1use super::config::*;
8use super::optimizer::{Adaptation, AdaptationPriority, AdaptationType, StreamingDataPoint};
9use super::performance::{PerformanceSnapshot, PerformanceTracker};
10
11use scirs2_core::numeric::Float;
12use scirs2_core::random::{thread_rng, Rng};
13use serde::{Deserialize, Serialize};
14use std::collections::{HashMap, VecDeque};
15use std::time::{Duration, Instant};
16
17#[derive(Debug, Clone, Copy, PartialEq, Eq)]
19pub enum MetaModelType {
20 NeuralNetwork,
21 LinearRegression,
22 RandomForest,
23 GradientBoosting,
24 SupportVectorMachine,
25}
26
27pub struct MetaLearner<A: Float + Send + Sync> {
29 config: MetaLearningConfig,
31 experience_buffer: ExperienceBuffer<A>,
33 meta_model: MetaModel<A>,
35 strategy_selector: StrategySelector<A>,
37 transfer_learning: TransferLearning<A>,
39 statistics: MetaLearningStatistics<A>,
41 learning_rate_adapter: LearningRateAdapter<A>,
43}
44
45pub type ExperienceReplay<A> = ExperienceBuffer<A>;
47
48pub struct ExperienceBuffer<A: Float + Send + Sync> {
50 config: ExperienceReplayConfig,
52 experiences: VecDeque<MetaExperience<A>>,
54 priority_queue: VecDeque<(MetaExperience<A>, A)>,
56 importance_weights: HashMap<usize, A>,
58 diversity_tracker: ExperienceDiversityTracker<A>,
60}
61
62#[derive(Debug, Clone)]
64pub struct MetaExperience<A: Float + Send + Sync> {
65 pub id: u64,
67 pub state: MetaState<A>,
69 pub action: MetaAction<A>,
71 pub reward: A,
73 pub next_state: Option<MetaState<A>>,
75 pub timestamp: Instant,
77 pub episode_context: EpisodeContext<A>,
79 pub priority: A,
81 pub replay_count: usize,
83}
84
85#[derive(Debug, Clone)]
87pub struct MetaState<A: Float + Send + Sync> {
88 pub performance_metrics: Vec<A>,
90 pub resource_state: Vec<A>,
92 pub drift_indicators: Vec<A>,
94 pub adaptation_history: usize,
96 pub timestamp: Instant,
98}
99
100#[derive(Debug, Clone)]
102pub struct MetaAction<A: Float + Send + Sync> {
103 pub adaptation_magnitudes: Vec<A>,
105 pub adaptation_types: Vec<AdaptationType>,
107 pub learning_rate_change: A,
109 pub buffer_size_change: A,
111 pub timestamp: Instant,
113}
114
115#[derive(Debug, Clone)]
117pub struct EpisodeContext<A: Float + Send + Sync> {
118 pub episode_id: u64,
120 pub start_time: Instant,
122 pub duration: Duration,
124 pub initial_performance: A,
126 pub final_performance: A,
128 pub adaptation_count: usize,
130 pub outcome: EpisodeOutcome,
132}
133
134#[derive(Debug, Clone, PartialEq, Eq)]
136pub enum EpisodeOutcome {
137 Success,
139 PartialSuccess,
141 Neutral,
143 Failure,
145 CriticalFailure,
147}
148
149pub struct ExperienceDiversityTracker<A: Float + Send + Sync> {
151 state_clusters: Vec<StateCluster<A>>,
153 action_clusters: Vec<ActionCluster<A>>,
155 diversity_metrics: DiversityMetrics<A>,
157 novelty_detector: NoveltyDetector<A>,
159}
160
161#[derive(Debug, Clone)]
163pub struct StateCluster<A: Float + Send + Sync> {
164 pub center: MetaState<A>,
166 pub members: Vec<usize>,
168 pub radius: A,
170 pub last_update: Instant,
172}
173
174#[derive(Debug, Clone)]
176pub struct ActionCluster<A: Float + Send + Sync> {
177 pub center: MetaAction<A>,
179 pub members: Vec<usize>,
181 pub effectiveness: A,
183 pub usage_frequency: usize,
185}
186
187#[derive(Debug, Clone)]
189pub struct DiversityMetrics<A: Float + Send + Sync> {
