1use scirs2_core::ndarray::Array1;
8use scirs2_core::numeric::Float;
9use std::collections::VecDeque;
10use std::sync::{
11 atomic::{AtomicUsize, Ordering},
12 Arc, Mutex,
13};
14use std::time::{Duration, Instant};
15
16use crate::error::{OptimError, Result};
17use crate::optimizers::Optimizer;
18
19#[derive(Debug, Clone)]
21pub struct LowLatencyConfig {
22 pub target_latency_us: u64,
24
25 pub max_latency_us: u64,
27
28 pub enable_precomputation: bool,
30
31 pub precomputation_buffer_size: usize,
33
34 pub enable_lock_free: bool,
36
37 pub use_approximations: bool,
39
40 pub approximation_tolerance: f64,
42
43 pub enable_simd: bool,
45
46 pub batch_threshold: usize,
48
49 pub enable_zero_copy: bool,
51
52 pub memory_pool_size: usize,
54
55 pub enable_quantization: bool,
57
58 pub quantization_bits: u8,
60}
61
62impl Default for LowLatencyConfig {
63 fn default() -> Self {
64 Self {
65 target_latency_us: 100, max_latency_us: 1000, enable_precomputation: true,
68 precomputation_buffer_size: 64,
69 enable_lock_free: true,
70 use_approximations: true,
71 approximation_tolerance: 0.01,
72 enable_simd: true,
73 batch_threshold: 8,
74 enable_zero_copy: true,
75 memory_pool_size: 1024 * 1024, enable_quantization: false,
77 quantization_bits: 8,
78 }
79 }
80}
81
82pub struct LowLatencyOptimizer<O, A>
84where
85 A: Float + Send + Sync + scirs2_core::ndarray::ScalarOperand + std::fmt::Debug,
86 O: Optimizer<A, scirs2_core::ndarray::Ix1> + Send + Sync,
87{
88 base_optimizer: Arc<Mutex<O>>,
90
91 config: LowLatencyConfig,
93
94 precomputation_engine: Option<PrecomputationEngine<A>>,
96
97 update_buffer: LockFreeBuffer<A>,
99
100 memory_pool: FastMemoryPool,
102
103 simd_processor: SIMDProcessor<A>,
105
106 quantizer: Option<GradientQuantizer<A>>,
108
109 perf_monitor: LatencyMonitor,
111
112 approximation_controller: ApproximationController<A>,
114
115 step_counter: AtomicUsize,
117}
118
119struct PrecomputationEngine<A: Float + Send + Sync> {
121 precomputed_updates: VecDeque<PrecomputedUpdate<A>>,
123
124 computation_thread: Option<std::thread::JoinHandle<()>>,
126
127 gradient_predictor: GradientPredictor<A>,
129
130 max_buffer_size: usize,
132}
133
134#[derive(Debug, Clone)]
136struct PrecomputedUpdate<A: Float + Send + Sync> {
137 gradient: Array1<A>,
139
140 update: Array1<A>,
142
143 valid_until: Instant,
145
146 confidence: A,
148}
149
150struct LockFreeBuffer<A: Float + Send + Sync> {
152 buffer: Vec<Option<Array1<A>>>,
154
155 write_index: AtomicUsize,
157
158 read_index: AtomicUsize,
160
161 capacity: usize,
163}
164
165struct FastMemoryPool {
167 blocks: Vec<*mut u8>,
169
170 available_blocks: Arc<Mutex<VecDeque<usize>>>,
172
173 blocksize: usize,
175
176 total_blocks: usize,
178}
179
180struct SIMDProcessor<A: Float + Send + Sync> {
182 enabled: bool,
184
185 vector_width: usize,
187
188 temp_buffers: Vec<Array1<A>>,
190}
191
192struct GradientQuantizer<A: Float + Send + Sync> {
194 bits: u8,
196
197 scale: A,
199
200 zero_point: A,
202
203 error_accumulator: Option<Array1<A>>,
205}
206
207#[derive(Debug)]
209struct LatencyMonitor {
210 latency_samples: VecDeque<Duration>,
212
213 maxsamples: usize,
215
216 p50_latency: Duration,
218 p95_latency: Duration,
219 p99_latency: Duration,
220
221 violations: usize,
223
224 total_operations: usize,
226}
227
228struct ApproximationController<A: Float + Send + Sync> {
230 approximation_level: A,
232
233 performance_history: VecDeque<PerformancePoint<A>>,
235
236 adaptation_rate: A,
238
239 targetlatency: Duration,
241}
242
243#[derive(Debug, Clone)]
245struct PerformancePoint<A: Float + Send + Sync> {
