optirs_core/regularizers/l2.rs
1// L2 (Ridge) regularization
2
3use scirs2_core::ndarray::{Array, Dimension, ScalarOperand, Zip};
4use scirs2_core::numeric::Float;
5use std::fmt::Debug;
6
7use crate::error::Result;
8use crate::regularizers::Regularizer;
9
10/// L2 (Ridge) regularization
11///
12/// Adds a penalty equal to the sum of the squared values of the parameters,
13/// which encourages smaller weights and penalizes large weights.
14///
15/// Penalty: 0.5 * alpha * sum(params^2)
16///
17/// # Examples
18///
19/// ```
20/// use scirs2_core::ndarray::Array1;
21/// use optirs_core::regularizers::{L2, Regularizer};
22///
23/// // Create an L2 regularizer with strength 0.01
24/// let regularizer = L2::new(0.01);
25///
26/// // Parameters and gradients
27/// let params = Array1::from_vec(vec![0.5, -0.3, 0.0, 0.2]);
28/// let mut gradients = Array1::from_vec(vec![0.1, 0.2, -0.3, 0.0]);
29///
30/// // Apply regularization
31/// let penalty = regularizer.apply(¶ms, &mut gradients).unwrap();
32///
33/// // Gradients will be modified to include the L2 penalty gradient
34/// // Penalty will be: 0.5 * 0.01 * (0.5^2 + (-0.3)^2 + 0.0^2 + 0.2^2) = 0.005 * 0.38 = 0.0019
35/// ```
36#[derive(Debug, Clone, Copy)]
37pub struct L2<A: Float + Debug> {
38 /// Regularization strength
39 alpha: A,
40}
41
42impl<A: Float + Debug + Send + Sync> L2<A> {
43 /// Create a new L2 regularizer
44 ///
45 /// # Arguments
46 ///
47 /// * `alpha` - Regularization strength
48 pub fn new(alpha: A) -> Self {
49 Self { alpha }
50 }
51
52 /// Get the regularization strength
53 pub fn alpha(&self) -> A {
54 self.alpha
55 }
56
57 /// Set the regularization strength
58 pub fn set_alpha(&mut self, alpha: A) -> &mut Self {
59 self.alpha = alpha;
60 self
61 }
62}
63
64impl<A, D> Regularizer<A, D> for L2<A>
65where
66 A: Float + ScalarOperand + Debug,
67 D: Dimension,
68{
69 fn apply(&self, params: &Array<A, D>, gradients: &mut Array<A, D>) -> Result<A> {
70 // L2 gradient: alpha * params
71 Zip::from(params).and(gradients).for_each(|¶m, grad| {
72 *grad = *grad + self.alpha * param;
73 });
74
75 self.penalty(params)
76 }
77
78 fn penalty(&self, params: &Array<A, D>) -> Result<A> {
79 // L2 penalty: 0.5 * alpha * sum(params^2)
80 let half = A::from(0.5).unwrap();
81 let sum_squared = params.iter().fold(A::zero(), |acc, &x| acc + x * x);
82 Ok(half * self.alpha * sum_squared)
83 }
84}