optirs_core/neuromorphic/
energy_efficient.rs

1// Energy-Efficient Optimization for Neuromorphic Computing
2//
3// This module implements energy-efficient optimization algorithms specifically designed
4// for neuromorphic computing platforms, focusing on minimizing power consumption while
5// maintaining performance and accuracy.
6
7use super::{
8    EventPriority, MembraneDynamicsConfig, NeuromorphicEvent, NeuromorphicMetrics, PlasticityModel,
9    STDPConfig, SleepModeConfig, Spike, SpikeTrain, ThermalManagementConfig,
10    ThermalThrottlingStrategy,
11};
12use crate::error::Result;
13use crate::optimizers::Optimizer;
14use scirs2_core::ndarray::{Array1, Array2, ArrayBase, Data, DataMut, Dimension};
15use scirs2_core::numeric::Float;
16use std::collections::{BTreeMap, HashMap, VecDeque};
17use std::fmt::Debug;
18use std::sync::{Arc, Mutex, RwLock};
19use std::time::{Duration, Instant};
20
21/// Energy optimization strategies for neuromorphic computing
22#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
23pub enum EnergyOptimizationStrategy {
24    /// Dynamic voltage and frequency scaling
25    DynamicVoltageScaling,
26
27    /// Power gating for unused neurons
28    PowerGating,
29
30    /// Clock gating for inactive regions
31    ClockGating,
32
33    /// Adaptive precision reduction
34    AdaptivePrecision,
35
36    /// Sparse computation optimization
37    SparseComputation,
38
39    /// Event-driven processing
40    EventDrivenProcessing,
41
42    /// Sleep mode management
43    SleepModeOptimization,
44
45    /// Thermal-aware optimization
46    ThermalAwareOptimization,
47
48    /// Multi-level optimization
49    MultiLevel,
50}
51
52/// Energy budget configuration
53#[derive(Debug, Clone)]
54pub struct EnergyBudget<T: Float + Debug + Send + Sync + 'static> {
55    /// Total energy budget (nJ)
56    pub total_budget: T,
57
58    /// Current energy consumption (nJ)
59    pub current_consumption: T,
60
61    /// Energy budget per operation (nJ/op)
62    pub per_operation_budget: T,
63
64    /// Energy allocation per component
65    pub component_allocation: HashMap<EnergyComponent, T>,
66
67    /// Energy efficiency targets
68    pub efficiency_targets: EnergyEfficiencyTargets<T>,
69
70    /// Emergency energy reserves
71    pub emergency_reserves: T,
72
73    /// Energy monitoring frequency
74    pub monitoring_frequency: Duration,
75}
76
77/// Energy components for budget allocation
78#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
79pub enum EnergyComponent {
80    /// Synaptic operations
81    SynapticOps,
82
83    /// Membrane dynamics
84    MembraneDynamics,
85
86    /// Spike generation
87    SpikeGeneration,
88
89    /// Plasticity updates
90    PlasticityUpdates,
91
92    /// Memory access
93    MemoryAccess,
94
95    /// Communication
96    Communication,
97
98    /// Control logic
99    ControlLogic,
100
101    /// Thermal management
102    ThermalManagement,
103}
104
105/// Energy efficiency targets
106#[derive(Debug, Clone)]
107pub struct EnergyEfficiencyTargets<T: Float + Debug + Send + Sync + 'static> {
108    /// Operations per joule target
109    pub ops_per_joule: T,
110
111    /// Spikes per joule target
112    pub spikes_per_joule: T,
113
114    /// Synaptic updates per joule target
115    pub synaptic_updates_per_joule: T,
116
117    /// Memory bandwidth efficiency (ops/J/bandwidth)
118    pub memory_bandwidth_efficiency: T,
119
120    /// Thermal efficiency (performance/Watt/°C)
121    pub thermal_efficiency: T,
122}
123
124/// Energy-efficient optimizer configuration
125#[derive(Debug, Clone)]
126pub struct EnergyEfficientConfig<T: Float + Debug + Send + Sync + 'static> {
127    /// Primary optimization strategy
128    pub primary_strategy: EnergyOptimizationStrategy,
129
130    /// Fallback strategies
131    pub fallback_strategies: Vec<EnergyOptimizationStrategy>,
132
133    /// Energy budget configuration
134    pub energy_budget: EnergyBudget<T>,
135
136    /// Enable adaptive strategy switching
137    pub adaptive_strategy_switching: bool,
138
139    /// Strategy switching threshold (efficiency drop %)
140    pub strategy_switching_threshold: T,
141
142    /// Enable predictive energy management
143    pub predictive_energy_management: bool,
144
145    /// Prediction horizon (ms)
146    pub prediction_horizon: T,
147
148    /// Enable energy harvesting support
149    pub energy_harvesting: bool,
150
151    /// Harvesting efficiency
152    pub harvesting_efficiency: T,
153
154    /// Enable distributed energy management
155    pub distributed_energy_management: bool,
156
157    /// Enable real-time energy monitoring
158    pub real_time_monitoring: bool,
159
160    /// Monitoring resolution (μs)
161    pub monitoring_resolution: T,
162
163    /// Enable energy-aware workload balancing
164    pub energy_aware_load_balancing: bool,
165
166    /// Energy optimization aggressiveness (0.0 to 1.0)
167    pub optimization_aggressiveness: T,
168}
169
170impl<T: Float + Debug + Send + Sync + 'static> Default for EnergyEfficientConfig<T> {
171    fn default() -> Self {
172        let mut component_allocation = HashMap::new();
173        component_allocation.insert(
174            EnergyComponent::SynapticOps,
175            T::from(0.4).unwrap_or_else(|| T::zero()),
176        );
177        component_allocation.insert(
178            EnergyComponent::MembraneDynamics,
179            T::from(0.2).unwrap_or_else(|| T::zero()),
180        );
181        component_allocation.insert(
182            EnergyComponent::SpikeGeneration,
183            T::from(0.15).unwrap_or_else(|| T::zero()),
184        );
185        component_allocation.insert(
186            EnergyComponent::PlasticityUpdates,
187            T::from(0.1).unwrap_or_else(|| T::zero()),
188        );
189        component_allocation.insert(
190            EnergyComponent::MemoryAccess,
191            T::from(0.1).unwrap_or_else(|| T::zero()),
192        );
193        component_allocation.insert(
194            EnergyComponent::Communication,
195            T::from(0.05).unwrap_or_else(|| T::zero()),
196        );
197
198        Self {
199            primary_strategy: EnergyOptimizationStrategy::DynamicVoltageScaling,
200            fallback_strategies: vec![
201                EnergyOptimizationStrategy::PowerGating,
202                EnergyOptimizationStrategy::ClockGating,
203                EnergyOptimizationStrategy::SparseComputation,
204            ],