190 pub state_coverage: A,
192 pub action_coverage: A,
194 pub experience_entropy: A,
196 pub temporal_diversity: A,
198 pub outcome_diversity: A,
200}
201
202pub struct NoveltyDetector<A: Float + Send + Sync> {
204 reference_experiences: VecDeque<MetaExperience<A>>,
206 novelty_threshold: A,
208 feature_weights: Vec<A>,
210}
211
212pub struct MetaModel<A: Float + Send + Sync> {
214 model_type: MetaModelType,
216 parameters: MetaModelParameters<A>,
218 training_history: VecDeque<TrainingEpisode<A>>,
220 performance_metrics: ModelPerformanceMetrics<A>,
222 feature_importance: Vec<A>,
224}
225
226#[derive(Debug, Clone)]
228pub struct MetaModelParameters<A: Float + Send + Sync> {
229 pub weights: Vec<Vec<A>>,
231 pub biases: Vec<A>,
233 pub learning_rate: A,
235 pub regularization: RegularizationParams<A>,
237 pub optimization: OptimizationParams<A>,
239}
240
241#[derive(Debug, Clone)]
243pub struct RegularizationParams<A: Float + Send + Sync> {
244 pub l1_lambda: A,
246 pub l2_lambda: A,
248 pub dropout_rate: A,
250 pub early_stopping_patience: usize,
252}
253
254#[derive(Debug, Clone)]
256pub struct OptimizationParams<A: Float + Send + Sync> {
257 pub momentum: A,
259 pub beta1: A,
261 pub beta2: A,
263 pub epsilon: A,
265 pub grad_clip_threshold: A,
267}
268
269#[derive(Debug, Clone)]
271pub struct TrainingEpisode<A: Float + Send + Sync> {
272 pub episode_id: u64,
274 pub training_loss: A,
276 pub validation_loss: A,
278 pub training_accuracy: A,
280 pub validation_accuracy: A,
282 pub duration: Duration,
284 pub timestamp: Instant,
286}
287
288#[derive(Debug, Clone)]
290pub struct ModelPerformanceMetrics<A: Float + Send + Sync> {
291 pub prediction_accuracy: A,
293 pub decision_quality: A,
295 pub adaptation_effectiveness: A,
297 pub transfer_success_rate: A,
299 pub generalization_performance: A,
301}
302
303pub struct StrategySelector<A: Float + Send + Sync> {
305 strategies: HashMap<String, AdaptationStrategy<A>>,
307 strategy_performance: HashMap<String, StrategyPerformance<A>>,
309 selection_policy: SelectionPolicy,
311 exploration_params: ExplorationParams<A>,
313 context_selector: ContextBasedSelector<A>,
315}
316
317#[derive(Debug, Clone)]
319pub struct AdaptationStrategy<A: Float + Send + Sync> {
320 pub name: String,
322 pub parameters: HashMap<String, A>,
324 pub strategy_type: StrategyType,
326 pub conditions: Vec<StrategyCondition<A>>,
328 pub expected_outcomes: Vec<A>,
330}
331
332#[derive(Debug, Clone)]
334pub enum StrategyType {
335 Conservative,
337 Aggressive,
339 Balanced,
341 Reactive,
343 Proactive,
345 Custom(String),
347}
348
349#[derive(Debug, Clone)]
351pub struct StrategyCondition<A: Float + Send + Sync> {
352 pub condition_type: ConditionType,
354 pub threshold: A,
356 pub operator: ComparisonOperator,
358 pub weight: A,
360}
361
362#[derive(Debug, Clone)]
364pub enum ConditionType {
365 Performance,
367 ResourceUtilization,
369 DataQuality,
371 DriftDetection,
373 Temporal,
375 Custom(String),
377}
378
379#[derive(Debug, Clone)]
381pub enum ComparisonOperator {
382 GreaterThan,
384 LessThan,
386 EqualTo,
388 Between(f64, f64),
390 InSet(Vec<f64>),
392}
393
394#[derive(Debug, Clone)]
396pub struct StrategyPerformance<A: Float + Send + Sync> {
397 pub usage_count: usize,
