1use super::{
8 EventPriority, MembraneDynamicsConfig, NeuromorphicEvent, NeuromorphicMetrics, PlasticityModel,
9 STDPConfig, SleepModeConfig, Spike, SpikeTrain, ThermalManagementConfig,
10 ThermalThrottlingStrategy,
11};
12use crate::error::Result;
13use crate::optimizers::Optimizer;
14use scirs2_core::ndarray::{Array1, Array2, ArrayBase, Data, DataMut, Dimension};
15use scirs2_core::numeric::Float;
16use std::collections::{BTreeMap, HashMap, VecDeque};
17use std::fmt::Debug;
18use std::sync::{Arc, Mutex, RwLock};
19use std::time::{Duration, Instant};
20
21#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
23pub enum EnergyOptimizationStrategy {
24 DynamicVoltageScaling,
26
27 PowerGating,
29
30 ClockGating,
32
33 AdaptivePrecision,
35
36 SparseComputation,
38
39 EventDrivenProcessing,
41
42 SleepModeOptimization,
44
45 ThermalAwareOptimization,
47
48 MultiLevel,
50}
51
52#[derive(Debug, Clone)]
54pub struct EnergyBudget<T: Float + Debug + Send + Sync + 'static> {
55 pub total_budget: T,
57
58 pub current_consumption: T,
60
61 pub per_operation_budget: T,
63
64 pub component_allocation: HashMap<EnergyComponent, T>,
66
67 pub efficiency_targets: EnergyEfficiencyTargets<T>,
69
70 pub emergency_reserves: T,
72
73 pub monitoring_frequency: Duration,
75}
76
77#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
79pub enum EnergyComponent {
80 SynapticOps,
82
83 MembraneDynamics,
85
86 SpikeGeneration,
88
89 PlasticityUpdates,
91
92 MemoryAccess,
94
95 Communication,
97
98 ControlLogic,
100
101 ThermalManagement,
103}
104
105#[derive(Debug, Clone)]
107pub struct EnergyEfficiencyTargets<T: Float + Debug + Send + Sync + 'static> {
108 pub ops_per_joule: T,
110
111 pub spikes_per_joule: T,
113
114 pub synaptic_updates_per_joule: T,
116
117 pub memory_bandwidth_efficiency: T,
119
120 pub thermal_efficiency: T,
122}
123
124#[derive(Debug, Clone)]
126pub struct EnergyEfficientConfig<T: Float + Debug + Send + Sync + 'static> {
127 pub primary_strategy: EnergyOptimizationStrategy,
129
130 pub fallback_strategies: Vec<EnergyOptimizationStrategy>,
132
133 pub energy_budget: EnergyBudget<T>,
135
136 pub adaptive_strategy_switching: bool,
138
139 pub strategy_switching_threshold: T,
141
142 pub predictive_energy_management: bool,
144
145 pub prediction_horizon: T,
147
148 pub energy_harvesting: bool,
150
151 pub harvesting_efficiency: T,
153
154 pub distributed_energy_management: bool,
156
157 pub real_time_monitoring: bool,
159
160 pub monitoring_resolution: T,
162
163 pub energy_aware_load_balancing: bool,
165
166 pub optimization_aggressiveness: T,
168}
169
170impl<T: Float + Debug + Send + Sync + 'static> Default for EnergyEfficientConfig<T> {
171 fn default() -> Self {
172 let mut component_allocation = HashMap::new();
173 component_allocation.insert(
174 EnergyComponent::SynapticOps,
175 T::from(0.4).unwrap_or_else(|| T::zero()),
176 );
177 component_allocation.insert(
178 EnergyComponent::MembraneDynamics,
179 T::from(0.2).unwrap_or_else(|| T::zero()),
180 );
181 component_allocation.insert(
182 EnergyComponent::SpikeGeneration,
183 T::from(0.15).unwrap_or_else(|| T::zero()),
184 );
185 component_allocation.insert(
186 EnergyComponent::PlasticityUpdates,
187 T::from(0.1).unwrap_or_else(|| T::zero()),
188 );
189 component_allocation.insert(
190 EnergyComponent::MemoryAccess,
191 T::from(0.1).unwrap_or_else(|| T::zero()),
192 );
193 component_allocation.insert(
194 EnergyComponent::Communication,
195 T::from(0.05).unwrap_or_else(|| T::zero()),
196 );
197
198 Self {
199 primary_strategy: EnergyOptimizationStrategy::DynamicVoltageScaling,
200 fallback_strategies: vec![
201 EnergyOptimizationStrategy::PowerGating,
202 EnergyOptimizationStrategy::ClockGating,
203 EnergyOptimizationStrategy::SparseComputation,
204 ],
205 energy_budget: EnergyBudget {
206 total_budget: T::from(1000.0).unwrap_or_else(|| T::zero()), current_consumption: T::zero(),
208 per_operation_budget: T::from(10.0).unwrap_or_else(|| T::zero()), component_allocation,
210 efficiency_targets: EnergyEfficiencyTargets {
211 ops_per_joule: T::from(1e12).unwrap_or_else(|| T::zero()), spikes_per_joule: T::from(1e9).unwrap_or_else(|| T::zero()), synaptic_updates_per_joule: T::from(1e10).unwrap_or_else(|| T::zero()), memory_bandwidth_efficiency: T::from(1e6).unwrap_or_else(|| T::zero()),