205            energy_budget: EnergyBudget {
206                total_budget: T::from(1000.0).unwrap_or_else(|| T::zero()), // 1 μJ
207                current_consumption: T::zero(),
208                per_operation_budget: T::from(10.0).unwrap_or_else(|| T::zero()), // 10 nJ per op
209                component_allocation,
210                efficiency_targets: EnergyEfficiencyTargets {
211                    ops_per_joule: T::from(1e12).unwrap_or_else(|| T::zero()), // 1 TOP/J
212                    spikes_per_joule: T::from(1e9).unwrap_or_else(|| T::zero()), // 1 GSp/J
213                    synaptic_updates_per_joule: T::from(1e10).unwrap_or_else(|| T::zero()), // 10 GSyOp/J
214                    memory_bandwidth_efficiency: T::from(1e6).unwrap_or_else(|| T::zero()),
215                    thermal_efficiency: T::from(1e9).unwrap_or_else(|| T::zero()),
216                },
217                emergency_reserves: T::from(100.0).unwrap_or_else(|| T::zero()), // 100 nJ reserve
218                monitoring_frequency: Duration::from_micros(100),
219            },
220            adaptive_strategy_switching: true,
221            strategy_switching_threshold: T::from(0.1).unwrap_or_else(|| T::zero()), // 10% efficiency drop
222            predictive_energy_management: true,
223            prediction_horizon: T::from(10.0).unwrap_or_else(|| T::zero()), // 10 ms
224            energy_harvesting: false,
225            harvesting_efficiency: T::from(0.1).unwrap_or_else(|| T::zero()),
226            distributed_energy_management: false,
227            real_time_monitoring: true,
228            monitoring_resolution: T::from(1.0).unwrap_or_else(|| T::zero()), // 1 μs
229            energy_aware_load_balancing: true,
230            optimization_aggressiveness: T::from(0.7).unwrap_or_else(|| T::zero()),
231        }
232    }
233}
234
235/// Energy monitoring and tracking
236#[derive(Debug, Clone)]
237struct EnergyMonitor<
238    T: Float
239        + Debug
240        + scirs2_core::ndarray::ScalarOperand
241        + std::fmt::Debug
242        + std::iter::Sum
243        + Send
244        + Sync,
245> {
246    /// Energy consumption history
247    consumption_history: VecDeque<(Instant, T)>,
248
249    /// Power consumption history
250    power_history: VecDeque<(Instant, T)>,
251
252    /// Current power draw (nW)
253    current_power: T,
254
255    /// Peak power observed (nW)
256    peak_power: T,
257
258    /// Average power over window (nW)
259    average_power: T,
260
261    /// Energy per component
262    component_energy: HashMap<EnergyComponent, T>,
263
264    /// Efficiency metrics
265    efficiency_metrics: EfficiencyMetrics<T>,
266
267    /// Last monitoring update
268    last_update: Instant,
269
270    /// Monitoring window size
271    window_size: Duration,
272}
273
274/// Efficiency metrics tracking
275#[derive(Debug, Clone)]
276struct EfficiencyMetrics<T: Float + Debug + Send + Sync + 'static> {
277    /// Operations per joule (current)
278    current_ops_per_joule: T,
279
280    /// Spikes per joule (current)
281    current_spikes_per_joule: T,
282
283    /// Synaptic updates per joule (current)
284    current_synaptic_updates_per_joule: T,
285
286    /// Memory efficiency
287    memory_efficiency: T,
288
289    /// Thermal efficiency
290    thermal_efficiency: T,
291
292    /// Overall efficiency score
293    overall_efficiency: T,
294}
295
296/// Dynamic voltage and frequency scaling controller
297#[derive(Debug, Clone)]
298struct DVFSController<T: Float + Debug + Send + Sync + 'static> {
299    /// Available voltage levels (V)
300    voltage_levels: Vec<T>,
301
302    /// Available frequency levels (MHz)
303    frequency_levels: Vec<T>,
304
305    /// Current voltage index
306    current_voltage_idx: usize,
307
308    /// Current frequency index
309    current_frequency_idx: usize,
310
311    /// Performance requirements
312    performance_requirements: PerformanceRequirements<T>,
313
314    /// Voltage scaling factor
315    voltage_scaling_factor: T,
316
317    /// Frequency scaling factor
318    frequency_scaling_factor: T,
319
320    /// Adaptation rate
321    adaptation_rate: T,
322}
323
324impl<T: Float + Debug + Send + Sync + 'static> DVFSController<T> {
325    fn new() -> Self {
326        Self {
327            voltage_levels: vec![
328                T::from(0.7).unwrap(),
329                T::from(0.9).unwrap(),
330                T::from(1.0).unwrap(),
331                T::from(1.2).unwrap(),
332            ],
333            frequency_levels: vec![
334                T::from(500.0).unwrap(),
335                T::from(1000.0).unwrap(),
336                T::from(1500.0).unwrap(),
337                T::from(2000.0).unwrap(),
338            ],
339            current_voltage_idx: 2,
340            current_frequency_idx: 2,
341            performance_requirements: PerformanceRequirements {
342                min_frequency: T::from(500.0).unwrap(),
343                max_frequency: T::from(2000.0).unwrap(),
344                min_voltage: T::from(0.7).unwrap(),
345                max_voltage: T::from(1.2).unwrap(),
346                performance_headroom: T::from(0.2).unwrap(),
347                qos_requirements: QoSRequirements {
348                    max_latency: T::from(10.0).unwrap(),
349                    max_jitter: T::from(1.0).unwrap(),
350                    min_throughput: T::from(1000.0).unwrap(),
351                    max_error_rate: T::from(0.001).unwrap(),
352                },
353            },
354            voltage_scaling_factor: T::one(),
355            frequency_scaling_factor: T::one(),
356            adaptation_rate: T::from(0.1).unwrap(),
357        }
358    }
359
360    fn compute_optimal_levels(&mut self, workload: &WorkloadSample<T>) -> Result<(T, T)> {
361        // Compute optimal voltage and frequency based on workload
362        let utilization = T::from(workload.active_neurons).unwrap() / T::from(1000).unwrap();
363        let idx = (utilization * T::from(self.voltage_levels.len() - 1).unwrap())
364            .to_usize()
365            .unwrap_or(2);
366
367        self.current_voltage_idx = idx.min(self.voltage_levels.len() - 1);
368        self.current_frequency_idx = idx.min(self.frequency_levels.len() - 1);
369
370        Ok((
371            self.voltage_levels[self.current_voltage_idx],
372            self.frequency_levels[self.current_frequency_idx],
373        ))
374    }
375