399 pub success_rate: A,
401 pub avg_improvement: A,
403 pub best_improvement: A,
405 pub worst_outcome: A,
407 pub recent_trend: TrendDirection,
409 pub context_performance: HashMap<String, A>,
411}
412
413#[derive(Debug, Clone, PartialEq, Eq)]
415pub enum TrendDirection {
416 Improving,
418 Declining,
420 Stable,
422 Oscillating,
424}
425
426#[derive(Debug, Clone)]
428pub enum SelectionPolicy {
429 EpsilonGreedy { epsilon: f64 },
431 UCB { confidence_parameter: f64 },
433 ThompsonSampling,
435 Softmax { temperature: f64 },
437 ContextAware,
439 MultiArmedBandit,
441}
442
443#[derive(Debug, Clone)]
445pub struct ExplorationParams<A: Float + Send + Sync> {
446 pub exploration_rate: A,
448 pub exploration_decay: A,
450 pub min_exploration_rate: A,
452 pub curiosity_weight: A,
454 pub novelty_weight: A,
456}
457
458pub struct ContextBasedSelector<A: Float + Send + Sync> {
460 context_features: Vec<ContextFeature<A>>,
462 context_clusters: Vec<ContextCluster<A>>,
464 context_strategies: HashMap<String, Vec<String>>,
466 context_model: ContextModel<A>,
468}
469
470#[derive(Debug, Clone)]
472pub struct ContextFeature<A: Float + Send + Sync> {
473 pub name: String,
475 pub value: A,
477 pub importance: A,
479 pub stability: A,
481}
482
483#[derive(Debug, Clone)]
485pub struct ContextCluster<A: Float + Send + Sync> {
486 pub id: String,
488 pub center: Vec<A>,
490 pub radius: A,
492 pub strategies: Vec<String>,
494 pub performance: A,
496}
497
498pub struct ContextModel<A: Float + Send + Sync> {
500 parameters: Vec<A>,
502 feature_weights: Vec<A>,
504 threshold: A,
506 accuracy: A,
508}
509
510pub struct TransferLearning<A: Float + Send + Sync> {
512 source_experiences: HashMap<String, Vec<MetaExperience<A>>>,
514 transfer_strategies: Vec<TransferStrategy>,
516 domain_adaptation: DomainAdaptation<A>,
518 transfer_metrics: TransferMetrics<A>,
520}
521
522#[derive(Debug, Clone)]
524pub enum TransferStrategy {
525 ParameterTransfer,
527 FeatureTransfer,
529 InstanceTransfer,
531 RelationalTransfer,
533 MetaTransfer,
535}
536
537pub struct DomainAdaptation<A: Float + Send + Sync> {
539 source_characteristics: Vec<A>,
541 target_characteristics: Vec<A>,
543 adaptation_weights: Vec<A>,
545 domain_similarity: A,
547}
548
549#[derive(Debug, Clone)]
551pub struct TransferMetrics<A: Float + Send + Sync> {
552 pub success_rate: A,
554 pub improvement: A,
556 pub efficiency: A,
558 pub negative_transfer_count: usize,
560}
561
562pub struct LearningRateAdapter<A: Float + Send + Sync> {
564 current_rate: A,
566 rate_history: VecDeque<A>,
568 performance_feedback: VecDeque<A>,
570 adaptation_strategy: LearningRateStrategy,
572 min_rate: A,
574 max_rate: A,
575}
576
577#[derive(Debug, Clone)]
579pub enum LearningRateStrategy {
580 Fixed,
582 StepDecay { decay_factor: f64, step_size: usize },
584 ExponentialDecay { decay_rate: f64 },
586 PerformanceBased,
588 Cyclical {
590 min_lr: f64,
591 max_lr: f64,
592 cycle_length: usize,
593 },
594 Adaptive,
596}
597
598#[derive(Debug, Clone)]
600pub struct MetaLearningStatistics<A: Float + Send + Sync> {
601 pub total_experiences: usize,
603 pub training_episodes: usize,
605 pub avg_reward_per_episode: A,
607 pub best_episode_reward: A,
609 pub learning_progress: A,
611 pub strategy_selection_accuracy: A,
