optirs_core/privacy/federated_privacy/
components.rs

1// Component implementations for federated privacy algorithms
2
3use super::super::PrivacyBudget;
4use super::config::*;
5use crate::error::Result;
6use scirs2_core::ndarray::Array1;
7use scirs2_core::numeric::Float;
8use scirs2_core::random::Random;
9use std::collections::{HashMap, VecDeque};
10use std::fmt::Debug;
11use std::sync::Arc;
12
13// Advanced federated learning implementation structures
14
15/// Byzantine-robust aggregation engine
16pub struct ByzantineRobustAggregator<T: Float + Debug + Send + Sync + 'static> {
17    config: ByzantineRobustConfig,
18    client_reputations: HashMap<String, f64>,
19    outlier_history: VecDeque<OutlierDetectionResult>,
20    statistical_analyzer: StatisticalAnalyzer<T>,
21    robust_estimators: RobustEstimators<T>,
22}
23
24/// Personalized federated learning manager
25pub struct PersonalizationManager<T: Float + Debug + Send + Sync + 'static> {
26    config: PersonalizationConfig,
27    client_models: HashMap<String, PersonalizedModel<T>>,
28    global_model: Option<Array1<T>>,
29    clustering_engine: ClusteringEngine<T>,
30    meta_learner: FederatedMetaLearner<T>,
31    adaptation_tracker: AdaptationTracker<T>,
32}
33
34/// Adaptive privacy budget manager
35pub struct AdaptiveBudgetManager<T: Float + Debug + Send + Sync + 'static> {
36    config: AdaptiveBudgetConfig,
37    client_budgets: HashMap<String, AdaptiveBudget>,
38    global_budget_tracker: GlobalBudgetTracker,
39    utility_estimator: UtilityEstimator,
40    fairness_monitor: FairnessMonitor,
41    contextual_analyzer: ContextualAnalyzer,
42    _phantom: std::marker::PhantomData<T>,
43}
44
45/// Communication efficiency optimizer
46pub struct CommunicationOptimizer<T: Float + Debug + Send + Sync + 'static> {
47    config: CommunicationConfig,
48    compression_engine: CompressionEngine<T>,
49    bandwidth_monitor: BandwidthMonitor,
50    transmission_scheduler: TransmissionScheduler,
51    gradient_buffers: HashMap<String, GradientBuffer<T>>,
52    quality_controller: QualityController,
53}
54
55/// Continual learning coordinator
56pub struct ContinualLearningCoordinator<T: Float + Debug + Send + Sync + 'static> {
57    config: ContinualLearningConfig,
58    task_detector: TaskDetector<T>,
59    memory_manager: MemoryManager<T>,
60    knowledge_transfer_engine: KnowledgeTransferEngine<T>,
61    forgetting_prevention: ForgettingPreventionEngine<T>,
62    task_history: VecDeque<TaskInfo>,
63}
64
65// Supporting implementation structures
66
67/// Statistical analyzer for Byzantine detection
68pub struct StatisticalAnalyzer<T: Float + Debug + Send + Sync + 'static> {
69    window_size: usize,
70    significancelevel: f64,
71    test_statistics: VecDeque<TestStatistic<T>>,
72}
73
74/// Robust estimators for aggregation
75pub struct RobustEstimators<T: Float + Debug + Send + Sync + 'static> {
76    trimmed_mean_cache: HashMap<String, T>,
77    median_cache: HashMap<String, T>,
78    krum_scores: HashMap<String, f64>,
79}
80
81/// Outlier detection result
82#[derive(Debug, Clone)]
83pub struct OutlierDetectionResult {
84    pub clientid: String,
85    pub round: usize,
86    pub is_outlier: bool,
87    pub outlier_score: f64,
88    pub detection_method: String,
89}
90
91/// Personalized model for each client
92#[derive(Debug, Clone)]
93pub struct PersonalizedModel<T: Float + Debug + Send + Sync + 'static> {
94    pub model_parameters: Array1<T>,
95    pub personal_layers: HashMap<usize, Array1<T>>,
96    pub adaptation_state: AdaptationState<T>,
97    pub performance_history: Vec<f64>,
98    pub last_update_round: usize,
99}
100
101/// Adaptation state for personalized models
102#[derive(Debug, Clone)]
103pub struct AdaptationState<T: Float + Debug + Send + Sync + 'static> {
104    pub learning_rate: f64,
105    pub momentum: Array1<T>,
106    pub adaptation_count: usize,
107    pub gradient_history: VecDeque<Array1<T>>,
108}
109
110/// Clustering engine for federated learning
111pub struct ClusteringEngine<T: Float + Debug + Send + Sync + 'static> {