376    fn apply_scaling(&mut self, voltage: T, frequency: T) -> Result<()> {
377        // Apply the voltage and frequency scaling
378        self.voltage_scaling_factor = voltage / self.voltage_levels[2]; // Relative to nominal
379        self.frequency_scaling_factor = frequency / self.frequency_levels[2];
380        Ok(())
381    }
382}
383
384/// Performance requirements for DVFS
385#[derive(Debug, Clone)]
386struct PerformanceRequirements<T: Float + Debug + Send + Sync + 'static> {
387    /// Minimum required frequency (MHz)
388    min_frequency: T,
389
390    /// Maximum allowed frequency (MHz)
391    max_frequency: T,
392
393    /// Minimum required voltage (V)
394    min_voltage: T,
395
396    /// Maximum allowed voltage (V)
397    max_voltage: T,
398
399    /// Performance headroom (%)
400    performance_headroom: T,
401
402    /// Quality of service requirements
403    qos_requirements: QoSRequirements<T>,
404}
405
406/// Quality of service requirements
407#[derive(Debug, Clone)]
408struct QoSRequirements<T: Float + Debug + Send + Sync + 'static> {
409    /// Maximum allowed latency (ms)
410    max_latency: T,
411
412    /// Maximum allowed jitter (ms)
413    max_jitter: T,
414
415    /// Minimum throughput (ops/s)
416    min_throughput: T,
417
418    /// Maximum error rate
419    max_error_rate: T,
420}
421
422/// Power gating controller
423#[derive(Debug, Clone)]
424struct PowerGatingController<T: Float + Debug + Send + Sync + 'static> {
425    /// Gated neuron groups
426    gated_groups: HashMap<usize, GatedGroup>,
427
428    /// Gate control policy
429    gating_policy: GatingPolicy,
430
431    /// Power gate overhead
432    gate_overhead_time: Duration,
433
434    /// Power gate overhead energy
435    gate_overhead_energy: f64,
436
437    /// Phantom data for type parameter
438    _phantom: std::marker::PhantomData<T>,
439}
440
441impl<T: Float + Debug + Send + Sync + 'static> PowerGatingController<T> {
442    fn new() -> Self {
443        Self {
444            gated_groups: HashMap::new(),
445            gating_policy: GatingPolicy::Adaptive,
446            gate_overhead_time: Duration::from_micros(10),
447            gate_overhead_energy: 0.001,
448            _phantom: std::marker::PhantomData,
449        }
450    }
451
452    fn gate_region(&mut self, region_id: usize) -> Result<T> {
453        // Simple implementation - actual power saved would depend on region size
454        Ok(T::from(0.1).unwrap())
455    }
456
457    fn identify_gatable_regions(&self, workload: &WorkloadSample<T>) -> Result<Vec<usize>> {
458        // Simple implementation - identify regions with low activity
459        let mut regions = Vec::new();
460        if workload.active_neurons < 100 {
461            regions.push(0); // Gate first region if low activity
462        }
463        Ok(regions)
464    }
465}
466
467/// Gated neuron group
468#[derive(Debug, Clone)]
469struct GatedGroup {
470    /// Group ID
471    group_id: usize,
472
473    /// Neuron IDs in group
474    neuron_ids: Vec<usize>,
475
476    /// Is currently gated
477    is_gated: bool,
478
479    /// Last activity time
480    last_activity: Instant,
481
482    /// Inactivity threshold
483    inactivity_threshold: Duration,
484
485    /// Wake-up latency
486    wakeup_latency: Duration,
487}
488
489/// Power gating policies
490#[derive(Debug, Clone, Copy)]
491enum GatingPolicy {
492    /// Gate based on inactivity time
493    InactivityBased,
494
495    /// Gate based on predicted usage
496    PredictiveBased,
497
498    /// Gate based on energy budget
499    EnergyBudgetBased,
500
501    /// Adaptive gating
502    Adaptive,
503}
504
505/// Sparse computation optimizer
506#[derive(Debug, Clone)]
507struct SparseComputationOptimizer<T: Float + Debug + Send + Sync + 'static> {
508    /// Sparsity threshold
509    sparsity_threshold: T,
510
511    /// Sparse matrix representations
512    sparse_matrices: HashMap<String, SparseMatrix<T>>,
513
514    /// Sparsity patterns
515    sparsity_patterns: Vec<SparsityPattern>,
516
517    /// Compression algorithms
518    compression_algorithms: Vec<CompressionAlgorithm>,
519
520    /// Dynamic sparsity adaptation
521    dynamic_adaptation: bool,
522}
523
524impl<T: Float + Debug + Send + Sync + 'static> SparseComputationOptimizer<T> {
525    fn new() -> Self {
526        Self {
527            sparsity_threshold: T::from(0.01).unwrap(),
528            sparse_matrices: HashMap::new(),
529            sparsity_patterns: vec![SparsityPattern::MagnitudeBased],
530            compression_algorithms: vec![CompressionAlgorithm::Csr],
531            dynamic_adaptation: true,
532        }
533    }
534
535    fn analyze_sparsity(&mut self, workload: &WorkloadSample<T>) -> Result<SparsityAnalysis<T>> {
536        // Analyze sparsity in the workload
537        let sparsity_ratio = T::one()
538            - (T::from(workload.active_neurons).unwrap() / T::from(1000).unwrap()).min(T::one());
539
540        Ok(SparsityAnalysis {
541            sparsity_ratio,
542            pattern: SparsityPattern::MagnitudeBased,
543            potential_savings: sparsity_ratio * T::from(0.8).unwrap(),
544        })
545    }
546
547    fn apply_compression(&mut self, analysis: &SparsityAnalysis<T>) -> Result<T> {
548        // Apply compression based on sparsity analysis
549        Ok(analysis.potential_savings)
550    }
551
552    fn apply_sparse_optimizations(&mut self, analysis: &SparsityAnalysis<T>) -> Result<T> {
553        // Apply sparse optimizations based on analysis
554        let compression_savings = self.apply_compression(analysis)?;
555        Ok(compression_savings)
556    }
557}
558
559#[derive(Debug, Clone)]
560struct SparsityAnalysis<T: Float + Debug + Send + Sync + 'static> {
561    sparsity_ratio: T,
562    pattern: SparsityPattern,
563    potential_savings: T,
564}
565
566/// Sparse matrix representation
567#[derive(Debug, Clone)]
568struct SparseMatrix<T: Float + Debug + Send + Sync + 'static> {
569    /// Non-zero values
570    values: Vec<T>,
571
572    /// Row indices
573    row_indices: Vec<usize>,
574
575    /// Column pointers
576    col_pointers: Vec<usize>,
577
578    /// Matrix dimensions
579    dimensions: (usize, usize),
580
581    /// Sparsity ratio
582    sparsity_ratio: T,
583}
584
585/// Sparsity patterns
586#[derive(Debug, Clone, Copy)]
587enum SparsityPattern {
588    /// Random sparsity
589    Random,
590
591    /// Structured sparsity
592    Structured,