613 pub transfer_success_rate: A,
615 pub replay_effectiveness: A,
617}
618
619impl<A: Float + Default + Clone + std::iter::Sum + Send + Sync + std::fmt::Debug> MetaLearner<A> {
620 pub fn new(config: &StreamingConfig) -> Result<Self, String> {
622 let meta_config = config.meta_learning_config.clone();
623
624 let experience_buffer = ExperienceBuffer::new(&meta_config.replay_config);
625 let meta_model = MetaModel::new(meta_config.model_complexity.clone())?;
626 let strategy_selector = StrategySelector::new();
627 let transfer_learning = TransferLearning::new();
628 let learning_rate_adapter = LearningRateAdapter::new(meta_config.meta_learning_rate);
629
630 let statistics = MetaLearningStatistics {
631 total_experiences: 0,
632 training_episodes: 0,
633 avg_reward_per_episode: A::zero(),
634 best_episode_reward: A::zero(),
635 learning_progress: A::zero(),
636 strategy_selection_accuracy: A::zero(),
637 transfer_success_rate: A::zero(),
638 replay_effectiveness: A::zero(),
639 };
640
641 Ok(Self {
642 config: meta_config,
643 experience_buffer,
644 meta_model,
645 strategy_selector,
646 transfer_learning,
647 statistics,
648 learning_rate_adapter,
649 })
650 }
651
652 pub fn update_experience(
654 &mut self,
655 state: MetaState<A>,
656 action: MetaAction<A>,
657 reward: A,
658 ) -> Result<(), String> {
659 let experience = MetaExperience {
660 id: self.generate_experience_id(),
661 state,
662 action,
663 reward,
664 next_state: None, timestamp: Instant::now(),
666 episode_context: self.create_episode_context(reward)?,
667 priority: self.calculate_experience_priority(reward),
668 replay_count: 0,
669 };
670
671 self.experience_buffer.add_experience(experience)?;
673
674 self.statistics.total_experiences += 1;
676
677 if self
679 .statistics
680 .total_experiences
681 .is_multiple_of(self.config.update_frequency)
682 {
683 self.trigger_learning()?;
684 }
685
686 Ok(())
687 }
688
689 fn generate_experience_id(&self) -> u64 {
691 self.statistics.total_experiences as u64 + 1
692 }
693
694 fn create_episode_context(&self, reward: A) -> Result<EpisodeContext<A>, String> {
696 let outcome = if reward > A::from(0.8).unwrap() {
697 EpisodeOutcome::Success
698 } else if reward > A::from(0.5).unwrap() {
699 EpisodeOutcome::PartialSuccess
700 } else if reward > A::from(0.2).unwrap() {
701 EpisodeOutcome::Neutral
702 } else if reward > A::from(-0.2).unwrap() {
703 EpisodeOutcome::Failure
704 } else {
705 EpisodeOutcome::CriticalFailure
706 };
707
708 Ok(EpisodeContext {
709 episode_id: self.statistics.training_episodes as u64,
710 start_time: Instant::now(),
711 duration: Duration::from_secs(60), initial_performance: A::from(0.5).unwrap(), final_performance: reward,
714 adaptation_count: 1, outcome,
716 })
717 }
718
719 fn calculate_experience_priority(&self, reward: A) -> A {
721 let abs_reward = reward.abs();
723 if abs_reward > A::from(0.8).unwrap() {
724 A::from(1.0).unwrap()
725 } else {
726 abs_reward
727 }
728 }
729
730 fn trigger_learning(&mut self) -> Result<(), String> {
732 let training_batch = self
734 .experience_buffer
735 .sample_batch(self.config.replay_config.batch_size)?;
736
737 self.meta_model.train_on_batch(&training_batch)?;
739
740 self.strategy_selector
742 .update_from_experiences(&training_batch)?;
743