215 thermal_efficiency: T::from(1e9).unwrap_or_else(|| T::zero()),
216 },
217 emergency_reserves: T::from(100.0).unwrap_or_else(|| T::zero()), monitoring_frequency: Duration::from_micros(100),
219 },
220 adaptive_strategy_switching: true,
221 strategy_switching_threshold: T::from(0.1).unwrap_or_else(|| T::zero()), predictive_energy_management: true,
223 prediction_horizon: T::from(10.0).unwrap_or_else(|| T::zero()), energy_harvesting: false,
225 harvesting_efficiency: T::from(0.1).unwrap_or_else(|| T::zero()),
226 distributed_energy_management: false,
227 real_time_monitoring: true,
228 monitoring_resolution: T::from(1.0).unwrap_or_else(|| T::zero()), energy_aware_load_balancing: true,
230 optimization_aggressiveness: T::from(0.7).unwrap_or_else(|| T::zero()),
231 }
232 }
233}
234
235#[derive(Debug, Clone)]
237struct EnergyMonitor<
238 T: Float
239 + Debug
240 + scirs2_core::ndarray::ScalarOperand
241 + std::fmt::Debug
242 + std::iter::Sum
243 + Send
244 + Sync,
245> {
246 consumption_history: VecDeque<(Instant, T)>,
248
249 power_history: VecDeque<(Instant, T)>,
251
252 current_power: T,
254
255 peak_power: T,
257
258 average_power: T,
260
261 component_energy: HashMap<EnergyComponent, T>,
263
264 efficiency_metrics: EfficiencyMetrics<T>,
266
267 last_update: Instant,
269
270 window_size: Duration,
272}
273
274#[derive(Debug, Clone)]
276struct EfficiencyMetrics<T: Float + Debug + Send + Sync + 'static> {
277 current_ops_per_joule: T,
279
280 current_spikes_per_joule: T,
282
283 current_synaptic_updates_per_joule: T,
285
286 memory_efficiency: T,
288
289 thermal_efficiency: T,
291
292 overall_efficiency: T,
294}
295
296#[derive(Debug, Clone)]
298struct DVFSController<T: Float + Debug + Send + Sync + 'static> {
299 voltage_levels: Vec<T>,
301
302 frequency_levels: Vec<T>,
304
305 current_voltage_idx: usize,
307
308 current_frequency_idx: usize,
310
311 performance_requirements: PerformanceRequirements<T>,
313
314 voltage_scaling_factor: T,
316
317 frequency_scaling_factor: T,
319
320 adaptation_rate: T,
322}
323
324impl<T: Float + Debug + Send + Sync + 'static> DVFSController<T> {
325 fn new() -> Self {
326 Self {
327 voltage_levels: vec![
328 T::from(0.7).unwrap(),
329 T::from(0.9).unwrap(),
330 T::from(1.0).unwrap(),
331 T::from(1.2).unwrap(),
332 ],
333 frequency_levels: vec![
334 T::from(500.0).unwrap(),
335 T::from(1000.0).unwrap(),
336 T::from(1500.0).unwrap(),
337 T::from(2000.0).unwrap(),
338 ],
339 current_voltage_idx: 2,
340 current_frequency_idx: 2,
341 performance_requirements: PerformanceRequirements {
342 min_frequency: T::from(500.0).unwrap(),
343 max_frequency: T::from(2000.0).unwrap(),
344 min_voltage: T::from(0.7).unwrap(),
345 max_voltage: T::from(1.2).unwrap(),
346 performance_headroom: T::from(0.2).unwrap(),
347 qos_requirements: QoSRequirements {
348 max_latency: T::from(10.0).unwrap(),
349 max_jitter: T::from(1.0).unwrap(),
350 min_throughput: T::from(1000.0).unwrap(),
351 max_error_rate: T::from(0.001).unwrap(),
352 },
353 },
354 voltage_scaling_factor: T::one(),
355 frequency_scaling_factor: T::one(),
356 adaptation_rate: T::from(0.1).unwrap(),
357 }
358 }
359
360 fn compute_optimal_levels(&mut self, workload: &WorkloadSample<T>) -> Result<(T, T)> {
361 let utilization = T::from(workload.active_neurons).unwrap() / T::from(1000).unwrap();
363 let idx = (utilization * T::from(self.voltage_levels.len() - 1).unwrap())
364 .to_usize()
365 .unwrap_or(2);
366
367 self.current_voltage_idx = idx.min(self.voltage_levels.len() - 1);
368 self.current_frequency_idx = idx.min(self.frequency_levels.len() - 1);
369
370 Ok((
371 self.voltage_levels[self.current_voltage_idx],
372 self.frequency_levels[self.current_frequency_idx],
373 ))
374 }
375
376 fn apply_scaling(&mut self, voltage: T, frequency: T) -> Result<()> {
377 self.voltage_scaling_factor = voltage / self.voltage_levels[2]; self.frequency_scaling_factor = frequency / self.frequency_levels[2];
380 Ok(())
381 }
382}
383
384#[derive(Debug, Clone)]
386struct PerformanceRequirements<T: Float + Debug + Send + Sync + 'static> {
387 min_frequency: T,
389
390 max_frequency: T,
392
393 min_voltage: T,
395
396 max_voltage: T,
398