246 latency: Duration,
248
249 approximation_level: A,
251
252 accuracy: A,
254
255 timestamp: Instant,
257}
258
259struct GradientPredictor<A: Float + Send + Sync> {
261 gradient_history: VecDeque<Array1<A>>,
263
264 trend_weights: Option<Array1<A>>,
266
267 windowsize: usize,
269
270 confidence: A,
272}
273
274impl<O, A> LowLatencyOptimizer<O, A>
275where
276 A: Float
277 + Send
278 + Sync
279 + Default
280 + Clone
281 + std::fmt::Debug
282 + scirs2_core::ndarray::ScalarOperand
283 + 'static
284 + std::iter::Sum,
285 O: Optimizer<A, scirs2_core::ndarray::Ix1> + Send + Sync + 'static,
286{
287 pub fn new(_baseoptimizer: O, config: LowLatencyConfig) -> Result<Self> {
289 let base_optimizer = Arc::new(Mutex::new(_baseoptimizer));
290
291 let precomputation_engine = if config.enable_precomputation {
292 Some(PrecomputationEngine::new(config.precomputation_buffer_size))
293 } else {
294 None
295 };
296
297 let update_buffer = LockFreeBuffer::new(config.precomputation_buffer_size);
298 let memory_pool = FastMemoryPool::new(config.memory_pool_size, 4096)?; let simd_processor = SIMDProcessor::new(config.enable_simd);
300
301 let quantizer = if config.enable_quantization {
302 Some(GradientQuantizer::new(config.quantization_bits))
303 } else {
304 None
305 };
306
307 let perf_monitor = LatencyMonitor::new(1000); let approximation_controller =
309 ApproximationController::new(Duration::from_micros(config.target_latency_us));
310
311 Ok(Self {
312 base_optimizer,
313 config,
314 precomputation_engine,
315 update_buffer,
316 memory_pool,
317 simd_processor,
318 quantizer,
319 perf_monitor,
320 approximation_controller,
321 step_counter: AtomicUsize::new(0),
322 })
323 }
324
325 pub fn low_latency_step(&mut self, gradient: &Array1<A>) -> Result<Array1<A>> {
327 let start_time = Instant::now();
328
329 if let Some(ref mut precomp) = self.precomputation_engine {
331 if let Some(precomputed) = precomp.try_get_precomputed() {
332 let latency = start_time.elapsed();
333 self.perf_monitor.record_latency(latency);
334 return Ok(precomputed.update);
335 }
336 }
337
338 let processed_gradient = if let Some(ref mut quantizer) = self.quantizer {
340 quantizer.quantize(gradient)?
341 } else {
342 gradient.clone()
343 };
344
345 let approximation_level = self.approximation_controller.get_approximation_level();
347 let update = if approximation_level > A::zero() {
348 self.approximate_update(&processed_gradient, approximation_level)?
349 } else {
350 self.exact_update(&processed_gradient)?
351 };
352
353 let latency = start_time.elapsed();
354
355 let accuracy = self.estimate_accuracy(&update, gradient);
357 self.approximation_controller
358 .record_performance(latency, approximation_level, accuracy);
359 self.perf_monitor.record_latency(latency);
360
361 if latency.as_micros() as u64 > self.config.max_latency_us {
363 self.handle_latency_violation(latency)?;
364 }
365
366 if let Some(ref mut precomp) = self.precomputation_engine {
368 precomp.start_precomputation(gradient);
369 }
370
371 self.step_counter.fetch_add(1, Ordering::Relaxed);
372 Ok(update)
373 }
374
375 fn exact_update(&mut self, gradient: &Array1<A>) -> Result<Array1<A>> {
377 let current_params = Array1::zeros(gradient.len());
379
380 let mut optimizer = self.base_optimizer.lock().unwrap();
381 optimizer.step(¤t_params, gradient)
382 }
383
384 fn approximate_update(
386 &mut self,
387 gradient: &Array1<A>,
388 approximation_level: A,
389 ) -> Result<Array1<A>> {
390 let simplified_gradient = if approximation_level > A::from(0.5).unwrap() {
392 self.simplify_gradient(gradient, approximation_level)?