593
594    /// Block sparsity
595    Block,
596
597    /// Channel sparsity
598    Channel,
599
600    /// Magnitude-based pruning
601    MagnitudeBased,
602}
603
604/// Compression algorithms for sparse data
605#[derive(Debug, Clone, Copy)]
606enum CompressionAlgorithm {
607    /// Compressed Sparse Row (CSR)
608    Csr,
609
610    /// Compressed Sparse Column (CSC)
611    Csc,
612
613    /// Block Sparse Row (BSR)
614    Bsr,
615
616    /// Coordinate format (COO)
617    Coo,
618
619    /// Dictionary of Keys (DOK)
620    Dok,
621}
622
623/// Energy-efficient optimizer
624pub struct EnergyEfficientOptimizer<
625    T: Float
626        + Debug
627        + scirs2_core::ndarray::ScalarOperand
628        + std::fmt::Debug
629        + std::iter::Sum
630        + Send
631        + Sync,
632> {
633    /// Configuration
634    config: EnergyEfficientConfig<T>,
635
636    /// Energy monitor
637    energy_monitor: EnergyMonitor<T>,
638
639    /// DVFS controller
640    dvfs_controller: DVFSController<T>,
641
642    /// Power gating controller
643    power_gating_controller: PowerGatingController<T>,
644
645    /// Sparse computation optimizer
646    sparse_optimizer: SparseComputationOptimizer<T>,
647
648    /// Thermal management
649    thermal_manager: ThermalManager<T>,
650
651    /// Sleep mode controller
652    sleep_controller: SleepModeController<T>,
653
654    /// Predictive energy manager
655    predictive_manager: PredictiveEnergyManager<T>,
656
657    /// Current optimization strategy
658    current_strategy: EnergyOptimizationStrategy,
659
660    /// Strategy effectiveness history
661    strategy_effectiveness: HashMap<EnergyOptimizationStrategy, T>,
662
663    /// System state
664    system_state: EnergySystemState<T>,
665
666    /// Performance metrics
667    metrics: NeuromorphicMetrics<T>,
668}
669
670/// Energy system state
671#[derive(Debug, Clone)]
672pub struct EnergySystemState<T: Float + Debug + Send + Sync + 'static> {
673    /// Current energy consumption (nJ)
674    pub current_energy: T,
675
676    /// Current power consumption (nW)
677    pub current_power: T,
678
679    /// Temperature (°C)
680    pub temperature: T,
681
682    /// Active neuron count
683    pub active_neurons: usize,
684
685    /// Active synapses count
686    pub active_synapses: usize,
687
688    /// Current voltage (V)
689    pub current_voltage: T,
690
691    /// Current frequency (MHz)
692    pub current_frequency: T,
693
694    /// Gated regions
695    pub gated_regions: Vec<usize>,
696
697    /// Sleep mode status
698    pub sleep_status: SleepStatus,
699}
700
701#[derive(Debug, Clone, Copy)]
702pub enum SleepStatus {
703    Active,
704    LightSleep,
705    DeepSleep,
706    Hibernation,
707}
708
709/// Thermal manager for energy efficiency
710#[derive(Debug, Clone)]
711struct ThermalManager<T: Float + Debug + Send + Sync + 'static> {
712    /// Thermal management configuration
713    config: ThermalManagementConfig<T>,
714
715    /// Current temperature reading (°C)
716    current_temperature: T,
717
718    /// Temperature history
719    temperature_history: VecDeque<(Instant, T)>,
720
721    /// Thermal model parameters
722    thermal_model: ThermalModel<T>,
723
724    /// Cooling strategies
725    cooling_strategies: Vec<CoolingStrategy>,
726
727    /// Active thermal throttling
728    active_throttling: Option<ThermalThrottlingStrategy>,
729}
730
731impl<T: Float + Debug + Send + Sync + 'static> ThermalManager<T> {
732    fn new(config: ThermalManagementConfig<T>) -> Self {
733        Self {
734            config,
735            current_temperature: T::from(25.0).unwrap(),
736            temperature_history: VecDeque::new(),
737            thermal_model: ThermalModel {
738                time_constant: T::from(10.0).unwrap(),
739                thermal_resistance: T::from(0.5).unwrap(),
740                thermal_capacitance: T::from(1000.0).unwrap(),
741                ambient_temperature: T::from(25.0).unwrap(),
742            },
743            cooling_strategies: vec![CoolingStrategy::Passive],
744            active_throttling: None,
745        }
746    }
747
748    fn update(&mut self, system_state: &EnergySystemState<T>) -> Result<()> {
749        // Update temperature based on system state
750        self.current_temperature = system_state.current_power
751            * self.thermal_model.thermal_resistance
752            + self.thermal_model.ambient_temperature;
753        self.temperature_history
754            .push_back((Instant::now(), self.current_temperature));
755        if self.temperature_history.len() > 100 {
756            self.temperature_history.pop_front();
757        }
758        Ok(())
759    }
760}
761
762/// Thermal model for prediction
763#[derive(Debug, Clone)]
764struct ThermalModel<T: Float + Debug + Send + Sync + 'static> {
765    /// Thermal time constant (s)
766    time_constant: T,
767
768    /// Thermal resistance (°C/W)
769    thermal_resistance: T,
770
771    /// Thermal capacitance (J/°C)
772    thermal_capacitance: T,
773
774    /// Ambient temperature (°C)
775    ambient_temperature: T,
776}
777
778/// Cooling strategies
779#[derive(Debug, Clone, Copy)]
780enum CoolingStrategy {
781    /// Passive cooling
782    Passive,
783
784    /// Active air cooling
785    ActiveAir,
786
787    /// Liquid cooling
788    Liquid,
789
790    /// Thermoelectric cooling
791    Thermoelectric,
792
793    /// Phase change cooling
794    PhaseChange,
795}
796
797/// Sleep mode controller
798#[derive(Debug, Clone)]
799struct SleepModeController<T: Float + Debug + Send + Sync + 'static> {
800    /// Sleep mode configuration
801    config: SleepModeConfig<T>,
802
803    /// Current sleep status
804    current_status: SleepStatus,
805
806    /// Inactivity timer
807    inactivity_timer: Instant,
808
809    /// Sleep transition history
810    transition_history: VecDeque<(Instant, SleepStatus, SleepStatus)>,
811
812    /// Wake-up triggers
813    wakeup_triggers: Vec<WakeupTrigger>,
814}
815
816impl<T: Float + Debug + Send + Sync + 'static> SleepModeController<T> {
817    fn new(monitoring_frequency: Duration) -> Self {
818        Self {
819            config: SleepModeConfig::default(),
820            current_status: SleepStatus::Active,
821            inactivity_timer: Instant::now(),
822            transition_history: VecDeque::new(),
823            wakeup_triggers: vec![WakeupTrigger::ExternalStimulus, WakeupTrigger::Timer],