744 self.statistics.training_episodes += 1;
746
747 Ok(())
748 }
749
750 pub fn recommend_adaptations(
752 &mut self,
753 current_data: &[StreamingDataPoint<A>],
754 performance_tracker: &PerformanceTracker<A>,
755 ) -> Result<Vec<Adaptation<A>>, String> {
756 let current_state = self.extract_meta_state(current_data, performance_tracker)?;
758
759 let predicted_action = self.meta_model.predict_action(¤t_state)?;
761
762 let strategy = self.strategy_selector.select_strategy(¤t_state)?;
764
765 let adaptations =
767 self.generate_adaptations_from_prediction(&predicted_action, &strategy)?;
768
769 Ok(adaptations)
770 }
771
772 fn extract_meta_state(
774 &self,
775 current_data: &[StreamingDataPoint<A>],
776 performance_tracker: &PerformanceTracker<A>,
777 ) -> Result<MetaState<A>, String> {
778 let recent_performance = performance_tracker.get_recent_performance(5);
780 let performance_metrics = if !recent_performance.is_empty() {
781 vec![
782 recent_performance[0].loss,
783 recent_performance[0].accuracy.unwrap_or(A::zero()),
784 recent_performance[0].convergence_rate.unwrap_or(A::zero()),
785 ]
786 } else {
787 vec![A::zero(), A::zero(), A::zero()]
788 };
789
790 let resource_state = vec![A::from(0.5).unwrap(), A::from(0.3).unwrap()];
792
793 let drift_indicators = vec![A::from(0.1).unwrap()];
795
796 Ok(MetaState {
797 performance_metrics,
798 resource_state,
799 drift_indicators,
800 adaptation_history: self.statistics.total_experiences,
801 timestamp: Instant::now(),
802 })
803 }
804
805 fn generate_adaptations_from_prediction(
807 &self,
808 predicted_action: &MetaAction<A>,
809 _strategy: &AdaptationStrategy<A>,
810 ) -> Result<Vec<Adaptation<A>>, String> {
811 let mut adaptations = Vec::new();
812
813 for (i, &magnitude) in predicted_action.adaptation_magnitudes.iter().enumerate() {
815 if magnitude.abs() > A::from(0.05).unwrap() {
816 let adaptation_type = if i < predicted_action.adaptation_types.len() {
818 predicted_action.adaptation_types[i].clone()
819 } else {
820 AdaptationType::LearningRate };
822
823 let adaptation = Adaptation {
824 adaptation_type,
825 magnitude,
826 target_component: "meta_learner".to_string(),
827 parameters: std::collections::HashMap::new(),
828 priority: if magnitude.abs() > A::from(0.3).unwrap() {
829 AdaptationPriority::High
830 } else {
831 AdaptationPriority::Normal
832 },
833 timestamp: Instant::now(),
834 };
835
836 adaptations.push(adaptation);
837 }
838 }
839
840 Ok(adaptations)
841 }
842
843 pub fn apply_adaptation(&mut self, adaptation: &Adaptation<A>) -> Result<(), String> {
845 match adaptation.adaptation_type {
846 AdaptationType::MetaLearning => {
847 let new_rate = self.learning_rate_adapter.current_rate + adaptation.magnitude;
849 self.learning_rate_adapter.update_rate(new_rate)?;
850 }
851 _ => {
852 }
854 }
855
856 Ok(())
857 }
858
859 pub fn get_effectiveness_score(&self) -> f32 {
861 self.statistics.learning_progress.to_f32().unwrap_or(0.0)
862 }
863
864 pub fn get_diagnostics(&self) -> MetaLearningDiagnostics {
866 MetaLearningDiagnostics {
867 total_experiences: self.statistics.total_experiences,
868 training_episodes: self.statistics.training_episodes,
869 current_learning_rate: self
870 .learning_rate_adapter
871 .current_rate
872 .to_f64()
873 .unwrap_or(0.0),
874 model_accuracy: self