399 performance_headroom: T,
401
402 qos_requirements: QoSRequirements<T>,
404}
405
406#[derive(Debug, Clone)]
408struct QoSRequirements<T: Float + Debug + Send + Sync + 'static> {
409 max_latency: T,
411
412 max_jitter: T,
414
415 min_throughput: T,
417
418 max_error_rate: T,
420}
421
422#[derive(Debug, Clone)]
424struct PowerGatingController<T: Float + Debug + Send + Sync + 'static> {
425 gated_groups: HashMap<usize, GatedGroup>,
427
428 gating_policy: GatingPolicy,
430
431 gate_overhead_time: Duration,
433
434 gate_overhead_energy: f64,
436
437 _phantom: std::marker::PhantomData<T>,
439}
440
441impl<T: Float + Debug + Send + Sync + 'static> PowerGatingController<T> {
442 fn new() -> Self {
443 Self {
444 gated_groups: HashMap::new(),
445 gating_policy: GatingPolicy::Adaptive,
446 gate_overhead_time: Duration::from_micros(10),
447 gate_overhead_energy: 0.001,
448 _phantom: std::marker::PhantomData,
449 }
450 }
451
452 fn gate_region(&mut self, region_id: usize) -> Result<T> {
453 Ok(T::from(0.1).unwrap())
455 }
456
457 fn identify_gatable_regions(&self, workload: &WorkloadSample<T>) -> Result<Vec<usize>> {
458 let mut regions = Vec::new();
460 if workload.active_neurons < 100 {
461 regions.push(0); }
463 Ok(regions)
464 }
465}
466
467#[derive(Debug, Clone)]
469struct GatedGroup {
470 group_id: usize,
472
473 neuron_ids: Vec<usize>,
475
476 is_gated: bool,
478
479 last_activity: Instant,
481
482 inactivity_threshold: Duration,
484
485 wakeup_latency: Duration,
487}
488
489#[derive(Debug, Clone, Copy)]
491enum GatingPolicy {
492 InactivityBased,
494
495 PredictiveBased,
497
498 EnergyBudgetBased,
500
501 Adaptive,
503}
504
505#[derive(Debug, Clone)]
507struct SparseComputationOptimizer<T: Float + Debug + Send + Sync + 'static> {
508 sparsity_threshold: T,
510
511 sparse_matrices: HashMap<String, SparseMatrix<T>>,
513
514 sparsity_patterns: Vec<SparsityPattern>,
516
517 compression_algorithms: Vec<CompressionAlgorithm>,
519
520 dynamic_adaptation: bool,
522}
523
524impl<T: Float + Debug + Send + Sync + 'static> SparseComputationOptimizer<T> {
525 fn new() -> Self {
526 Self {
527 sparsity_threshold: T::from(0.01).unwrap(),
528 sparse_matrices: HashMap::new(),
529 sparsity_patterns: vec![SparsityPattern::MagnitudeBased],
530 compression_algorithms: vec![CompressionAlgorithm::Csr],
531 dynamic_adaptation: true,
532 }
533 }
534
535 fn analyze_sparsity(&mut self, workload: &WorkloadSample<T>) -> Result<SparsityAnalysis<T>> {
536 let sparsity_ratio = T::one()
538 - (T::from(workload.active_neurons).unwrap() / T::from(1000).unwrap()).min(T::one());
539
540 Ok(SparsityAnalysis {
541 sparsity_ratio,
542 pattern: SparsityPattern::MagnitudeBased,
543 potential_savings: sparsity_ratio * T::from(0.8).unwrap(),
544 })
545 }
546
547 fn apply_compression(&mut self, analysis: &SparsityAnalysis<T>) -> Result<T> {
548 Ok(analysis.potential_savings)
550 }
551
552 fn apply_sparse_optimizations(&mut self, analysis: &SparsityAnalysis<T>) -> Result<T> {
553 let compression_savings = self.apply_compression(analysis)?;
555 Ok(compression_savings)
556 }
557}
558
559#[derive(Debug, Clone)]
560struct SparsityAnalysis<T: Float + Debug + Send + Sync + 'static> {
561 sparsity_ratio: T,
562 pattern: SparsityPattern,
563 potential_savings: T,
564}
565
566#[derive(Debug, Clone)]
568struct SparseMatrix<T: Float + Debug + Send + Sync + 'static> {
569 values: Vec<T>,
571
572 row_indices: Vec<usize>,
574
575 col_pointers: Vec<usize>,
577
578 dimensions: (usize, usize),
580
581 sparsity_ratio: T,
583}
584
585#[derive(Debug, Clone, Copy)]
587enum SparsityPattern {
588 Random,
590
591 Structured,
593
594 Block,
596
597 Channel,
599
600 MagnitudeBased,
602}
603
604#[derive(Debug, Clone, Copy)]
606enum CompressionAlgorithm {
607 Csr,
609
610 Csc,
612
613 Bsr,
615
616 Coo,
618
619 Dok,
621}
622
623pub struct EnergyEfficientOptimizer<
625 T: Float
626 + Debug
627 + scirs2_core::ndarray::ScalarOperand
628 + std::fmt::Debug
629 + std::iter::Sum
630 + Send
631 + Sync,
632> {
633 config: EnergyEfficientConfig<T>,
635
636 energy_monitor: EnergyMonitor<T>,
638
639 dvfs_controller: DVFSController<T>,
641
642 power_gating_controller: PowerGatingController<T>,
644
645 sparse_optimizer: SparseComputationOptimizer<T>,