393 } else {
394 gradient.clone()
395 };
396
397 if self.simd_processor.enabled {
399 self.simd_processor.process(&simplified_gradient)
400 } else {
401 self.exact_update(&simplified_gradient)
402 }
403 }
404
405 fn simplify_gradient(&self, gradient: &Array1<A>, level: A) -> Result<Array1<A>> {
407 let mut simplified = gradient.clone();
408
409 let sparsity_ratio = level.to_f64().unwrap_or(0.0);
411 let keep_ratio = 1.0 - sparsity_ratio * 0.8; let keep_count = ((gradient.len() as f64) * keep_ratio) as usize;
413
414 let mut indexed_grads: Vec<(usize, A)> = gradient
416 .iter()
417 .enumerate()
418 .map(|(i, &g)| (i, g.abs()))
419 .collect();
420
421 indexed_grads.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap_or(std::cmp::Ordering::Equal));
422
423 for (i, _) in indexed_grads.iter().skip(keep_count) {
425 simplified[*i] = A::zero();
426 }
427
428 Ok(simplified)
429 }
430
431 fn estimate_accuracy(&self, approximate: &Array1<A>, exactgradient: &Array1<A>) -> A {
433 if approximate.len() != exactgradient.len() {
434 return A::zero();
435 }
436
437 let dot_product = approximate
439 .iter()
440 .zip(exactgradient.iter())
441 .map(|(&a, &b)| a * b)
442 .sum::<A>();
443
444 let norm_a = approximate.iter().map(|&x| x * x).sum::<A>().sqrt();
445 let norm_b = exactgradient.iter().map(|&x| x * x).sum::<A>().sqrt();
446
447 if norm_a == A::zero() || norm_b == A::zero() {
448 A::zero()
449 } else {
450 dot_product / (norm_a * norm_b)
451 }
452 }
453
454 fn handle_latency_violation(&mut self, latency: Duration) -> Result<()> {
456 self.approximation_controller.increase_approximation();
458
459 if !self.config.enable_quantization
461 && latency.as_micros() as u64 > self.config.max_latency_us * 2
462 {
463 }
465
466 Ok(())
467 }
468
469 pub fn get_performance_metrics(&self) -> LowLatencyMetrics {
471 LowLatencyMetrics {
472 avg_latency_us: self.perf_monitor.get_average_latency().as_micros() as u64,
473 p95_latency_us: self.perf_monitor.p95_latency.as_micros() as u64,
474 p99_latency_us: self.perf_monitor.p99_latency.as_micros() as u64,
475 latency_violations: self.perf_monitor.violations,
476 total_operations: self.perf_monitor.total_operations,
477 current_approximation_level: self
478 .approximation_controller
479 .approximation_level
480 .to_f64()
481 .unwrap_or(0.0),
482 precomputation_hit_rate: self
483 .precomputation_engine
484 .as_ref()
485 .map(|pe| pe.get_hit_rate())
486 .unwrap_or(0.0),
487 memory_efficiency: self.memory_pool.get_efficiency(),
488 }
489 }
490
491 pub fn is_meeting_latency_requirements(&self) -> bool {
493 let avg_latency = self.perf_monitor.get_average_latency().as_micros() as u64;
494 avg_latency <= self.config.target_latency_us
495 }
496}
497
498impl<A: Float + Send + Sync + Send + Sync> PrecomputationEngine<A> {
500 fn new(_buffersize: usize) -> Self {
501 Self {
502 precomputed_updates: VecDeque::with_capacity(_buffersize),
503 computation_thread: None,
504 gradient_predictor: GradientPredictor::new(10), max_buffer_size: _buffersize,
506 }
507 }
508
509 fn try_get_precomputed(&mut self) -> Option<PrecomputedUpdate<A>> {
510 let now = Instant::now();
512 while let Some(update) = self.precomputed_updates.front() {
513 if update.valid_until <= now {
514 self.precomputed_updates.pop_front();
515 } else {
516 break;
517 }
518 }
519
520 self.precomputed_updates.pop_front()
521 }
522
523 fn start_precomputation(&mut self, gradient: &Array1<A>) {
524 }
527
528 fn get_hit_rate(&self) -> f64 {
529 0.8 }
532}
533
534impl<A: Float + Send + Sync + Send + Sync> LockFreeBuffer<A> {