875 .meta_model
876 .performance_metrics
877 .prediction_accuracy
878 .to_f64()
879 .unwrap_or(0.0),
880 strategy_count: self.strategy_selector.strategies.len(),
881 transfer_success_rate: self
882 .statistics
883 .transfer_success_rate
884 .to_f64()
885 .unwrap_or(0.0),
886 }
887 }
888}
889
890impl<A: Float + Default + Clone + Send + Sync + std::iter::Sum> ExperienceBuffer<A> {
891 fn new(config: &ExperienceReplayConfig) -> Self {
892 Self {
893 config: config.clone(),
894 experiences: VecDeque::with_capacity(10000),
895 priority_queue: VecDeque::new(),
896 importance_weights: HashMap::new(),
897 diversity_tracker: ExperienceDiversityTracker::new(),
898 }
899 }
900
901 fn add_experience(&mut self, experience: MetaExperience<A>) -> Result<(), String> {
902 if self.experiences.len() >= 10000 {
904 self.experiences.pop_front();
905 }
906 self.experiences.push_back(experience.clone());
907
908 if self.config.enable_prioritized_replay {
910 let priority = experience.priority;
911 self.priority_queue.push_back((experience, priority));
912
913 self.priority_queue
915 .make_contiguous()
916 .sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap_or(std::cmp::Ordering::Equal));
917
918 if self.priority_queue.len() > 1000 {
920 self.priority_queue.pop_front();
921 }
922 }
923
924 Ok(())
925 }
926
927 fn sample_batch(&mut self, batch_size: usize) -> Result<Vec<MetaExperience<A>>, String> {
928 if self.experiences.is_empty() {
929 return Ok(Vec::new());
930 }
931
932 let mut batch = Vec::with_capacity(batch_size);
933
934 if self.config.enable_prioritized_replay && !self.priority_queue.is_empty() {
935 for _ in 0..batch_size.min(self.priority_queue.len()) {
937 if let Some((experience, _)) = self.priority_queue.pop_front() {
938 batch.push(experience);
939 }
940 }
941 } else {
942 for _ in 0..batch_size.min(self.experiences.len()) {
944 let idx = thread_rng().gen_range(0..self.experiences.len());
945 if let Some(experience) = self.experiences.get(idx) {
946 batch.push(experience.clone());
947 }
948 }
949 }
950
951 Ok(batch)
952 }
953}
954
955impl<A: Float + Default + Clone + Send + Sync + std::iter::Sum> ExperienceDiversityTracker<A> {
956 fn new() -> Self {
957 Self {
958 state_clusters: Vec::new(),
959 action_clusters: Vec::new(),
960 diversity_metrics: DiversityMetrics {
961 state_coverage: A::zero(),
962 action_coverage: A::zero(),
963 experience_entropy: A::zero(),
964 temporal_diversity: A::zero(),
965 outcome_diversity: A::zero(),
966 },
967 novelty_detector: NoveltyDetector::new(),
968 }
969 }
970}
971
972impl<A: Float + Default + Clone + Send + Sync + std::iter::Sum> NoveltyDetector<A> {
973 fn new() -> Self {
974 Self {
975 reference_experiences: VecDeque::with_capacity(1000),
976 novelty_threshold: A::from(0.5).unwrap(),
977 feature_weights: Vec::new(),
978 }
979 }
980}
981
982impl<A: Float + Default + Clone + Send + Sync + std::iter::Sum> MetaModel<A> {
983 fn new(complexity: MetaModelComplexity) -> Result<Self, String> {
984 let parameters = match complexity {
985 MetaModelComplexity::Low => MetaModelParameters {
986 weights: vec![vec![A::from(0.1).unwrap(); 10]; 2],
987 biases: vec![A::zero(); 10],
988 learning_rate: A::from(0.01).unwrap(),
989 regularization: RegularizationParams {
990 l1_lambda: A::from(0.001).unwrap(),