647
648 thermal_manager: ThermalManager<T>,
650
651 sleep_controller: SleepModeController<T>,
653
654 predictive_manager: PredictiveEnergyManager<T>,
656
657 current_strategy: EnergyOptimizationStrategy,
659
660 strategy_effectiveness: HashMap<EnergyOptimizationStrategy, T>,
662
663 system_state: EnergySystemState<T>,
665
666 metrics: NeuromorphicMetrics<T>,
668}
669
670#[derive(Debug, Clone)]
672pub struct EnergySystemState<T: Float + Debug + Send + Sync + 'static> {
673 pub current_energy: T,
675
676 pub current_power: T,
678
679 pub temperature: T,
681
682 pub active_neurons: usize,
684
685 pub active_synapses: usize,
687
688 pub current_voltage: T,
690
691 pub current_frequency: T,
693
694 pub gated_regions: Vec<usize>,
696
697 pub sleep_status: SleepStatus,
699}
700
701#[derive(Debug, Clone, Copy)]
702pub enum SleepStatus {
703 Active,
704 LightSleep,
705 DeepSleep,
706 Hibernation,
707}
708
709#[derive(Debug, Clone)]
711struct ThermalManager<T: Float + Debug + Send + Sync + 'static> {
712 config: ThermalManagementConfig<T>,
714
715 current_temperature: T,
717
718 temperature_history: VecDeque<(Instant, T)>,
720
721 thermal_model: ThermalModel<T>,
723
724 cooling_strategies: Vec<CoolingStrategy>,
726
727 active_throttling: Option<ThermalThrottlingStrategy>,
729}
730
731impl<T: Float + Debug + Send + Sync + 'static> ThermalManager<T> {
732 fn new(config: ThermalManagementConfig<T>) -> Self {
733 Self {
734 config,
735 current_temperature: T::from(25.0).unwrap(),
736 temperature_history: VecDeque::new(),
737 thermal_model: ThermalModel {
738 time_constant: T::from(10.0).unwrap(),
739 thermal_resistance: T::from(0.5).unwrap(),
740 thermal_capacitance: T::from(1000.0).unwrap(),
741 ambient_temperature: T::from(25.0).unwrap(),
742 },
743 cooling_strategies: vec![CoolingStrategy::Passive],
744 active_throttling: None,
745 }
746 }
747
748 fn update(&mut self, system_state: &EnergySystemState<T>) -> Result<()> {
749 self.current_temperature = system_state.current_power
751 * self.thermal_model.thermal_resistance
752 + self.thermal_model.ambient_temperature;
753 self.temperature_history
754 .push_back((Instant::now(), self.current_temperature));
755 if self.temperature_history.len() > 100 {
756 self.temperature_history.pop_front();
757 }
758 Ok(())
759 }
760}
761
762#[derive(Debug, Clone)]
764struct ThermalModel<T: Float + Debug + Send + Sync + 'static> {
765 time_constant: T,
767
768 thermal_resistance: T,
770
771 thermal_capacitance: T,
773
774 ambient_temperature: T,
776}
777
778#[derive(Debug, Clone, Copy)]
780enum CoolingStrategy {
781 Passive,
783
784 ActiveAir,
786
787 Liquid,
789
790 Thermoelectric,
792
793 PhaseChange,
795}
796
797#[derive(Debug, Clone)]
799struct SleepModeController<T: Float + Debug + Send + Sync + 'static> {
800 config: SleepModeConfig<T>,
802
803 current_status: SleepStatus,
805
806 inactivity_timer: Instant,
808
809 transition_history: VecDeque<(Instant, SleepStatus, SleepStatus)>,
811
812 wakeup_triggers: Vec<WakeupTrigger>,
814}
815
816impl<T: Float + Debug + Send + Sync + 'static> SleepModeController<T> {
817 fn new(monitoring_frequency: Duration) -> Self {
818 Self {
819 config: SleepModeConfig::default(),
820 current_status: SleepStatus::Active,
821 inactivity_timer: Instant::now(),
822 transition_history: VecDeque::new(),
823 wakeup_triggers: vec![WakeupTrigger::ExternalStimulus, WakeupTrigger::Timer],
824 }
825 }
826}
827
828#[derive(Debug, Clone, Copy)]
830enum WakeupTrigger {
831 ExternalStimulus,
833
834 Timer,
836
837 EnergyThreshold,
839
840 TemperatureThreshold,
842
843 PerformanceRequirement,
845}
846
847#[derive(Debug, Clone)]
849struct PredictiveEnergyManager<T: Float + Debug + Send + Sync + 'static> {
850 prediction_models: HashMap<String, PredictionModel<T>>,
852
853 workload_history: VecDeque<WorkloadSample<T>>,
855
856 energy_predictions: VecDeque<EnergyPrediction<T>>,
858
859 prediction_accuracy: T,
861
862 model_update_frequency: Duration,
864}
865
866impl<T: Float + Debug + Send + Sync + 'static> PredictiveEnergyManager<T> {
867 fn new() -> Self {
868 Self {
869 prediction_models: HashMap::new(),
870 workload_history: VecDeque::new(),
871 energy_predictions: VecDeque::new(),
872 prediction_accuracy: T::from(0.9).unwrap(),