112    method: ClusteringMethod,
113    cluster_centers: HashMap<usize, Array1<T>>,
114    client_clusters: HashMap<String, usize>,
115    cluster_update_counter: usize,
116}
117
118/// Federated meta-learner
119pub struct FederatedMetaLearner<T: Float + Debug + Send + Sync + 'static> {
120    meta_parameters: Array1<T>,
121    client_adaptations: HashMap<String, Array1<T>>,
122    meta_gradient_buffer: Array1<T>,
123    task_distributions: HashMap<String, TaskDistribution<T>>,
124}
125
126/// Task distribution for meta-learning
127#[derive(Debug, Clone)]
128pub struct TaskDistribution<T: Float + Debug + Send + Sync + 'static> {
129    pub support_gradient: Array1<T>,
130    pub query_gradient: Array1<T>,
131    pub task_similarity: f64,
132    pub adaptation_steps: usize,
133}
134
135/// Adaptation tracker
136pub struct AdaptationTracker<T: Float + Debug + Send + Sync + 'static> {
137    adaptation_history: HashMap<String, Vec<AdaptationEvent<T>>>,
138    convergence_metrics: HashMap<String, ConvergenceMetrics>,
139}
140
141/// Adaptation event
142#[derive(Debug, Clone)]
143pub struct AdaptationEvent<T: Float + Debug + Send + Sync + 'static> {
144    pub round: usize,
145    pub parameter_change: Array1<T>,
146    pub loss_improvement: f64,
147    pub adaptation_method: String,
148}
149
150/// Convergence metrics
151#[derive(Debug, Clone)]
152pub struct ConvergenceMetrics {
153    pub convergence_rate: f64,
154    pub stability_measure: f64,
155    pub adaptation_efficiency: f64,
156}
157
158/// Adaptive budget for each client
159#[derive(Debug, Clone)]
160pub struct AdaptiveBudget {
161    pub current_epsilon: f64,
162    pub current_delta: f64,
163    pub allocated_epsilon: f64,
164    pub allocated_delta: f64,
165    pub consumption_rate: f64,
166    pub importance_weight: f64,
167    pub context_factors: HashMap<String, f64>,
168}
169
170/// Global budget tracker
171pub struct GlobalBudgetTracker {
172    total_allocated: f64,
173    consumption_history: VecDeque<BudgetConsumption>,
174    allocation_strategy: BudgetAllocationStrategy,
175}
176
177/// Budget consumption record
178#[derive(Debug, Clone)]
179pub struct BudgetConsumption {
180    pub round: usize,
181    pub clientid: String,
182    pub epsilonconsumed: f64,
183    pub delta_consumed: f64,
184    pub utility_achieved: f64,
185}
186
187/// Utility estimator
188pub struct UtilityEstimator {
189    utility_history: VecDeque<UtilityMeasurement>,
190    prediction_model: UtilityPredictionModel,
191}
192
193/// Utility measurement
194#[derive(Debug, Clone)]
195pub struct UtilityMeasurement {
196    pub round: usize,
197    pub accuracy: f64,
198    pub loss: f64,
199    pub convergence_rate: f64,
200    pub noise_level: f64,
201}
202
203/// Utility prediction model
204pub struct UtilityPredictionModel {
205    model_type: String,
206    parameters: HashMap<String, f64>,
207}
208
209/// Fairness monitor
210pub struct FairnessMonitor {
211    fairness_metrics: FairnessMetrics,
212    client_fairness_scores: HashMap<String, f64>,
213    fairness_constraints: Vec<FairnessConstraint>,
214}
215
216/// Fairness metrics
217#[derive(Debug, Clone)]
218pub struct FairnessMetrics {
219    pub demographic_parity: f64,
220    pub equalized_opportunity: f64,
221    pub individual_fairness: f64,
222    pub group_fairness: f64,
223}
224
225/// Fairness constraint
226#[derive(Debug, Clone)]
227pub struct FairnessConstraint {
228    pub constraint_type: String,
229    pub threshold: f64,
230    pub affected_groups: Vec<String>,
231}
232
233/// Selection diversity metrics for client sampling
234#[derive(Debug, Clone)]
235pub struct SelectionDiversityMetrics {
236    pub geographic_diversity: f64,
237    pub demographic_diversity: f64,
238    pub resource_diversity: f64,
239    pub temporal_diversity: f64,
240}
241
242/// Contextual analyzer
243pub struct ContextualAnalyzer {
244    context_history: VecDeque<ContextSnapshot>,
245    context_model: ContextModel,
246}
247
248/// Context snapshot
249#[derive(Debug, Clone)]
250pub struct ContextSnapshot {
251    pub timestamp: u64,