824        }
825    }
826}
827
828/// Wake-up triggers for sleep mode
829#[derive(Debug, Clone, Copy)]
830enum WakeupTrigger {
831    /// External stimulus
832    ExternalStimulus,
833
834    /// Timer expiration
835    Timer,
836
837    /// Energy threshold
838    EnergyThreshold,
839
840    /// Temperature threshold
841    TemperatureThreshold,
842
843    /// Performance requirement
844    PerformanceRequirement,
845}
846
847/// Predictive energy manager
848#[derive(Debug, Clone)]
849struct PredictiveEnergyManager<T: Float + Debug + Send + Sync + 'static> {
850    /// Prediction models
851    prediction_models: HashMap<String, PredictionModel<T>>,
852
853    /// Workload history
854    workload_history: VecDeque<WorkloadSample<T>>,
855
856    /// Energy consumption predictions
857    energy_predictions: VecDeque<EnergyPrediction<T>>,
858
859    /// Prediction accuracy metrics
860    prediction_accuracy: T,
861
862    /// Model update frequency
863    model_update_frequency: Duration,
864}
865
866impl<T: Float + Debug + Send + Sync + 'static> PredictiveEnergyManager<T> {
867    fn new() -> Self {
868        Self {
869            prediction_models: HashMap::new(),
870            workload_history: VecDeque::new(),
871            energy_predictions: VecDeque::new(),
872            prediction_accuracy: T::from(0.9).unwrap(),
873            model_update_frequency: Duration::from_secs(60),
874        }
875    }
876
877    fn predict_energy(&self, horizon: Duration) -> Result<T> {
878        // Simple prediction - return average of recent predictions
879        if self.energy_predictions.is_empty() {
880            return Ok(T::from(1.0).unwrap());
881        }
882        let sum: T = self
883            .energy_predictions
884            .iter()
885            .take(10)
886            .map(|p| p.predicted_energy)
887            .fold(T::zero(), |acc, x| acc + x);
888        Ok(sum / T::from(self.energy_predictions.len().min(10)).unwrap())
889    }
890}
891
892/// Prediction model for energy consumption
893#[derive(Debug, Clone)]
894struct PredictionModel<T: Float + Debug + Send + Sync + 'static> {
895    /// Model type
896    model_type: ModelType,
897
898    /// Model parameters
899    parameters: Vec<T>,
900
901    /// Model accuracy
902    accuracy: T,
903
904    /// Training data size
905    training_data_size: usize,
906
907    /// Last update time
908    last_update: Instant,
909}
910
911#[derive(Debug, Clone, Copy)]
912enum ModelType {
913    Linear,
914    Polynomial,
915    Exponential,
916    NeuralNetwork,
917    AutoRegressive,
918}
919
920/// Workload sample for prediction
921#[derive(Debug, Clone)]
922pub struct WorkloadSample<T: Float + Debug + Send + Sync + 'static> {
923    /// Timestamp
924    pub timestamp: Instant,
925
926    /// Number of active neurons
927    pub active_neurons: usize,
928
929    /// Spike rate (Hz)
930    pub spike_rate: T,
931
932    /// Synaptic activity
933    pub synaptic_activity: T,
934
935    /// Memory access pattern
936    pub memory_access_pattern: MemoryAccessPattern,
937
938    /// Communication overhead
939    pub communication_overhead: T,
940}
941
942#[derive(Debug, Clone, Copy)]
943pub enum MemoryAccessPattern {
944    Sequential,
945    Random,
946    Sparse,
947    Burst,
948    Mixed,
949}
950
951/// Energy prediction
952#[derive(Debug, Clone)]
953struct EnergyPrediction<T: Float + Debug + Send + Sync + 'static> {
954    /// Prediction timestamp
955    timestamp: Instant,
956
957    /// Predicted energy consumption (nJ)
958    predicted_energy: T,
959
960    /// Confidence interval
961    confidence_interval: (T, T),
962
963    /// Prediction horizon (ms)
964    horizon: T,
965
966    /// Model used
967    model_type: ModelType,
968}
969
970impl<
971        T: Float
972            + Debug
973            + Send
974            + Sync
975            + scirs2_core::ndarray::ScalarOperand
976            + std::fmt::Debug
977            + std::iter::Sum,
978    > EnergyEfficientOptimizer<T>
979{
980    /// Create a new energy-efficient optimizer
981    pub fn new(_config: EnergyEfficientConfig<T>, numneurons: usize) -> Self {
982        Self {
983            config: _config.clone(),
984            energy_monitor: EnergyMonitor::new(_config.energy_budget.monitoring_frequency),
985            dvfs_controller: DVFSController::new(),
986            power_gating_controller: PowerGatingController::new(),
987            sparse_optimizer: SparseComputationOptimizer::new(),
988            thermal_manager: ThermalManager::new(ThermalManagementConfig::default()),
989            sleep_controller: SleepModeController::new(_config.energy_budget.monitoring_frequency),
990            predictive_manager: PredictiveEnergyManager::new(),
991            current_strategy: _config.primary_strategy,
992            strategy_effectiveness: HashMap::new(),
993            system_state: EnergySystemState {
994                current_energy: T::zero(),
995                current_power: T::zero(),
996                temperature: T::from(25.0).unwrap_or_else(|| T::zero()), // 25°C ambient
997                active_neurons: numneurons,
998                active_synapses: numneurons * numneurons,
999                current_voltage: T::from(1.0).unwrap_or_else(|| T::zero()), // 1V
1000                current_frequency: T::from(100.0).unwrap_or_else(|| T::zero()), // 100 MHz
1001                gated_regions: Vec::new(),
1002                sleep_status: SleepStatus::Active,
1003            },
1004            metrics: NeuromorphicMetrics::default(),
1005        }
1006    }
1007
1008    /// Optimize energy consumption
1009    pub fn optimize_energy(
1010        &mut self,
1011        workload: &WorkloadSample<T>,
1012    ) -> Result<EnergyOptimizationResult<T>> {
1013        // Update energy monitoring
1014        self.energy_monitor.update(&self.system_state)?;
1015
1016        // Get energy predictions
1017        let prediction = if self.config.predictive_energy_management {
1018            self.predictive_manager
1019                .predict_energy(Duration::from_secs(60))? // Predict for next minute
1020        } else {
1021            T::from(1.0).unwrap()
1022        };
1023
1024        // Apply current optimization strategy
1025        let optimization_result = match self.current_strategy {
1026            EnergyOptimizationStrategy::DynamicVoltageScaling => {
1027                self.apply_dvfs_optimization(workload)?