873 model_update_frequency: Duration::from_secs(60),
874 }
875 }
876
877 fn predict_energy(&self, horizon: Duration) -> Result<T> {
878 if self.energy_predictions.is_empty() {
880 return Ok(T::from(1.0).unwrap());
881 }
882 let sum: T = self
883 .energy_predictions
884 .iter()
885 .take(10)
886 .map(|p| p.predicted_energy)
887 .fold(T::zero(), |acc, x| acc + x);
888 Ok(sum / T::from(self.energy_predictions.len().min(10)).unwrap())
889 }
890}
891
892#[derive(Debug, Clone)]
894struct PredictionModel<T: Float + Debug + Send + Sync + 'static> {
895 model_type: ModelType,
897
898 parameters: Vec<T>,
900
901 accuracy: T,
903
904 training_data_size: usize,
906
907 last_update: Instant,
909}
910
911#[derive(Debug, Clone, Copy)]
912enum ModelType {
913 Linear,
914 Polynomial,
915 Exponential,
916 NeuralNetwork,
917 AutoRegressive,
918}
919
920#[derive(Debug, Clone)]
922pub struct WorkloadSample<T: Float + Debug + Send + Sync + 'static> {
923 pub timestamp: Instant,
925
926 pub active_neurons: usize,
928
929 pub spike_rate: T,
931
932 pub synaptic_activity: T,
934
935 pub memory_access_pattern: MemoryAccessPattern,
937
938 pub communication_overhead: T,
940}
941
942#[derive(Debug, Clone, Copy)]
943pub enum MemoryAccessPattern {
944 Sequential,
945 Random,
946 Sparse,
947 Burst,
948 Mixed,
949}
950
951#[derive(Debug, Clone)]
953struct EnergyPrediction<T: Float + Debug + Send + Sync + 'static> {
954 timestamp: Instant,
956
957 predicted_energy: T,
959
960 confidence_interval: (T, T),
962
963 horizon: T,
965
966 model_type: ModelType,
968}
969
970impl<
971 T: Float
972 + Debug
973 + Send
974 + Sync
975 + scirs2_core::ndarray::ScalarOperand
976 + std::fmt::Debug
977 + std::iter::Sum,
978 > EnergyEfficientOptimizer<T>
979{
980 pub fn new(_config: EnergyEfficientConfig<T>, numneurons: usize) -> Self {
982 Self {
983 config: _config.clone(),
984 energy_monitor: EnergyMonitor::new(_config.energy_budget.monitoring_frequency),
985 dvfs_controller: DVFSController::new(),
986 power_gating_controller: PowerGatingController::new(),
987 sparse_optimizer: SparseComputationOptimizer::new(),
988 thermal_manager: ThermalManager::new(ThermalManagementConfig::default()),
989 sleep_controller: SleepModeController::new(_config.energy_budget.monitoring_frequency),
990 predictive_manager: PredictiveEnergyManager::new(),
991 current_strategy: _config.primary_strategy,
992 strategy_effectiveness: HashMap::new(),
993 system_state: EnergySystemState {
994 current_energy: T::zero(),
995 current_power: T::zero(),
996 temperature: T::from(25.0).unwrap_or_else(|| T::zero()), active_neurons: numneurons,
998 active_synapses: numneurons * numneurons,
999 current_voltage: T::from(1.0).unwrap_or_else(|| T::zero()), current_frequency: T::from(100.0).unwrap_or_else(|| T::zero()), gated_regions: Vec::new(),
1002 sleep_status: SleepStatus::Active,
1003 },
1004 metrics: NeuromorphicMetrics::default(),
1005 }
1006 }
1007
1008 pub fn optimize_energy(
1010 &mut self,
1011 workload: &WorkloadSample<T>,
1012 ) -> Result<EnergyOptimizationResult<T>> {
1013 self.energy_monitor.update(&self.system_state)?;
1015
1016 let prediction = if self.config.predictive_energy_management {
1018 self.predictive_manager
1019 .predict_energy(Duration::from_secs(60))? } else {
1021 T::from(1.0).unwrap()
1022 };
1023
1024 let optimization_result = match self.current_strategy {
1026 EnergyOptimizationStrategy::DynamicVoltageScaling => {
1027 self.apply_dvfs_optimization(workload)?
1028 }
1029 EnergyOptimizationStrategy::PowerGating => {
1030 self.apply_power_gating_optimization(workload)?
1031 }
1032 EnergyOptimizationStrategy::ClockGating => {
1033 self.apply_clock_gating_optimization(workload)?
1034 }
1035 EnergyOptimizationStrategy::SparseComputation => {
1036 self.apply_sparse_computation_optimization(workload)?
1037 }
1038 EnergyOptimizationStrategy::SleepModeOptimization => {
1039 self.apply_sleep_mode_optimization(workload)?
1040 }
1041 EnergyOptimizationStrategy::ThermalAwareOptimization => {
1042 self.apply_thermal_aware_optimization(workload)?
1043 }
1044 EnergyOptimizationStrategy::MultiLevel => {
1045 self.apply_multi_level_optimization(workload)?
1046 }
1047 _ => {
1048 self.apply_default_optimization(workload)?