252    pub context_factors: HashMap<String, f64>,
253    pub privacy_requirement: f64,
254    pub utility_requirement: f64,
255}
256
257/// Context model for privacy adaptation
258pub struct ContextModel {
259    model_parameters: HashMap<String, f64>,
260    adaptation_learning_rate: f64,
261}
262
263/// Compression engine
264pub struct CompressionEngine<T: Float + Debug + Send + Sync + 'static> {
265    strategy: CompressionStrategy,
266    compression_history: VecDeque<CompressionResult<T>>,
267    error_feedback_memory: HashMap<String, Array1<T>>,
268}
269
270/// Compression result
271#[derive(Debug, Clone)]
272pub struct CompressionResult<T: Float + Debug + Send + Sync + 'static> {
273    pub original_size: usize,
274    pub compressed_size: usize,
275    pub compressionratio: f64,
276    pub reconstruction_error: T,
277    pub compression_time: u64,
278}
279
280/// Bandwidth monitor
281pub struct BandwidthMonitor {
282    bandwidth_history: VecDeque<BandwidthMeasurement>,
283    current_conditions: NetworkConditions,
284}
285
286/// Bandwidth measurement
287#[derive(Debug, Clone)]
288pub struct BandwidthMeasurement {
289    pub timestamp: u64,
290    pub upload_bandwidth: f64,
291    pub download_bandwidth: f64,
292    pub latency: f64,
293    pub packet_loss: f64,
294}
295
296/// Network conditions
297#[derive(Debug, Clone)]
298pub struct NetworkConditions {
299    pub available_bandwidth: f64,
300    pub network_quality: NetworkQuality,
301    pub congestion_level: f64,
302}
303
304#[derive(Debug, Clone, Copy)]
305pub enum NetworkQuality {
306    Excellent,
307    Good,
308    Fair,
309    Poor,
310}
311
312/// Transmission scheduler
313pub struct TransmissionScheduler {
314    schedule_queue: VecDeque<TransmissionTask>,
315    priority_weights: HashMap<String, f64>,
316}
317
318/// Transmission task
319#[derive(Debug, Clone)]
320pub struct TransmissionTask {
321    pub clientid: String,
322    pub data_size: usize,
323    pub priority: f64,
324    pub deadline: u64,
325    pub compression_required: bool,
326}
327
328/// Gradient buffer for communication optimization
329pub struct GradientBuffer<T: Float + Debug + Send + Sync + 'static> {
330    buffered_gradients: VecDeque<Array1<T>>,
331    staleness_tolerance: usize,
332    buffer_capacity: usize,
333}
334
335/// Quality controller for communication
336pub struct QualityController {
337    qos_requirements: QoSConfig,
338    performance_monitor: PerformanceMonitor,
339}
340
341/// Performance monitor
342pub struct PerformanceMonitor {
343    latency_measurements: VecDeque<f64>,
344    throughput_measurements: VecDeque<f64>,
345    quality_violations: usize,
346}
347
348/// Task detector for continual learning
349pub struct TaskDetector<T: Float + Debug + Send + Sync + 'static> {
350    detection_method: TaskDetectionMethod,
351    gradient_buffer: VecDeque<Array1<T>>,
352    change_points: Vec<ChangePoint>,
353    detection_threshold: f64,
354}
355
356/// Change point for task detection
357#[derive(Debug, Clone)]
358pub struct ChangePoint {
359    pub round: usize,
360    pub confidence: f64,
361    pub change_magnitude: f64,
362}
363
364/// Memory manager for continual learning
365pub struct MemoryManager<T: Float + Debug + Send + Sync + 'static> {
366    memory_budget: usize,
367    stored_examples: VecDeque<MemoryExample<T>>,
368    eviction_strategy: EvictionStrategy,
369    compression_enabled: bool,
370}
371
372/// Memory example for continual learning
373#[derive(Debug, Clone)]
374pub struct MemoryExample<T: Float + Debug + Send + Sync + 'static> {
375    pub features: Array1<T>,
376    pub target: Array1<T>,
377    pub importance: f64,
378    pub timestamp: u64,
379    pub task_id: usize,
380}
381
382/// Knowledge transfer engine
383pub struct KnowledgeTransferEngine<T: Float + Debug + Send + Sync + 'static> {
384    transfer_method: KnowledgeTransferMethod,
385    transfer_matrices: HashMap<String, Array1<T>>,
386    similarity_cache: HashMap<String, f64>,
387}
388
389/// Forgetting prevention engine
390pub struct ForgettingPreventionEngine<T: Float + Debug + Send + Sync + 'static> {