1028            }
1029            EnergyOptimizationStrategy::PowerGating => {
1030                self.apply_power_gating_optimization(workload)?
1031            }
1032            EnergyOptimizationStrategy::ClockGating => {
1033                self.apply_clock_gating_optimization(workload)?
1034            }
1035            EnergyOptimizationStrategy::SparseComputation => {
1036                self.apply_sparse_computation_optimization(workload)?
1037            }
1038            EnergyOptimizationStrategy::SleepModeOptimization => {
1039                self.apply_sleep_mode_optimization(workload)?
1040            }
1041            EnergyOptimizationStrategy::ThermalAwareOptimization => {
1042                self.apply_thermal_aware_optimization(workload)?
1043            }
1044            EnergyOptimizationStrategy::MultiLevel => {
1045                self.apply_multi_level_optimization(workload)?
1046            }
1047            _ => {
1048                // Default optimization
1049                self.apply_default_optimization(workload)?
1050            }
1051        };
1052
1053        // Evaluate strategy effectiveness
1054        self.evaluate_strategy_effectiveness(&optimization_result);
1055
1056        // Adaptive strategy switching
1057        if self.config.adaptive_strategy_switching {
1058            self.consider_strategy_switch()?;
1059        }
1060
1061        // Update thermal management
1062        self.thermal_manager.update(&self.system_state)?;
1063
1064        // Update metrics
1065        self.update_metrics(&optimization_result);
1066
1067        Ok(optimization_result)
1068    }
1069
1070    /// Apply DVFS optimization
1071    fn apply_dvfs_optimization(
1072        &mut self,
1073        workload: &WorkloadSample<T>,
1074    ) -> Result<EnergyOptimizationResult<T>> {
1075        let initial_energy = self.system_state.current_energy;
1076        let initial_power = self.system_state.current_power;
1077
1078        // Determine optimal voltage and frequency
1079        let (optimal_voltage, optimal_frequency) =
1080            self.dvfs_controller.compute_optimal_levels(workload)?;
1081
1082        // Apply voltage and frequency scaling
1083        self.system_state.current_voltage = optimal_voltage;
1084        self.system_state.current_frequency = optimal_frequency;
1085
1086        // Calculate energy savings
1087        let power_reduction = self.calculate_power_reduction(optimal_voltage, optimal_frequency);
1088        let new_power = initial_power * power_reduction;
1089        self.system_state.current_power = new_power;
1090
1091        // Update energy consumption
1092        let time_delta = T::from(1.0).unwrap_or_else(|| T::zero()); // 1 ms time step
1093        let energy_delta = new_power * time_delta / T::from(1000.0).unwrap_or_else(|| T::zero()); // nJ
1094        self.system_state.current_energy = self.system_state.current_energy + energy_delta;
1095
1096        Ok(EnergyOptimizationResult {
1097            strategy_used: EnergyOptimizationStrategy::DynamicVoltageScaling,
1098            energy_saved: initial_energy - self.system_state.current_energy,
1099            power_reduction: initial_power - new_power,
1100            performance_impact: self.calculate_performance_impact(optimal_frequency),
1101            thermal_impact: self.calculate_thermal_impact(new_power),
1102            optimization_overhead: T::from(0.1).unwrap_or_else(|| T::zero()), // 0.1 nJ overhead
1103        })
1104    }
1105
1106    /// Apply power gating optimization
1107    fn apply_power_gating_optimization(
1108        &mut self,
1109        workload: &WorkloadSample<T>,
1110    ) -> Result<EnergyOptimizationResult<T>> {
1111        let initial_energy = self.system_state.current_energy;
1112        let initial_power = self.system_state.current_power;
1113
1114        // Identify inactive regions for gating
1115        let gatable_regions = self
1116            .power_gating_controller
1117            .identify_gatable_regions(workload)?;
1118
1119        // Apply power gating
1120        let mut total_power_saved = T::zero();
1121        for region_id in gatable_regions {
1122            let power_saved = self.power_gating_controller.gate_region(region_id)?;
1123            total_power_saved = total_power_saved + power_saved;
1124            self.system_state.gated_regions.push(region_id);
1125        }
1126
1127        // Update system power
1128        let new_power = initial_power - total_power_saved;
1129        self.system_state.current_power = new_power;
1130
1131        Ok(EnergyOptimizationResult {
1132            strategy_used: EnergyOptimizationStrategy::PowerGating,
1133            energy_saved: total_power_saved * T::from(1.0).unwrap_or_else(|| T::zero()), // Assuming 1ms
1134            power_reduction: total_power_saved,
1135            performance_impact: T::zero(), // Minimal performance impact
1136            thermal_impact: total_power_saved * T::from(0.8).unwrap_or_else(|| T::zero()), // Thermal reduction
1137            optimization_overhead: T::from(0.05).unwrap_or_else(|| T::zero()), // Low overhead
1138        })
1139    }
1140
1141    /// Apply sparse computation optimization
1142    fn apply_sparse_computation_optimization(
1143        &mut self,
1144        workload: &WorkloadSample<T>,
1145    ) -> Result<EnergyOptimizationResult<T>> {
1146        let initial_energy = self.system_state.current_energy;
1147        let initial_power = self.system_state.current_power;
1148
1149        // Analyze sparsity patterns
1150        let sparsity_analysis = self.sparse_optimizer.analyze_sparsity(workload)?;
1151
1152        // Apply sparse optimizations
1153        let energy_savings = self
1154            .sparse_optimizer
1155            .apply_sparse_optimizations(&sparsity_analysis)?;
1156
1157        // Update system state
1158        let new_power = initial_power * (T::one() - energy_savings);
1159        self.system_state.current_power = new_power;
1160
1161        Ok(EnergyOptimizationResult {
1162            strategy_used: EnergyOptimizationStrategy::SparseComputation,
1163            energy_saved: initial_power * energy_savings,
1164            power_reduction: initial_power - new_power,
1165            performance_impact: energy_savings * T::from(0.1).unwrap_or_else(|| T::zero()), // Small performance impact
1166            thermal_impact: (initial_power - new_power) * T::from(0.9).unwrap_or_else(|| T::zero()),
1167            optimization_overhead: T::from(0.2).unwrap_or_else(|| T::zero()), // Moderate overhead
1168        })
1169    }
1170
1171    /// Apply multi-level optimization
1172    fn apply_multi_level_optimization(
1173        &mut self,
1174        workload: &WorkloadSample<T>,
1175    ) -> Result<EnergyOptimizationResult<T>> {
1176        let mut total_result = EnergyOptimizationResult {
1177            strategy_used: EnergyOptimizationStrategy::MultiLevel,
1178            energy_saved: T::zero(),
1179            power_reduction: T::zero(),
1180            performance_impact: T::zero(),
1181            thermal_impact: T::zero(),
1182            optimization_overhead: T::zero(),
1183        };
1184
1185        // Apply multiple strategies in sequence
1186        let strategies = [
1187            EnergyOptimizationStrategy::SparseComputation,
1188            EnergyOptimizationStrategy::DynamicVoltageScaling,
1189            EnergyOptimizationStrategy::PowerGating,
1190        ];
1191
1192        for strategy in &strategies {
1193            let prev_strategy = self.current_strategy;
1194            self.current_strategy = *strategy;
1195
1196            let result = match strategy {
1197                EnergyOptimizationStrategy::SparseComputation => {
1198                    self.apply_sparse_computation_optimization(workload)?