1050 }
1051 };
1052
1053 self.evaluate_strategy_effectiveness(&optimization_result);
1055
1056 if self.config.adaptive_strategy_switching {
1058 self.consider_strategy_switch()?;
1059 }
1060
1061 self.thermal_manager.update(&self.system_state)?;
1063
1064 self.update_metrics(&optimization_result);
1066
1067 Ok(optimization_result)
1068 }
1069
1070 fn apply_dvfs_optimization(
1072 &mut self,
1073 workload: &WorkloadSample<T>,
1074 ) -> Result<EnergyOptimizationResult<T>> {
1075 let initial_energy = self.system_state.current_energy;
1076 let initial_power = self.system_state.current_power;
1077
1078 let (optimal_voltage, optimal_frequency) =
1080 self.dvfs_controller.compute_optimal_levels(workload)?;
1081
1082 self.system_state.current_voltage = optimal_voltage;
1084 self.system_state.current_frequency = optimal_frequency;
1085
1086 let power_reduction = self.calculate_power_reduction(optimal_voltage, optimal_frequency);
1088 let new_power = initial_power * power_reduction;
1089 self.system_state.current_power = new_power;
1090
1091 let time_delta = T::from(1.0).unwrap_or_else(|| T::zero()); let energy_delta = new_power * time_delta / T::from(1000.0).unwrap_or_else(|| T::zero()); self.system_state.current_energy = self.system_state.current_energy + energy_delta;
1095
1096 Ok(EnergyOptimizationResult {
1097 strategy_used: EnergyOptimizationStrategy::DynamicVoltageScaling,
1098 energy_saved: initial_energy - self.system_state.current_energy,
1099 power_reduction: initial_power - new_power,
1100 performance_impact: self.calculate_performance_impact(optimal_frequency),
1101 thermal_impact: self.calculate_thermal_impact(new_power),
1102 optimization_overhead: T::from(0.1).unwrap_or_else(|| T::zero()), })
1104 }
1105
1106 fn apply_power_gating_optimization(
1108 &mut self,
1109 workload: &WorkloadSample<T>,
1110 ) -> Result<EnergyOptimizationResult<T>> {
1111 let initial_energy = self.system_state.current_energy;
1112 let initial_power = self.system_state.current_power;
1113
1114 let gatable_regions = self
1116 .power_gating_controller
1117 .identify_gatable_regions(workload)?;
1118
1119 let mut total_power_saved = T::zero();
1121 for region_id in gatable_regions {
1122 let power_saved = self.power_gating_controller.gate_region(region_id)?;
1123 total_power_saved = total_power_saved + power_saved;
1124 self.system_state.gated_regions.push(region_id);
1125 }
1126
1127 let new_power = initial_power - total_power_saved;
1129 self.system_state.current_power = new_power;
1130
1131 Ok(EnergyOptimizationResult {
1132 strategy_used: EnergyOptimizationStrategy::PowerGating,
1133 energy_saved: total_power_saved * T::from(1.0).unwrap_or_else(|| T::zero()), power_reduction: total_power_saved,
1135 performance_impact: T::zero(), thermal_impact: total_power_saved * T::from(0.8).unwrap_or_else(|| T::zero()), optimization_overhead: T::from(0.05).unwrap_or_else(|| T::zero()), })
1139 }
1140
1141 fn apply_sparse_computation_optimization(
1143 &mut self,
1144 workload: &WorkloadSample<T>,
1145 ) -> Result<EnergyOptimizationResult<T>> {
1146 let initial_energy = self.system_state.current_energy;
1147 let initial_power = self.system_state.current_power;
1148
1149 let sparsity_analysis = self.sparse_optimizer.analyze_sparsity(workload)?;
1151
1152 let energy_savings = self
1154 .sparse_optimizer
1155 .apply_sparse_optimizations(&sparsity_analysis)?;
1156
1157 let new_power = initial_power * (T::one() - energy_savings);
1159 self.system_state.current_power = new_power;
1160
1161 Ok(EnergyOptimizationResult {
1162 strategy_used: EnergyOptimizationStrategy::SparseComputation,
1163 energy_saved: initial_power * energy_savings,
1164 power_reduction: initial_power - new_power,
1165 performance_impact: energy_savings * T::from(0.1).unwrap_or_else(|| T::zero()), thermal_impact: (initial_power - new_power) * T::from(0.9).unwrap_or_else(|| T::zero()),
1167 optimization_overhead: T::from(0.2).unwrap_or_else(|| T::zero()), })
1169 }
1170
1171 fn apply_multi_level_optimization(
1173 &mut self,
1174 workload: &WorkloadSample<T>,
1175 ) -> Result<EnergyOptimizationResult<T>> {
1176 let mut total_result = EnergyOptimizationResult {
1177 strategy_used: EnergyOptimizationStrategy::MultiLevel,
1178 energy_saved: T::zero(),
1179 power_reduction: T::zero(),
1180 performance_impact: T::zero(),
1181 thermal_impact: T::zero(),
1182 optimization_overhead: T::zero(),
1183 };
1184
1185 let strategies = [
1187 EnergyOptimizationStrategy::SparseComputation,
1188 EnergyOptimizationStrategy::DynamicVoltageScaling,
1189 EnergyOptimizationStrategy::PowerGating,
1190 ];
1191
1192 for strategy in &strategies {
1193 let prev_strategy = self.current_strategy;
1194 self.current_strategy = *strategy;
1195
1196 let result = match strategy {
1197 EnergyOptimizationStrategy::SparseComputation => {
1198 self.apply_sparse_computation_optimization(workload)?
1199 }
1200 EnergyOptimizationStrategy::DynamicVoltageScaling => {
1201 self.apply_dvfs_optimization(workload)?