991 l2_lambda: A::from(0.001).unwrap(),
992 dropout_rate: A::from(0.1).unwrap(),
993 early_stopping_patience: 10,
994 },
995 optimization: OptimizationParams {
996 momentum: A::from(0.9).unwrap(),
997 beta1: A::from(0.9).unwrap(),
998 beta2: A::from(0.999).unwrap(),
999 epsilon: A::from(1e-8).unwrap(),
1000 grad_clip_threshold: A::from(1.0).unwrap(),
1001 },
1002 },
1003 _ => MetaModelParameters {
1004 weights: vec![vec![A::from(0.1).unwrap(); 50]; 3],
1005 biases: vec![A::zero(); 50],
1006 learning_rate: A::from(0.001).unwrap(),
1007 regularization: RegularizationParams {
1008 l1_lambda: A::from(0.0001).unwrap(),
1009 l2_lambda: A::from(0.0001).unwrap(),
1010 dropout_rate: A::from(0.2).unwrap(),
1011 early_stopping_patience: 20,
1012 },
1013 optimization: OptimizationParams {
1014 momentum: A::from(0.9).unwrap(),
1015 beta1: A::from(0.9).unwrap(),
1016 beta2: A::from(0.999).unwrap(),
1017 epsilon: A::from(1e-8).unwrap(),
1018 grad_clip_threshold: A::from(1.0).unwrap(),
1019 },
1020 },
1021 };
1022
1023 Ok(Self {
1024 model_type: MetaModelType::NeuralNetwork,
1025 parameters,
1026 training_history: VecDeque::with_capacity(1000),
1027 performance_metrics: ModelPerformanceMetrics {
1028 prediction_accuracy: A::from(0.5).unwrap(),
1029 decision_quality: A::from(0.5).unwrap(),
1030 adaptation_effectiveness: A::from(0.5).unwrap(),
1031 transfer_success_rate: A::from(0.5).unwrap(),
1032 generalization_performance: A::from(0.5).unwrap(),
1033 },
1034 feature_importance: Vec::new(),
1035 })
1036 }
1037
1038 fn train_on_batch(&mut self, batch: &[MetaExperience<A>]) -> Result<(), String> {
1039 if batch.is_empty() {
1040 return Ok(());
1041 }
1042
1043 let avg_reward = batch.iter().map(|e| e.reward).sum::<A>() / A::from(batch.len()).unwrap();
1045
1046 if avg_reward > A::from(0.5).unwrap() {
1048 self.parameters.learning_rate = self.parameters.learning_rate * A::from(1.01).unwrap();
1049 } else {
1050 self.parameters.learning_rate = self.parameters.learning_rate * A::from(0.99).unwrap();
1051 }
1052
1053 self.performance_metrics.prediction_accuracy = avg_reward;
1055
1056 Ok(())
1057 }
1058
1059 fn predict_action(&self, state: &MetaState<A>) -> Result<MetaAction<A>, String> {
1060 let action = MetaAction {
1062 adaptation_magnitudes: vec![A::from(0.1).unwrap(), A::from(-0.05).unwrap()],
1063 adaptation_types: vec![AdaptationType::LearningRate, AdaptationType::BufferSize],
1064 learning_rate_change: A::from(0.01).unwrap(),
1065 buffer_size_change: A::from(5.0).unwrap(),
1066 timestamp: Instant::now(),
1067 };
1068
1069 Ok(action)
1070 }
1071}
1072
1073impl<A: Float + Default + Clone + Send + Sync + std::iter::Sum> StrategySelector<A> {
1074 fn new() -> Self {
1075 let mut strategies = HashMap::new();
1076
1077 strategies.insert(
1079 "conservative".to_string(),
1080 AdaptationStrategy {
1081 name: "conservative".to_string(),
1082 parameters: HashMap::new(),
1083 strategy_type: StrategyType::Conservative,
1084 conditions: Vec::new(),
1085 expected_outcomes: vec![A::from(0.05).unwrap()],
1086 },
1087 );
1088
1089 strategies.insert(
1090 "aggressive".to_string(),
1091 AdaptationStrategy {
1092 name: "aggressive".to_string(),
1093 parameters: HashMap::new(),
1094 strategy_type: StrategyType::Aggressive,
1095 conditions: Vec::new(),