1199                }
1200                EnergyOptimizationStrategy::DynamicVoltageScaling => {
1201                    self.apply_dvfs_optimization(workload)?
1202                }
1203                EnergyOptimizationStrategy::PowerGating => {
1204                    self.apply_power_gating_optimization(workload)?
1205                }
1206                _ => continue,
1207            };
1208
1209            // Accumulate results
1210            total_result.energy_saved = total_result.energy_saved + result.energy_saved;
1211            total_result.power_reduction = total_result.power_reduction + result.power_reduction;
1212            total_result.performance_impact =
1213                total_result.performance_impact + result.performance_impact;
1214            total_result.thermal_impact = total_result.thermal_impact + result.thermal_impact;
1215            total_result.optimization_overhead =
1216                total_result.optimization_overhead + result.optimization_overhead;
1217
1218            self.current_strategy = prev_strategy;
1219        }
1220
1221        Ok(total_result)
1222    }
1223
1224    /// Apply default optimization
1225    fn apply_default_optimization(
1226        &mut self,
1227        workload: &WorkloadSample<T>,
1228    ) -> Result<EnergyOptimizationResult<T>> {
1229        // Minimal optimization - just monitoring
1230        Ok(EnergyOptimizationResult {
1231            strategy_used: self.current_strategy,
1232            energy_saved: T::zero(),
1233            power_reduction: T::zero(),
1234            performance_impact: T::zero(),
1235            thermal_impact: T::zero(),
1236            optimization_overhead: T::from(0.01).unwrap_or_else(|| T::zero()),
1237        })
1238    }
1239
1240    /// Apply clock gating optimization
1241    fn apply_clock_gating_optimization(
1242        &mut self,
1243        workload: &WorkloadSample<T>,
1244    ) -> Result<EnergyOptimizationResult<T>> {
1245        // Clock gating - stop clock to inactive regions
1246        let initial_power = self.system_state.current_power;
1247        let reduction_factor = T::from(0.3).unwrap(); // 30% power reduction from clock gating
1248        let new_power = initial_power * (T::one() - reduction_factor);
1249
1250        self.system_state.current_power = new_power;
1251
1252        Ok(EnergyOptimizationResult {
1253            strategy_used: EnergyOptimizationStrategy::ClockGating,
1254            energy_saved: initial_power * reduction_factor,
1255            power_reduction: initial_power - new_power,
1256            performance_impact: T::zero(), // No performance impact
1257            thermal_impact: (initial_power - new_power) * T::from(0.8).unwrap(),
1258            optimization_overhead: T::from(0.05).unwrap(),
1259        })
1260    }
1261
1262    /// Apply sleep mode optimization
1263    fn apply_sleep_mode_optimization(
1264        &mut self,
1265        workload: &WorkloadSample<T>,
1266    ) -> Result<EnergyOptimizationResult<T>> {
1267        // Sleep mode - put inactive components to sleep
1268        let initial_power = self.system_state.current_power;
1269        self.system_state.sleep_status = SleepStatus::LightSleep;
1270
1271        let reduction_factor = T::from(0.5).unwrap(); // 50% power reduction in sleep
1272        let new_power = initial_power * (T::one() - reduction_factor);
1273
1274        self.system_state.current_power = new_power;
1275
1276        Ok(EnergyOptimizationResult {
1277            strategy_used: EnergyOptimizationStrategy::SleepModeOptimization,
1278            energy_saved: initial_power * reduction_factor,
1279            power_reduction: initial_power - new_power,
1280            performance_impact: T::from(0.1).unwrap(), // Small wake-up latency
1281            thermal_impact: (initial_power - new_power) * T::from(0.95).unwrap(),
1282            optimization_overhead: T::from(0.1).unwrap(),
1283        })
1284    }
1285
1286    /// Apply thermal-aware optimization
1287    fn apply_thermal_aware_optimization(
1288        &mut self,
1289        workload: &WorkloadSample<T>,
1290    ) -> Result<EnergyOptimizationResult<T>> {
1291        // Thermal-aware optimization - reduce power if temperature is too high
1292        let initial_power = self.system_state.current_power;
1293        let temp_threshold = T::from(80.0).unwrap(); // 80°C threshold
1294
1295        let reduction_factor = if self.system_state.temperature > temp_threshold {
1296            T::from(0.4).unwrap() // Aggressive reduction if hot
1297        } else {
1298            T::from(0.2).unwrap() // Moderate reduction otherwise
1299        };
1300
1301        let new_power = initial_power * (T::one() - reduction_factor);
1302        self.system_state.current_power = new_power;
1303        self.system_state.temperature = self.system_state.temperature * T::from(0.95).unwrap();
1304
1305        Ok(EnergyOptimizationResult {
1306            strategy_used: EnergyOptimizationStrategy::ThermalAwareOptimization,
1307            energy_saved: initial_power * reduction_factor,
1308            power_reduction: initial_power - new_power,
1309            performance_impact: reduction_factor * T::from(0.5).unwrap(),
1310            thermal_impact: (initial_power - new_power),
1311            optimization_overhead: T::from(0.15).unwrap(),
1312        })
1313    }
1314
1315    /// Calculate power reduction from voltage/frequency scaling
1316    fn calculate_power_reduction(&self, voltage: T, frequency: T) -> T {
1317        // Power ∝ V² × f (simplified CMOS power model)
1318        let voltage_factor = voltage * voltage;
1319        let frequency_factor = frequency;
1320        voltage_factor * frequency_factor
1321            / (self.system_state.current_voltage
1322                * self.system_state.current_voltage
1323                * self.system_state.current_frequency)
1324    }
1325
1326    /// Calculate performance impact
1327    fn calculate_performance_impact(&self, newfrequency: T) -> T {
1328        // Performance impact = (old_freq - new_freq) / old_freq
1329        (self.system_state.current_frequency - newfrequency) / self.system_state.current_frequency
1330    }
1331
1332    /// Calculate thermal impact
1333    fn calculate_thermal_impact(&self, newpower: T) -> T {
1334        // Thermal impact proportional to _power reduction
1335        let power_reduction = self.system_state.current_power - newpower;
1336        power_reduction * self.thermal_manager.thermal_model.thermal_resistance
1337    }
1338
1339    /// Evaluate strategy effectiveness
1340    fn evaluate_strategy_effectiveness(&mut self, result: &EnergyOptimizationResult<T>) {
1341        // Calculate effectiveness score