1202 }
1203 EnergyOptimizationStrategy::PowerGating => {
1204 self.apply_power_gating_optimization(workload)?
1205 }
1206 _ => continue,
1207 };
1208
1209 total_result.energy_saved = total_result.energy_saved + result.energy_saved;
1211 total_result.power_reduction = total_result.power_reduction + result.power_reduction;
1212 total_result.performance_impact =
1213 total_result.performance_impact + result.performance_impact;
1214 total_result.thermal_impact = total_result.thermal_impact + result.thermal_impact;
1215 total_result.optimization_overhead =
1216 total_result.optimization_overhead + result.optimization_overhead;
1217
1218 self.current_strategy = prev_strategy;
1219 }
1220
1221 Ok(total_result)
1222 }
1223
1224 fn apply_default_optimization(
1226 &mut self,
1227 workload: &WorkloadSample<T>,
1228 ) -> Result<EnergyOptimizationResult<T>> {
1229 Ok(EnergyOptimizationResult {
1231 strategy_used: self.current_strategy,
1232 energy_saved: T::zero(),
1233 power_reduction: T::zero(),
1234 performance_impact: T::zero(),
1235 thermal_impact: T::zero(),
1236 optimization_overhead: T::from(0.01).unwrap_or_else(|| T::zero()),
1237 })
1238 }
1239
1240 fn apply_clock_gating_optimization(
1242 &mut self,
1243 workload: &WorkloadSample<T>,
1244 ) -> Result<EnergyOptimizationResult<T>> {
1245 let initial_power = self.system_state.current_power;
1247 let reduction_factor = T::from(0.3).unwrap(); let new_power = initial_power * (T::one() - reduction_factor);
1249
1250 self.system_state.current_power = new_power;
1251
1252 Ok(EnergyOptimizationResult {
1253 strategy_used: EnergyOptimizationStrategy::ClockGating,
1254 energy_saved: initial_power * reduction_factor,
1255 power_reduction: initial_power - new_power,
1256 performance_impact: T::zero(), thermal_impact: (initial_power - new_power) * T::from(0.8).unwrap(),
1258 optimization_overhead: T::from(0.05).unwrap(),
1259 })
1260 }
1261
1262 fn apply_sleep_mode_optimization(
1264 &mut self,
1265 workload: &WorkloadSample<T>,
1266 ) -> Result<EnergyOptimizationResult<T>> {
1267 let initial_power = self.system_state.current_power;
1269 self.system_state.sleep_status = SleepStatus::LightSleep;
1270
1271 let reduction_factor = T::from(0.5).unwrap(); let new_power = initial_power * (T::one() - reduction_factor);
1273
1274 self.system_state.current_power = new_power;
1275
1276 Ok(EnergyOptimizationResult {
1277 strategy_used: EnergyOptimizationStrategy::SleepModeOptimization,
1278 energy_saved: initial_power * reduction_factor,
1279 power_reduction: initial_power - new_power,
1280 performance_impact: T::from(0.1).unwrap(), thermal_impact: (initial_power - new_power) * T::from(0.95).unwrap(),
1282 optimization_overhead: T::from(0.1).unwrap(),
1283 })
1284 }
1285
1286 fn apply_thermal_aware_optimization(
1288 &mut self,
1289 workload: &WorkloadSample<T>,
1290 ) -> Result<EnergyOptimizationResult<T>> {
1291 let initial_power = self.system_state.current_power;
1293 let temp_threshold = T::from(80.0).unwrap(); let reduction_factor = if self.system_state.temperature > temp_threshold {
1296 T::from(0.4).unwrap() } else {
1298 T::from(0.2).unwrap() };
1300
1301 let new_power = initial_power * (T::one() - reduction_factor);
1302 self.system_state.current_power = new_power;
1303 self.system_state.temperature = self.system_state.temperature * T::from(0.95).unwrap();
1304
1305 Ok(EnergyOptimizationResult {
1306 strategy_used: EnergyOptimizationStrategy::ThermalAwareOptimization,
1307 energy_saved: initial_power * reduction_factor,
1308 power_reduction: initial_power - new_power,
1309 performance_impact: reduction_factor * T::from(0.5).unwrap(),
1310 thermal_impact: (initial_power - new_power),
1311 optimization_overhead: T::from(0.15).unwrap(),
1312 })
1313 }
1314
1315 fn calculate_power_reduction(&self, voltage: T, frequency: T) -> T {
1317 let voltage_factor = voltage * voltage;
1319 let frequency_factor = frequency;
1320 voltage_factor * frequency_factor
1321 / (self.system_state.current_voltage
1322 * self.system_state.current_voltage
1323 * self.system_state.current_frequency)
1324 }
1325
1326 fn calculate_performance_impact(&self, newfrequency: T) -> T {
1328 (self.system_state.current_frequency - newfrequency) / self.system_state.current_frequency
1330 }
1331
1332 fn calculate_thermal_impact(&self, newpower: T) -> T {
1334 let power_reduction = self.system_state.current_power - newpower;
1336 power_reduction * self.thermal_manager.thermal_model.thermal_resistance
1337 }
1338
1339 fn evaluate_strategy_effectiveness(&mut self, result: &EnergyOptimizationResult<T>) {
