync + Send + Sync> AdaptiveThresholdManager<A> {
1220 fn new() -> Self {
1221 Self {
1222 thresholds: HashMap::new(),
1223 threshold_history: VecDeque::new(),
1224 performance_feedback: VecDeque::new(),
1225 learning_rate: A::from(0.01).unwrap(),
1226 }
1227 }
1228
1229 fn update_thresholds(&mut self, results: &[DriftStatus], features: &PatternFeatures<A>) {
1230 for (i, result) in results.iter().enumerate() {
1232 let detector_name = format!("detector_{}", i);
1233 let current_threshold = self
1234 .thresholds
1235 .get(&detector_name)
1236 .cloned()
1237 .unwrap_or(A::from(1.0).unwrap());
1238
1239 let adjustment = if *result == DriftStatus::Drift {
1241 -self.learning_rate } else {
1243 self.learning_rate * A::from(0.1).unwrap() };
1245
1246 let new_threshold = current_threshold + adjustment;
1247 self.thresholds.insert(detector_name.clone(), new_threshold);
1248
1249 self.threshold_history.push_back(ThresholdUpdate {
1250 detector_name,
1251 old_threshold: current_threshold,
1252 new_threshold,
1253 timestamp: Instant::now(),
1254 reason: "Performance-based adjustment".to_string(),
1255 });
1256 }
1257 }
1258 }
1259
1260 impl<A: Float + Send + Sync + Send + Sync> ContextAwareDriftDetector<A> {
1261 fn new() -> Self {
1262 Self {
1263 context_features: Vec::new(),
1264 context_models: HashMap::new(),
1265 current_context: None,
1266 transition_matrix: HashMap::new(),
1267 }
1268 }
1269
1270 fn update_context(&mut self, features: &[ContextFeature<A>]) {
1271 self.context_features = features.to_vec();
1272
1273 let context_id = if !features.is_empty() && features[0].value > A::from(0.5).unwrap() {
1275 "high_activity".to_string()
1276 } else {
1277 "low_activity".to_string()
1278 };
1279
1280 self.current_context = Some(context_id);
1281 }
1282 }
1283
1284 impl<A: Float + Send + Sync + Send + Sync> DriftImpactAnalyzer<A> {
1285 fn new() -> Self {
1286 Self {
1287 impact_history: VecDeque::new(),
1288 severity_classifier: SeverityClassifier::new(),
1289 recovery_predictor: RecoveryTimePredictor::new(),
1290 business_impact_estimator: BusinessImpactEstimator::new(),
1291 }
1292 }
1293
1294 fn analyze_impact(
1295 &mut self,
1296 features: &PatternFeatures<A>,
1297 _pattern: &Option<DriftPattern<A>>,
1298 ) -> Result<DriftImpact<A>> {
1299 let performance_degradation = features.variance; let urgency_level = if performance_degradation > A::from(1.0).unwrap() {
1301 UrgencyLevel::High
1302 } else {
1303 UrgencyLevel::Medium
1304 };
1305
1306 Ok(DriftImpact {
1307 performance_degradation,
1308 affected_metrics: vec!["accuracy".to_string(), "loss".to_string()],
1309 estimated_recovery_time: Duration::from_secs(300),
1310 confidence: A::from(0.8).unwrap(),
1311 business_impact_score: performance_degradation,
1312 urgency_level,
1313 })
1314 }
1315 }
1316
1317 impl<A: Float + Send + Sync + Send + Sync> AdaptationStrategySelector<A> {
1318 fn new() -> Self {
1319 Self {
1320 strategies: Vec::new(),
1321 strategy_performance: HashMap::new(),
1322 bandit: EpsilonGreedyBandit::new(A::from(0.1).unwrap()),
1323 context_strategy_map: HashMap::new(),
1324 }
1325 }
1326
1327 fn select_strategy(
1328 &mut self,
1329 features: &PatternFeatures<A>,
1330 _impact: &DriftImpact<A>,
1331 _pattern: &Option<DriftPattern<A>>,
1332 ) -> Result<Option<AdaptationStrategy<A>>> {
1333 let strategy = AdaptationStrategy {
1335 id: "increase_lr".to_string(),
1336 strategy_type: AdaptationStrategyType::ParameterTuning,
1337 parameters: {
1338 let mut params = HashMap::new();
1339 params.insert("learning_rate_factor".to_string(), A::from(1.5).unwrap());
1340 params
1341 },
1342 applicability_conditions: Vec::new(),
1343 expected_effectiveness: A::from(0.7).unwrap(),
1344 computational_cost: A::from(0.1).unwrap(),
1345 };
1346
1347 Ok(Some(strategy))
1348 }
1349 }
1350
1351 impl<A: Float + Send + Sync + Send + Sync> DriftDatabase<A> {
1352 fn new() -> Self {
1353 Self {
1354 drift_events: Vec::new(),
1355 pattern_outcomes: HashMap::new(),
1356 seasonal_patterns: HashMap::new(),
1357 similarity_index: SimilarityIndex::new(),
1358 }
1359 }
1360
1361 fn store_event(
1362 &mut self,
1363 features: &PatternFeatures<A>,
1364 context: &[ContextFeature<A>],