391    method: ForgettingPreventionMethod,
392    importance_weights: HashMap<String, Array1<T>>,
393    regularization_strength: f64,
394    memory_replay_buffer: VecDeque<Array1<T>>,
395}
396
397/// Task information
398#[derive(Debug, Clone)]
399pub struct TaskInfo {
400    pub task_id: usize,
401    pub start_round: usize,
402    pub end_round: Option<usize>,
403    pub task_description: String,
404    pub performance_metrics: HashMap<String, f64>,
405}
406
407/// Test statistic for outlier detection
408#[derive(Debug, Clone)]
409pub struct TestStatistic<T: Float + Debug + Send + Sync + 'static> {
410    pub round: usize,
411    pub statistic_value: T,
412    pub p_value: f64,
413    pub test_type: StatisticalTestType,
414    pub clientid: String,
415}
416
417/// Secure aggregation protocol implementation
418pub struct SecureAggregator<T: Float + Debug + Send + Sync + 'static> {
419    config: SecureAggregationConfig,
420    client_masks: HashMap<String, Array1<T>>,
421    shared_randomness: Arc<std::sync::Mutex<u64>>,
422    aggregation_threshold: usize,
423    round_keys: Vec<u64>,
424}
425
426/// Privacy amplification analyzer
427pub struct PrivacyAmplificationAnalyzer {
428    config: AmplificationConfig,
429    subsampling_history: VecDeque<SubsamplingEvent>,
430    amplification_factors: HashMap<String, f64>,
431}
432
433/// Cross-device privacy manager
434pub struct CrossDevicePrivacyManager<T: Float + Debug + Send + Sync + 'static> {
435    config: CrossDeviceConfig,
436    user_clusters: HashMap<String, Vec<String>>,
437    device_profiles: HashMap<String, DeviceProfile<T>>,
438    temporal_correlations: HashMap<String, Vec<TemporalEvent>>,
439}
440
441/// Federated composition analyzer
442pub struct FederatedCompositionAnalyzer {
443    method: FederatedCompositionMethod,
444    round_compositions: Vec<RoundComposition>,
445    client_compositions: HashMap<String, Vec<ClientComposition>>,
446}
447
448/// Client participation in a round
449#[derive(Debug, Clone)]
450pub struct ParticipationRound {
451    pub round: usize,
452    pub participating_clients: Vec<String>,
453    pub sampling_probability: f64,
454    pub privacy_cost: PrivacyCost,
455    pub aggregation_noise: f64,
456}
457
458/// Privacy cost breakdown
459#[derive(Debug, Clone)]
460pub struct PrivacyCost {
461    pub epsilon: f64,
462    pub delta: f64,
463    pub client_contribution: f64,
464    pub amplificationfactor: f64,
465    pub composition_cost: f64,
466}
467
468/// Subsampling event for amplification analysis
469#[derive(Debug, Clone)]
470pub struct SubsamplingEvent {
471    pub round: usize,
472    pub sampling_rate: f64,
473    pub clients_sampled: usize,
474    pub total_clients: usize,
475    pub amplificationfactor: f64,
476}
477
478/// Device profile for cross-device privacy
479#[derive(Debug, Clone)]
480pub struct DeviceProfile<T: Float + Debug + Send + Sync + 'static> {
481    pub device_id: String,
482    pub user_id: String,
483    pub device_type: DeviceType,
484    pub location_cluster: String,
485    pub participation_frequency: f64,
486    pub local_privacy_budget: PrivacyBudget,
487    pub sensitivity_estimate: T,
488}
489
490/// Device types for privacy analysis
491#[derive(Debug, Clone, Copy, Eq, Hash, PartialEq)]
492pub enum DeviceType {
493    Mobile,
494    Desktop,
495    IoT,
496    Edge,
497    Server,
498}
499
500/// Temporal event for privacy tracking
501#[derive(Debug, Clone)]
502pub struct TemporalEvent {
503    pub timestamp: u64,
504    pub event_type: TemporalEventType,
505    pub privacy_impact: f64,
506}
507
508#[derive(Debug, Clone)]
509pub enum TemporalEventType {
510    ClientParticipation,
511    ModelUpdate,
512    PrivacyBudgetConsumption,
513    AggregationEvent,
514}
515
516/// Round composition for privacy accounting
517#[derive(Debug, Clone)]
518pub struct RoundComposition {
519    pub round: usize,
520    pub participating_clients: usize,
521    pub epsilonconsumed: f64,
522    pub delta_consumed: f64,
523    pub amplification_applied: bool,