1096 expected_outcomes: vec![A::from(0.2).unwrap()],
1097 },
1098 );
1099
1100 Self {
1101 strategies,
1102 strategy_performance: HashMap::new(),
1103 selection_policy: SelectionPolicy::EpsilonGreedy { epsilon: 0.1 },
1104 exploration_params: ExplorationParams {
1105 exploration_rate: A::from(0.1).unwrap(),
1106 exploration_decay: A::from(0.99).unwrap(),
1107 min_exploration_rate: A::from(0.01).unwrap(),
1108 curiosity_weight: A::from(0.1).unwrap(),
1109 novelty_weight: A::from(0.1).unwrap(),
1110 },
1111 context_selector: ContextBasedSelector::new(),
1112 }
1113 }
1114
1115 fn select_strategy(&self, _state: &MetaState<A>) -> Result<AdaptationStrategy<A>, String> {
1116 if let Some(strategy) = self.strategies.get("balanced") {
1118 Ok(strategy.clone())
1119 } else if let Some(strategy) = self.strategies.values().next() {
1120 Ok(strategy.clone())
1121 } else {
1122 Err("No strategies available".to_string())
1123 }
1124 }
1125
1126 fn update_from_experiences(
1127 &mut self,
1128 _experiences: &[MetaExperience<A>],
1129 ) -> Result<(), String> {
1130 Ok(())
1132 }
1133}
1134
1135impl<A: Float + Default + Clone + Send + Sync + std::iter::Sum> ContextBasedSelector<A> {
1136 fn new() -> Self {
1137 Self {
1138 context_features: Vec::new(),
1139 context_clusters: Vec::new(),
1140 context_strategies: HashMap::new(),
1141 context_model: ContextModel {
1142 parameters: Vec::new(),
1143 feature_weights: Vec::new(),
1144 threshold: A::from(0.5).unwrap(),
1145 accuracy: A::from(0.5).unwrap(),
1146 },
1147 }
1148 }
1149}
1150
1151impl<A: Float + Default + Clone + Send + Sync + std::iter::Sum> TransferLearning<A> {
1152 fn new() -> Self {
1153 Self {
1154 source_experiences: HashMap::new(),
1155 transfer_strategies: vec![TransferStrategy::ParameterTransfer],
1156 domain_adaptation: DomainAdaptation {
1157 source_characteristics: Vec::new(),
1158 target_characteristics: Vec::new(),
1159 adaptation_weights: Vec::new(),
1160 domain_similarity: A::from(0.5).unwrap(),
1161 },
1162 transfer_metrics: TransferMetrics {
1163 success_rate: A::from(0.5).unwrap(),
1164 improvement: A::from(0.1).unwrap(),
1165 efficiency: A::from(0.7).unwrap(),
1166 negative_transfer_count: 0,
1167 },
1168 }
1169 }
1170}
1171
1172impl<A: Float + Default + Clone + Send + Sync + std::iter::Sum> LearningRateAdapter<A> {
1173 fn new(initial_rate: f64) -> Self {
1174 Self {
1175 current_rate: A::from(initial_rate).unwrap(),
1176 rate_history: VecDeque::with_capacity(100),
1177 performance_feedback: VecDeque::with_capacity(100),
1178 adaptation_strategy: LearningRateStrategy::PerformanceBased,
1179 min_rate: A::from(1e-6).unwrap(),
1180 max_rate: A::from(0.1).unwrap(),
1181 }
1182 }
1183
1184 fn update_rate(&mut self, new_rate: A) -> Result<(), String> {
1185 self.current_rate = new_rate.max(self.min_rate).min(self.max_rate);
1186
1187 if self.rate_history.len() >= 100 {
1188 self.rate_history.pop_front();
1189 }
1190 self.rate_history.push_back(self.current_rate);
1191
1192 Ok(())
1193 }
1194}
1195
1196#[derive(Debug, Clone)]
1198pub struct MetaLearningDiagnostics {
1199 pub total_experiences: usize,
1200 pub training_episodes: usize,
1201 pub current_learning_rate: f64,
1202 pub model_accuracy: f64,
1203 pub strategy_count: usize,
1204 pub transfer_success_rate: f64,
1205}