1341 let effectiveness = result.energy_saved
1343 / (result.optimization_overhead + T::from(1e-6).unwrap_or_else(|| T::zero()));
1344
1345 *self
1347 .strategy_effectiveness
1348 .entry(result.strategy_used)
1349 .or_insert(T::zero()) = effectiveness;
1350 }
1351
1352 fn consider_strategy_switch(&mut self) -> Result<()> {
1354 if let Some(¤t_effectiveness) =
1355 self.strategy_effectiveness.get(&self.current_strategy)
1356 {
1357 if let Some((&best_strategy, &best_effectiveness)) = self
1359 .strategy_effectiveness
1360 .iter()
1361 .max_by(|a, b| a.1.partial_cmp(b.1).unwrap_or(std::cmp::Ordering::Equal))
1362 {
1363 let improvement =
1365 (best_effectiveness - current_effectiveness) / current_effectiveness;
1366 if improvement > self.config.strategy_switching_threshold {
1367 self.current_strategy = best_strategy;
1368 }
1369 }
1370 }
1371
1372 Ok(())
1373 }
1374
1375 fn update_metrics(&mut self, result: &EnergyOptimizationResult<T>) {
1377 self.metrics.energy_consumption = self.system_state.current_energy;
1378 self.metrics.power_consumption = self.system_state.current_power;
1379 self.metrics.thermal_efficiency =
1380 T::one() / (self.system_state.temperature / T::from(25.0).unwrap_or_else(|| T::zero()));
1381 }
1382
1383 pub fn get_energy_budget_status(&self) -> EnergyBudgetStatus<T> {
1385 let remaining_budget =
1386 self.config.energy_budget.total_budget - self.system_state.current_energy;
1387 let budget_utilization =
1388 self.system_state.current_energy / self.config.energy_budget.total_budget;
1389
1390 EnergyBudgetStatus {
1391 total_budget: self.config.energy_budget.total_budget,
1392 current_consumption: self.system_state.current_energy,
1393 remaining_budget,
1394 budget_utilization,
1395 emergency_reserve_available: remaining_budget
1396 > self.config.energy_budget.emergency_reserves,
1397 }
1398 }
1399
1400 pub fn get_metrics(&self) -> &NeuromorphicMetrics<T> {
1402 &self.metrics
1403 }
1404
1405 pub fn get_system_state(&self) -> &EnergySystemState<T> {
1407 &self.system_state
1408 }
1409}
1410
1411#[derive(Debug, Clone)]
1413pub struct EnergyOptimizationResult<T: Float + Debug + Send + Sync + 'static> {
1414 pub strategy_used: EnergyOptimizationStrategy,
1416
1417 pub energy_saved: T,
1419
1420 pub power_reduction: T,
1422
1423 pub performance_impact: T,
1425
1426 pub thermal_impact: T,
1428
1429 pub optimization_overhead: T,
1431}
1432
1433#[derive(Debug, Clone)]
1435pub struct EnergyBudgetStatus<T: Float + Debug + Send + Sync + 'static> {
1436 pub total_budget: T,
1438
1439 pub current_consumption: T,
1441
1442 pub remaining_budget: T,
1444
1445 pub budget_utilization: T,
1447
1448 pub emergency_reserve_available: bool,
1450}
1451
1452impl<
1456 T: Float
1457 + Debug
1458 + Send
1459 + Sync
1460 + scirs2_core::ndarray::ScalarOperand
1461 + std::fmt::Debug
1462 + std::iter::Sum,
1463 > EnergyMonitor<T>
1464{
1465 fn new(_monitoringfrequency: Duration) -> Self {
1466 Self {
1467 consumption_history: VecDeque::new(),
1468 power_history: VecDeque::new(),
1469 current_power: T::zero(),
1470 peak_power: T::zero(),
1471 average_power: T::zero(),
1472 component_energy: HashMap::new(),
1473 efficiency_metrics: EfficiencyMetrics::default(),
1474 last_update: Instant::now(),
1475 window_size: Duration::from_secs(1),
1476 }
1477 }
1478
1479 fn update(&mut self, systemstate: &EnergySystemState<T>) -> Result<()> {
1480 let now = Instant::now();
1481 self.consumption_history
1482 .push_back((now, systemstate.current_energy));
1483 self.power_history
1484 .push_back((now, systemstate.current_power));
1485
1486 while let Some(&(time_, _)) = self.consumption_history.front() {
1488 if now.duration_since(time_) > self.window_size {
1489 self.consumption_history.pop_front();
1490 } else {
1491 break;
1492 }
1493 }
1494
1495 self.current_power = systemstate.current_power;
1497 self.peak_power = self.peak_power.max(systemstate.current_power);
1498
1499 if !self.power_history.is_empty() {
1501 let sum: T = self.power_history.iter().map(|(_, power)| *power).sum();
1502 self.average_power = sum / T::from(self.power_history.len()).unwrap();
1503 }
1504
1505 self.last_update = now;
1506 Ok(())
1507 }
1508}
1509
1510impl<T: Float + Debug + Send + Sync + 'static> Default for EfficiencyMetrics<T> {
1511 fn default() -> Self {
1512 Self {
1513 current_ops_per_joule: T::zero(),
1514 current_spikes_per_joule: T::zero(),
1515 current_synaptic_updates_per_joule: T::zero(),
1516 memory_efficiency: T::zero(),
1517 thermal_efficiency: T::zero(),
1518 overall_efficiency: T::zero(),
1519 }
1520 }
1521}
1522
1523