524    pub composition_method: FederatedCompositionMethod,
525}
526
527/// Client-specific composition tracking
528#[derive(Debug, Clone)]
529pub struct ClientComposition {
530    pub clientid: String,
531    pub round: usize,
532    pub local_epsilon: f64,
533    pub local_delta: f64,
534    pub contribution_weight: f64,
535}
536
537// Implementation blocks for components
538
539impl ContextualAnalyzer {
540    /// Create a new contextual analyzer
541    pub fn new() -> Self {
542        Self {
543            context_history: VecDeque::with_capacity(100),
544            context_model: ContextModel::new(),
545        }
546    }
547}
548
549impl Default for ContextualAnalyzer {
550    fn default() -> Self {
551        Self::new()
552    }
553}
554
555impl ContextModel {
556    /// Create a new context model
557    pub fn new() -> Self {
558        Self {
559            model_parameters: HashMap::new(),
560            adaptation_learning_rate: 0.01,
561        }
562    }
563}
564
565impl Default for ContextModel {
566    fn default() -> Self {
567        Self::new()
568    }
569}
570
571impl FairnessMonitor {
572    /// Create a new fairness monitor
573    pub fn new() -> Self {
574        Self {
575            fairness_metrics: FairnessMetrics {
576                demographic_parity: 0.0,
577                equalized_opportunity: 0.0,
578                individual_fairness: 0.0,
579                group_fairness: 0.0,
580            },
581            client_fairness_scores: HashMap::new(),
582            fairness_constraints: Vec::new(),
583        }
584    }
585
586    /// Get current fairness metrics
587    pub fn get_metrics(&self) -> &FairnessMetrics {
588        &self.fairness_metrics
589    }
590
591    /// Compute fairness weights for clients
592    pub fn compute_fairness_weights(&self, clientids: &[String]) -> HashMap<String, f64> {
593        let mut weights = HashMap::new();
594        for clientid in clientids {
595            // Use existing fairness score or default to 1.0
596            let weight = self
597                .client_fairness_scores
598                .get(clientid)
599                .copied()
600                .unwrap_or(1.0);
601            weights.insert(clientid.clone(), weight);
602        }
603        weights
604    }
605}
606
607impl Default for FairnessMonitor {
608    fn default() -> Self {
609        Self::new()
610    }
611}
612
613impl<
614        T: Float
615            + Debug
616            + Send
617            + Sync
618            + 'static
619            + Default
620            + Clone
621            + scirs2_core::ndarray::ScalarOperand,
622    > FederatedMetaLearner<T>
623{
624    /// Create a new federated meta-learner
625    pub fn new(_parametersize: usize) -> Self {
626        Self {
627            meta_parameters: Array1::default(0),
628            client_adaptations: HashMap::new(),
629            meta_gradient_buffer: Array1::default(0),
630            task_distributions: HashMap::new(),
631        }
632    }
633
634    /// Compute meta-gradients for adaptation from client gradients
635    pub fn compute_client_meta_gradients(
636        &mut self,
637        _client_gradients: &HashMap<String, Array1<T>>,
638        _support_data: &HashMap<String, Array1<T>>,
639        _query_data: &HashMap<String, Array1<T>>,
640    ) -> Result<Array1<T>> {
641        // Placeholder implementation
642        Ok(Array1::default(0))
643    }
644}
645
646impl<T: Float + Debug + Send + Sync + 'static + Default + Clone> ClusteringEngine<T> {
647    /// Create a new clustering engine
648    pub fn new() -> Self {
649        Self {
650            method: ClusteringMethod::KMeans,
651            cluster_centers: HashMap::new(),
652            client_clusters: HashMap::new(),
653            cluster_update_counter: 0,
654        }
655    }
656}
657
658impl<T: Float + Debug + Send + Sync + 'static + Default + Clone> Default for ClusteringEngine<T> {
659    fn default() -> Self {
660        Self::new()
661    }
662}
663
664impl<T: Float + Debug + Send + Sync + 'static> AdaptationTracker<T> {