1365 strategy: &Option<AdaptationStrategy<A>>,
1366 ) {
1367 if let Some(strat) = strategy {
1368 let event = StoredDriftEvent {
1369 features: features.clone(),
1370 context: context.to_vec(),
1371 applied_strategy: strat.id.clone(),
1372 outcome: AdaptationOutcome {
1373 success: true, performance_improvement: A::from(0.1).unwrap(),
1375 adaptation_time: Duration::from_secs(60),
1376 stability_period: Duration::from_secs(300),
1377 side_effects: Vec::new(),
1378 },
1379 timestamp: Instant::now(),
1380 };
1381
1382 self.drift_events.push(event);
1383 }
1384 }
1385 }
1386
1387 impl<A: Float + Send + Sync + Send + Sync> SimilarityIndex<A> {
1388 fn new() -> Self {
1389 Self {
1390 feature_vectors: Vec::new(),
1391 similarity_threshold: A::from(0.8).unwrap(),
1392 distance_metric: DistanceMetric::Euclidean,
1393 }
1394 }
1395 }
1396
1397 impl<A: Float + Send + Sync + Send + Sync> EpsilonGreedyBandit<A> {
1398 fn new(epsilon: A) -> Self {
1399 Self {
1400 epsilon,
1401 action_values: HashMap::new(),
1402 action_counts: HashMap::new(),
1403 total_trials: 0,
1404 }
1405 }
1406 }
1407
1408 #[derive(Debug)]
1411 struct SeverityClassifier<A: Float + Send + Sync> {
1412 _phantom: std::marker::PhantomData<A>,
1413 }
1414
1415 impl<A: Float + Send + Sync + Send + Sync> SeverityClassifier<A> {
1416 fn new() -> Self {
1417 Self {
1418 _phantom: std::marker::PhantomData,
1419 }
1420 }
1421 }
1422
1423 #[derive(Debug)]
1424 struct RecoveryTimePredictor<A: Float + Send + Sync> {
1425 _phantom: std::marker::PhantomData<A>,
1426 }
1427
1428 impl<A: Float + Send + Sync + Send + Sync> RecoveryTimePredictor<A> {
1429 fn new() -> Self {
1430 Self {
1431 _phantom: std::marker::PhantomData,
1432 }
1433 }
1434 }
1435
1436 #[derive(Debug)]
1437 struct BusinessImpactEstimator<A: Float + Send + Sync> {
1438 _phantom: std::marker::PhantomData<A>,
1439 }
1440
1441 impl<A: Float + Send + Sync + Send + Sync> BusinessImpactEstimator<A> {
1442 fn new() -> Self {
1443 Self {
1444 _phantom: std::marker::PhantomData,
1445 }
1446 }
1447 }
1448}
1449
1450#[cfg(test)]
1451mod tests {
1452 use super::*;
1453
1454 #[test]
1455 fn test_page_hinkley_detector() {
1456 let mut detector = PageHinkleyDetector::new(3.0f64, 2.0f64);
1457
1458 for _ in 0..10 {
1460 let status = detector.update(0.1);
1461 assert_eq!(status, DriftStatus::Stable);
1462 }
1463
1464 for _ in 0..5 {
1466 let status = detector.update(0.5); if status == DriftStatus::Drift {
1468 break;
1469 }
1470 }
1471 }
1472
1473 #[test]
1474 fn test_adwin_detector() {
1475 let mut detector = AdwinDetector::new(0.005f64, 100);
1476
1477 for i in 0..20 {
1479 let value = 0.1 + (i as f64) * 0.001; detector.update(value);
1481 }
1482
1483 for i in 0..10 {
1485 let value = 0.5 + (i as f64) * 0.01; let status = detector.update(value);
1487 if status == DriftStatus::Drift {
1488 break;
1489 }
1490 }
1491 }
1492
1493 #[test]
1494 fn test_ddm_detector() {
1495 let mut detector = DdmDetector::<f64>::new();
1496
1497 for i in 0..50 {
1499 let iserror = i % 10 == 0; detector.update(iserror);
1501 }
1502
1503 for i in 0..20 {
1505 let iserror = i % 2 == 0; let status = detector.update(iserror);
1507 if status == DriftStatus::Drift {
1508 break;
1509 }
1510 }
1511 }
1512
1513 #[test]
1514 fn test_concept_drift_detector() {
1515 let config = DriftDetectorConfig::default();
1516 let mut detector = ConceptDriftDetector::new(config);
1517
1518 for i in 0..30 {
1520 let loss = 0.1 + (i as f64) * 0.001;
1521 let iserror = i % 10 == 0;
1522 let status = detector.update(loss, iserror).unwrap();
1523 assert_ne!(status, DriftStatus::Drift); }
1525
1526 for i in 0..20 {
1528 let loss = 0.5 + (i as f64) * 0.01; let iserror = i % 2 == 0; let _status = detector.update(loss, iserror).unwrap();
1531 }
1532
1533 let stats = detector.get_statistics();
1534 assert!(stats.total_drifts > 0 || stats.recent_drift_rate > 0.0);
1535 }
1536
1537 #[test]
1538 fn test_drift_event() {
1539 let event = DriftEvent {
1540 timestamp: Instant::now(),
1541 confidence: 0.85f64,
1542 drift_type: DriftType::Sudden,
1543 adaptation_recommendation: AdaptationRecommendation::Reset,
1544 };
1545
1546 assert_eq!(event.drift_type, DriftType::Sudden);
1547 assert!(event.confidence > 0.8);
1548 }
1549}