1342        let effectiveness = result.energy_saved
1343            / (result.optimization_overhead + T::from(1e-6).unwrap_or_else(|| T::zero()));
1344
1345        // Update strategy effectiveness history
1346        *self
1347            .strategy_effectiveness
1348            .entry(result.strategy_used)
1349            .or_insert(T::zero()) = effectiveness;
1350    }
1351
1352    /// Consider switching optimization strategy
1353    fn consider_strategy_switch(&mut self) -> Result<()> {
1354        if let Some(&current_effectiveness) =
1355            self.strategy_effectiveness.get(&self.current_strategy)
1356        {
1357            // Find best alternative strategy
1358            if let Some((&best_strategy, &best_effectiveness)) = self
1359                .strategy_effectiveness
1360                .iter()
1361                .max_by(|a, b| a.1.partial_cmp(b.1).unwrap_or(std::cmp::Ordering::Equal))
1362            {
1363                // Switch if improvement exceeds threshold
1364                let improvement =
1365                    (best_effectiveness - current_effectiveness) / current_effectiveness;
1366                if improvement > self.config.strategy_switching_threshold {
1367                    self.current_strategy = best_strategy;
1368                }
1369            }
1370        }
1371
1372        Ok(())
1373    }
1374
1375    /// Update optimization metrics
1376    fn update_metrics(&mut self, result: &EnergyOptimizationResult<T>) {
1377        self.metrics.energy_consumption = self.system_state.current_energy;
1378        self.metrics.power_consumption = self.system_state.current_power;
1379        self.metrics.thermal_efficiency =
1380            T::one() / (self.system_state.temperature / T::from(25.0).unwrap_or_else(|| T::zero()));
1381    }
1382
1383    /// Get current energy budget status
1384    pub fn get_energy_budget_status(&self) -> EnergyBudgetStatus<T> {
1385        let remaining_budget =
1386            self.config.energy_budget.total_budget - self.system_state.current_energy;
1387        let budget_utilization =
1388            self.system_state.current_energy / self.config.energy_budget.total_budget;
1389
1390        EnergyBudgetStatus {
1391            total_budget: self.config.energy_budget.total_budget,
1392            current_consumption: self.system_state.current_energy,
1393            remaining_budget,
1394            budget_utilization,
1395            emergency_reserve_available: remaining_budget
1396                > self.config.energy_budget.emergency_reserves,
1397        }
1398    }
1399
1400    /// Get current metrics
1401    pub fn get_metrics(&self) -> &NeuromorphicMetrics<T> {
1402        &self.metrics
1403    }
1404
1405    /// Get current system state
1406    pub fn get_system_state(&self) -> &EnergySystemState<T> {
1407        &self.system_state
1408    }
1409}
1410
1411/// Energy optimization result
1412#[derive(Debug, Clone)]
1413pub struct EnergyOptimizationResult<T: Float + Debug + Send + Sync + 'static> {
1414    /// Strategy that was used
1415    pub strategy_used: EnergyOptimizationStrategy,
1416
1417    /// Energy saved (nJ)
1418    pub energy_saved: T,
1419
1420    /// Power reduction (nW)
1421    pub power_reduction: T,
1422
1423    /// Performance impact (ratio)
1424    pub performance_impact: T,
1425
1426    /// Thermal impact (°C reduction)
1427    pub thermal_impact: T,
1428
1429    /// Optimization overhead (nJ)
1430    pub optimization_overhead: T,
1431}
1432
1433/// Energy budget status
1434#[derive(Debug, Clone)]
1435pub struct EnergyBudgetStatus<T: Float + Debug + Send + Sync + 'static> {
1436    /// Total energy budget (nJ)
1437    pub total_budget: T,
1438
1439    /// Current energy consumption (nJ)
1440    pub current_consumption: T,
1441
1442    /// Remaining budget (nJ)
1443    pub remaining_budget: T,
1444
1445    /// Budget utilization (0.0 to 1.0)
1446    pub budget_utilization: T,
1447
1448    /// Emergency reserve available
1449    pub emergency_reserve_available: bool,
1450}
1451
1452// Implementation of various helper structs and methods would continue here...
1453// For brevity, I'm including placeholder implementations
1454
1455impl<
1456        T: Float
1457            + Debug
1458            + Send
1459            + Sync
1460            + scirs2_core::ndarray::ScalarOperand
1461            + std::fmt::Debug
1462            + std::iter::Sum,
1463    > EnergyMonitor<T>
1464{
1465    fn new(_monitoringfrequency: Duration) -> Self {
1466        Self {
1467            consumption_history: VecDeque::new(),
1468            power_history: VecDeque::new(),
1469            current_power: T::zero(),
1470            peak_power: T::zero(),
1471            average_power: T::zero(),
1472            component_energy: HashMap::new(),
1473            efficiency_metrics: EfficiencyMetrics::default(),
1474            last_update: Instant::now(),
1475            window_size: Duration::from_secs(1),
1476        }
1477    }
1478
1479    fn update(&mut self, systemstate: &EnergySystemState<T>) -> Result<()> {
1480        let now = Instant::now();
1481        self.consumption_history
1482            .push_back((now, systemstate.current_energy));
1483        self.power_history
1484            .push_back((now, systemstate.current_power));
1485
1486        // Clean old entries
1487        while let Some(&(time_, _)) = self.consumption_history.front() {
1488            if now.duration_since(time_) > self.window_size {
1489                self.consumption_history.pop_front();
1490            } else {
1491                break;
1492            }
1493        }
1494
1495        // Update current metrics
1496        self.current_power = systemstate.current_power;
1497        self.peak_power = self.peak_power.max(systemstate.current_power);
1498
1499        // Update average power
1500        if !self.power_history.is_empty() {
1501            let sum: T = self.power_history.iter().map(|(_, power)| *power).sum();
1502            self.average_power = sum / T::from(self.power_history.len()).unwrap();
1503        }
1504
1505        self.last_update = now;
1506        Ok(())
1507    }
1508}
1509
1510impl<T: Float + Debug + Send + Sync + 'static> Default for EfficiencyMetrics<T> {
1511    fn default() -> Self {
1512        Self {
1513            current_ops_per_joule: T::zero(),
1514            current_spikes_per_joule: T::zero(),
1515            current_synaptic_updates_per_joule: T::zero(),
1516            memory_efficiency: T::zero(),
1517            thermal_efficiency: T::zero(),
1518            overall_efficiency: T::zero(),
1519        }
1520    }
1521}
1522
1523// Additional implementation details would continue for all the helper structs...