665    /// Create a new adaptation tracker
666    pub fn new() -> Self {
667        Self {
668            adaptation_history: HashMap::new(),
669            convergence_metrics: HashMap::new(),
670        }
671    }
672}
673
674impl<T: Float + Debug + Send + Sync + 'static> Default for AdaptationTracker<T> {
675    fn default() -> Self {
676        Self::new()
677    }
678}
679
680impl GlobalBudgetTracker {
681    /// Create a new global budget tracker
682    pub fn new() -> Self {
683        Self {
684            total_allocated: 0.0,
685            consumption_history: VecDeque::with_capacity(1000),
686            allocation_strategy: BudgetAllocationStrategy::Uniform,
687        }
688    }
689}
690
691impl Default for GlobalBudgetTracker {
692    fn default() -> Self {
693        Self::new()
694    }
695}
696
697impl<T: Float + Debug + Send + Sync + 'static> TaskDetector<T> {
698    /// Create a new task detector
699    pub fn new() -> Self {
700        Self {
701            detection_method: TaskDetectionMethod::GradientBased,
702            gradient_buffer: VecDeque::with_capacity(100),
703            change_points: Vec::new(),
704            detection_threshold: 0.1,
705        }
706    }
707
708    /// Detect task change based on gradients
709    pub fn detect_task_change(&mut self, updates: &[Array1<T>]) -> Result<bool> {
710        // Placeholder implementation
711        let _ = updates;
712        Ok(false)
713    }
714}
715
716impl<T: Float + Debug + Send + Sync + 'static> Default for TaskDetector<T> {
717    fn default() -> Self {
718        Self::new()
719    }
720}
721
722impl TransmissionScheduler {
723    /// Create a new transmission scheduler
724    pub fn new() -> Self {
725        Self {
726            schedule_queue: VecDeque::new(),
727            priority_weights: HashMap::new(),
728        }
729    }
730}
731
732impl Default for TransmissionScheduler {
733    fn default() -> Self {
734        Self::new()
735    }
736}
737
738impl QualityController {
739    /// Create a new quality controller
740    pub fn new() -> Self {
741        Self {
742            qos_requirements: QoSConfig::default(),
743            performance_monitor: PerformanceMonitor::new(),
744        }
745    }
746}
747
748impl Default for QualityController {
749    fn default() -> Self {
750        Self::new()
751    }
752}
753
754impl PerformanceMonitor {
755    /// Create a new performance monitor
756    pub fn new() -> Self {
757        Self {
758            latency_measurements: VecDeque::with_capacity(1000),
759            throughput_measurements: VecDeque::with_capacity(1000),
760            quality_violations: 0,
761        }
762    }
763}
764
765impl Default for PerformanceMonitor {
766    fn default() -> Self {
767        Self::new()
768    }
769}
770
771impl<T: Float + Debug + Send + Sync + 'static> MemoryManager<T> {
772    /// Create a new memory manager
773    pub fn new() -> Self {
774        Self {
775            memory_budget: 1000,
776            stored_examples: VecDeque::new(),
777            eviction_strategy: EvictionStrategy::LRU,
778            compression_enabled: false,
779        }
780    }
781}
782
783impl<T: Float + Debug + Send + Sync + 'static> Default for MemoryManager<T> {
784    fn default() -> Self {
785        Self::new()
786    }
787}
788
789impl<T: Float + Debug + Send + Sync + 'static> KnowledgeTransferEngine<T> {
790    /// Create a new knowledge transfer engine
791    pub fn new() -> Self {
792        Self {
793            transfer_method: KnowledgeTransferMethod::ParameterTransfer,
794            transfer_matrices: HashMap::new(),
795            similarity_cache: HashMap::new(),
796        }
797    }
798}
799
800impl<T: Float + Debug + Send + Sync + 'static> Default for KnowledgeTransferEngine<T> {
801    fn default() -> Self {
802        Self::new()
803    }
804}
805
806impl<T: Float + Debug + Send + Sync + 'static> ForgettingPreventionEngine<T> {
807    /// Create a new forgetting prevention engine
808    pub fn new() -> Self {
809        Self {
810            method: ForgettingPreventionMethod::EWC,