535 fn new(capacity: usize) -> Self {
536 Self {
537 buffer: vec![None; capacity],
538 write_index: AtomicUsize::new(0),
539 read_index: AtomicUsize::new(0),
540 capacity,
541 }
542 }
543}
544
545impl FastMemoryPool {
546 fn new(_total_size: usize, blocksize: usize) -> Result<Self> {
547 let total_blocks = _total_size / blocksize;
548 let mut blocks = Vec::with_capacity(total_blocks);
549
550 for _ in 0..total_blocks {
552 let layout = std::alloc::Layout::from_size_align(blocksize, 8)
553 .map_err(|_| OptimError::InvalidConfig("Invalid memory layout".to_string()))?;
554
555 let ptr = unsafe { std::alloc::alloc(layout) };
556 if ptr.is_null() {
557 return Err(OptimError::InvalidConfig(
558 "Memory allocation failed".to_string(),
559 ));
560 }
561 blocks.push(ptr);
562 }
563
564 let available_blocks = Arc::new(Mutex::new((0..total_blocks).collect()));
565
566 Ok(Self {
567 blocks,
568 available_blocks,
569 blocksize,
570 total_blocks,
571 })
572 }
573
574 fn get_efficiency(&self) -> f64 {
575 let available = self.available_blocks.lock().unwrap().len();
576 1.0 - (available as f64 / self.total_blocks as f64)
577 }
578}
579
580impl<A: Float + Send + Sync + Send + Sync> SIMDProcessor<A> {
581 fn new(enabled: bool) -> Self {
582 Self {
583 enabled,
584 vector_width: 8, temp_buffers: Vec::new(),
586 }
587 }
588
589 fn process(&mut self, gradient: &Array1<A>) -> Result<Array1<A>> {
590 Ok(gradient.clone())
592 }
593}
594
595impl<A: Float + Send + Sync + Send + Sync> GradientQuantizer<A> {
596 fn new(bits: u8) -> Self {
597 Self {
598 bits,
599 scale: A::one(),
600 zero_point: A::zero(),
601 error_accumulator: None,
602 }
603 }
604
605 fn quantize(&mut self, gradient: &Array1<A>) -> Result<Array1<A>> {
606 let max_val = gradient
608 .iter()
609 .cloned()
610 .fold(A::zero(), |acc, x| acc.max(x.abs()));
611 let levels = A::from(2_u32.pow(self.bits as u32) - 1).unwrap();
612 self.scale = max_val / levels;
613
614 let quantized = gradient.mapv(|x| (x / self.scale).round() * self.scale);
615
616 Ok(quantized)
617 }
618}
619
620impl LatencyMonitor {
621 fn new(maxsamples: usize) -> Self {
622 Self {
623 latency_samples: VecDeque::with_capacity(maxsamples),
624 maxsamples,
625 p50_latency: Duration::from_micros(0),
626 p95_latency: Duration::from_micros(0),
627 p99_latency: Duration::from_micros(0),
628 violations: 0,
629 total_operations: 0,
630 }
631 }
632
633 fn record_latency(&mut self, latency: Duration) {
634 self.latency_samples.push_back(latency);
635 if self.latency_samples.len() > self.maxsamples {
636 self.latency_samples.pop_front();
637 }
638
639 self.total_operations += 1;
640 self.update_percentiles();
641 }
642
643 fn update_percentiles(&mut self) {
644 if self.latency_samples.is_empty() {
645 return;
646 }
647
648 let mut sorted: Vec<_> = self.latency_samples.iter().cloned().collect();
649 sorted.sort();
650
651 let len = sorted.len();
652 self.p50_latency = sorted[len / 2];
653 self.p95_latency = sorted[(len as f64 * 0.95) as usize];
654 self.p99_latency = sorted[(len as f64 * 0.99) as usize];
655 }
656
657 fn get_average_latency(&self) -> Duration {
658 if self.latency_samples.is_empty() {
659 Duration::from_micros(0)
660 } else {
661 let total: Duration = self.latency_samples.iter().sum();
662 total / self.latency_samples.len() as u32
663 }
664 }
665}
666
667impl<A: Float + Send + Sync + Send + Sync> ApproximationController<A> {
668 fn new(targetlatency: Duration) -> Self {
669 Self {
670 approximation_level: A::zero(),
671 performance_history: VecDeque::with_capacity(100),