811            importance_weights: HashMap::new(),
812            regularization_strength: 0.1,
813            memory_replay_buffer: VecDeque::new(),
814        }
815    }
816}
817
818impl<T: Float + Debug + Send + Sync + 'static> Default for ForgettingPreventionEngine<T> {
819    fn default() -> Self {
820        Self::new()
821    }
822}
823
824// Default implementations for component creation
825
826impl<T: Float + Debug + Send + Sync + 'static + Default + Clone> ByzantineRobustAggregator<T> {
827    /// Create a new Byzantine robust aggregator
828    pub fn new() -> Result<Self> {
829        Ok(Self {
830            config: ByzantineRobustConfig {
831                method: ByzantineRobustMethod::TrimmedMean { trim_ratio: 0.2 },
832                expected_byzantine_ratio: 0.2,
833                dynamic_detection: true,
834                reputation_system: ReputationSystemConfig::default(),
835                statistical_tests: StatisticalTestConfig::default(),
836            },
837            client_reputations: HashMap::new(),
838            outlier_history: VecDeque::new(),
839            statistical_analyzer: StatisticalAnalyzer {
840                window_size: 10,
841                significancelevel: 0.05,
842                test_statistics: VecDeque::new(),
843            },
844            robust_estimators: RobustEstimators {
845                trimmed_mean_cache: HashMap::new(),
846                median_cache: HashMap::new(),
847                krum_scores: HashMap::new(),
848            },
849        })
850    }
851}
852
853impl<
854        T: Float
855            + Debug
856            + Send
857            + Sync
858            + 'static
859            + Default
860            + Clone
861            + scirs2_core::ndarray::ScalarOperand,
862    > PersonalizationManager<T>
863{
864    /// Create a new personalization manager
865    pub fn new() -> Result<Self> {
866        Ok(Self {
867            config: PersonalizationConfig {
868                strategy: PersonalizationStrategy::None,
869                local_adaptation: LocalAdaptationConfig::default(),
870                clustering: ClusteringConfig::default(),
871                meta_learning: MetaLearningConfig::default(),
872                privacy_preserving: false,
873            },
874            client_models: HashMap::new(),
875            global_model: None,
876            clustering_engine: ClusteringEngine::new(),
877            meta_learner: FederatedMetaLearner::new(0),
878            adaptation_tracker: AdaptationTracker::new(),
879        })
880    }
881}
882
883impl<T: Float + Debug + Send + Sync + 'static> AdaptiveBudgetManager<T> {
884    /// Create a new adaptive budget manager
885    pub fn new() -> Result<Self> {
886        Ok(Self {
887            config: AdaptiveBudgetConfig::default(),
888            client_budgets: HashMap::new(),
889            global_budget_tracker: GlobalBudgetTracker::new(),
890            utility_estimator: UtilityEstimator {
891                utility_history: VecDeque::new(),
892                prediction_model: UtilityPredictionModel {
893                    model_type: "linear".to_string(),
894                    parameters: HashMap::new(),
895                },
896            },
897            fairness_monitor: FairnessMonitor::new(),
898            contextual_analyzer: ContextualAnalyzer::new(),
899            _phantom: std::marker::PhantomData,
900        })
901    }
902}
903
904impl<T: Float + Debug + Send + Sync + 'static + Default> CommunicationOptimizer<T> {
905    /// Create a new communication optimizer
906    pub fn new() -> Result<Self> {
907        Ok(Self {
908            config: CommunicationConfig {
909                compression: CompressionStrategy::None,
910                lazy_aggregation: LazyAggregationConfig::default(),
911                federated_dropout: FederatedDropoutConfig::default(),
912                async_updates: AsyncUpdateConfig::default(),
913                bandwidth_adaptation: BandwidthAdaptationConfig::default(),
914            },
915            compression_engine: CompressionEngine {
916                strategy: CompressionStrategy::None,
917                compression_history: VecDeque::new(),
918                error_feedback_memory: HashMap::new(),
919            },
920            bandwidth_monitor: BandwidthMonitor {
921                bandwidth_history: VecDeque::new(),
922                current_conditions: NetworkConditions {
923                    available_bandwidth: 100.0,
924                    network_quality: NetworkQuality::Good,
925                    congestion_level: 0.5,
926                },
927            },
928            transmission_scheduler: TransmissionScheduler::new(),
929            gradient_buffers: HashMap::new(),
930            quality_controller: QualityController::new(),
931        })
932    }
933}
934
935impl<T: Float + Debug + Send + Sync + 'static + Default> ContinualLearningCoordinator<T> {
936    /// Create a new continual learning coordinator
937    pub fn new() -> Result<Self> {
938        Ok(Self {
939            config: ContinualLearningConfig {
940                strategy: ContinualLearningStrategy::TaskAgnostic,
941                memory_management: MemoryManagementConfig::default(),
942                task_detection: TaskDetectionConfig::default(),
943                knowledge_transfer: KnowledgeTransferConfig::default(),
944                forgetting_prevention: ForgettingPreventionConfig::default(),
945            },
946            task_detector: TaskDetector::new(),
947            memory_manager: MemoryManager::new(),
948            knowledge_transfer_engine: KnowledgeTransferEngine::new(),
949            forgetting_prevention: ForgettingPreventionEngine::new(),
950            task_history: VecDeque::new(),
951        })
952    }
953}
954
955impl<T: Float + Debug + Send + Sync + 'static + Default> SecureAggregator<T> {
956    /// Create a new secure aggregator
957    pub fn new(config: SecureAggregationConfig) -> Result<Self> {
958        Ok(Self {
959            config,
960            client_masks: HashMap::new(),
961            shared_randomness: Arc::new(std::sync::Mutex::new(0u64)),
962            aggregation_threshold: 10,
963            round_keys: Vec::new(),
964        })
965    }
966}
967
968impl PrivacyAmplificationAnalyzer {
969    /// Create a new privacy amplification analyzer
970    pub fn new(config: AmplificationConfig) -> Self {
971        Self {
972            config,
973            subsampling_history: VecDeque::new(),
974            amplification_factors: HashMap::new(),
975        }
976    }
977
978    /// Compute amplification factor for current round
979    pub fn compute_amplification_factor(
980        &mut self,
981        sampling_rate: f64,
982        round: usize,
983    ) -> Result<f64> {
984        // Placeholder implementation
985        let amplification_factor = if self.config.enabled {
986            (1.0 / sampling_rate).sqrt()
987        } else {
988            1.0
989        };
990
991        self.subsampling_history.push_back(SubsamplingEvent {
992            round,
993            sampling_rate,
994            clients_sampled: (sampling_rate * 1000.0) as usize,
995            total_clients: 1000,
996            amplificationfactor: amplification_factor,
997        });
998
999        Ok(amplification_factor)
1000    }
1001}
1002
1003impl<T: Float + Debug + Send + Sync + 'static> CrossDevicePrivacyManager<T> {
1004    /// Create a new cross-device privacy manager
1005    pub fn new(config: CrossDeviceConfig) -> Self {
1006        Self {
1007            config,
1008            user_clusters: HashMap::new(),
1009            device_profiles: HashMap::new(),
1010            temporal_correlations: HashMap::new(),
1011        }
1012    }
1013}
1014
1015impl FederatedCompositionAnalyzer {
1016    /// Create a new federated composition analyzer
1017    pub fn new(method: FederatedCompositionMethod) -> Self {
1018        Self {
1019            method,
1020            round_compositions: Vec::new(),
1021            client_compositions: HashMap::new(),
1022        }
1023    }
1024}