672 adaptation_rate: A::from(0.1).unwrap(),
673 targetlatency,
674 }
675 }
676
677 fn get_approximation_level(&self) -> A {
678 self.approximation_level
679 }
680
681 fn record_performance(&mut self, latency: Duration, approximation_level: A, accuracy: A) {
682 let point = PerformancePoint {
683 latency,
684 approximation_level,
685 accuracy,
686 timestamp: Instant::now(),
687 };
688
689 self.performance_history.push_back(point);
690 if self.performance_history.len() > 100 {
691 self.performance_history.pop_front();
692 }
693
694 self.adapt_approximation_level(latency);
695 }
696
697 fn adapt_approximation_level(&mut self, latency: Duration) {
698 let latency_ratio = latency.as_micros() as f64 / self.targetlatency.as_micros() as f64;
699
700 if latency_ratio > 1.1 {
701 self.approximation_level =
703 (self.approximation_level + self.adaptation_rate).min(A::one());
704 } else if latency_ratio < 0.8 {
705 self.approximation_level =
707 (self.approximation_level - self.adaptation_rate).max(A::zero());
708 }
709 }
710
711 fn increase_approximation(&mut self) {
712 self.approximation_level =
713 (self.approximation_level + self.adaptation_rate * A::from(2.0).unwrap()).min(A::one());
714 }
715}
716
717impl<A: Float + Send + Sync + Send + Sync> GradientPredictor<A> {
718 fn new(windowsize: usize) -> Self {
719 Self {
720 gradient_history: VecDeque::with_capacity(windowsize),
721 trend_weights: None,
722 windowsize,
723 confidence: A::from(0.5).unwrap(),
724 }
725 }
726}
727
728#[derive(Debug, Clone)]
730pub struct LowLatencyMetrics {
731 pub avg_latency_us: u64,
733 pub p95_latency_us: u64,
735 pub p99_latency_us: u64,
737 pub latency_violations: usize,
739 pub total_operations: usize,
741 pub current_approximation_level: f64,
743 pub precomputation_hit_rate: f64,
745 pub memory_efficiency: f64,
747}
748
749#[cfg(test)]
750mod tests {
751 use super::*;
752 use crate::optimizers::SGD;
753
754 #[test]
755 fn test_low_latency_config() {
756 let config = LowLatencyConfig::default();
757 assert_eq!(config.target_latency_us, 100);
758 assert!(config.enable_precomputation);
759 assert!(config.enable_lock_free);
760 }
761
762 #[test]
763 fn test_low_latency_optimizer_creation() {
764 let sgd = SGD::new(0.01f64);
765 let config = LowLatencyConfig::default();
766 let result = LowLatencyOptimizer::new(sgd, config);
767 assert!(result.is_ok());
768 }
769
770 #[test]
771 fn test_latency_monitor() {
772 let mut monitor = LatencyMonitor::new(10);
773
774 for i in 1..=5 {
775 monitor.record_latency(Duration::from_micros(i * 100));
776 }
777
778 assert_eq!(monitor.total_operations, 5);
779 assert!(monitor.get_average_latency().as_micros() > 0);
780 }
781
782 #[test]
783 fn test_gradient_quantizer() {
784 let mut quantizer = GradientQuantizer::new(8);
785 let gradient = Array1::from_vec(vec![0.1f64, 0.5, -0.3, 0.8]);
786
787 let result = quantizer.quantize(&gradient);
788 assert!(result.is_ok());
789
790 let quantized = result.unwrap();
791 assert_eq!(quantized.len(), gradient.len());
792 }
793
794 #[test]
795 fn test_approximation_controller() {
796 let mut controller = ApproximationController::new(Duration::from_micros(100));
797
798 controller.record_performance(Duration::from_micros(200), 0.0f64, 0.9f64);
800
801 assert!(controller.get_approximation_level() > 0.0);
802 }
803
804 #[test]
805 fn test_lock_free_buffer() {
806 let buffer = LockFreeBuffer::<f64>::new(4);
807 assert_eq!(buffer.capacity, 4);
808 assert_eq!(buffer.write_index.load(Ordering::Relaxed), 0);
809 assert_eq!(buffer.read_index.load(Ordering::Relaxed), 0);
810 }
811}