optirs_core/streaming/adaptive_streaming/
anomaly_detection.rs

1// Anomaly detection for streaming optimization data
2//
3// This module provides comprehensive anomaly detection capabilities for streaming
4// data including statistical outlier detection, machine learning-based methods,
5// ensemble approaches, and adaptive threshold management.
6
7use super::config::*;
8use super::optimizer::{Adaptation, AdaptationPriority, AdaptationType, StreamingDataPoint};
9
10use scirs2_core::numeric::Float;
11use serde::{Deserialize, Serialize};
12use std::collections::{HashMap, VecDeque};
13use std::time::{Duration, Instant};
14
15/// Comprehensive anomaly detector for streaming data
16pub struct AnomalyDetector<A: Float + Send + Sync> {
17    /// Anomaly detection configuration
18    config: AnomalyConfig,
19    /// Statistical anomaly detectors
20    statistical_detectors: HashMap<String, Box<dyn StatisticalAnomalyDetector<A>>>,
21    /// Machine learning-based detectors
22    ml_detectors: HashMap<String, Box<dyn MLAnomalyDetector<A>>>,
23    /// Ensemble detector
24    ensemble_detector: EnsembleAnomalyDetector<A>,
25    /// Adaptive threshold manager
26    threshold_manager: AdaptiveThresholdManager<A>,
27    /// Anomaly history and statistics
28    anomaly_history: VecDeque<AnomalyEvent<A>>,
29    /// False positive tracker
30    false_positive_tracker: FalsePositiveTracker<A>,
31    /// Anomaly response system
32    response_system: AnomalyResponseSystem<A>,
33}
34
35/// Anomaly event record
36#[derive(Debug, Clone)]
37pub struct AnomalyEvent<A: Float + Send + Sync> {
38    /// Event ID
39    pub id: u64,
40    /// Timestamp of detection
41    pub timestamp: Instant,
42    /// Anomaly type
43    pub anomaly_type: AnomalyType,
44    /// Anomaly severity
45    pub severity: AnomalySeverity,
46    /// Confidence score
47    pub confidence: A,
48    /// Anomalous data point
49    pub data_point: StreamingDataPoint<A>,
50    /// Detector that found the anomaly
51    pub detector_name: String,
52    /// Anomaly score
53    pub anomaly_score: A,
54    /// Context information
55    pub context: AnomalyContext<A>,
56    /// Response actions taken
57    pub response_actions: Vec<String>,
58}
59
60/// Types of anomalies that can be detected
61#[derive(Debug, Clone, PartialEq, Eq, Hash)]
62pub enum AnomalyType {
63    /// Statistical outlier
64    StatisticalOutlier,
65    /// Sudden change in pattern
66    PatternChange,
67    /// Temporal anomaly
68    TemporalAnomaly,
69    /// Spatial anomaly in feature space
70    SpatialAnomaly,
71    /// Contextual anomaly
72    ContextualAnomaly,
73    /// Collective anomaly
74    CollectiveAnomaly,
75    /// Point anomaly
76    PointAnomaly,
77    /// Data quality anomaly
78    DataQualityAnomaly,
79    /// Performance anomaly
80    PerformanceAnomaly,
81    /// Custom anomaly type
82    Custom(String),
83}
84
85/// Anomaly severity levels
86#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord)]
87pub enum AnomalySeverity {
88    /// Low severity
89    Low,
90    /// Medium severity
91    Medium,
92    /// High severity
93    High,
94    /// Critical severity requiring immediate action
95    Critical,
96}
97
98/// Context information for anomaly
99#[derive(Debug, Clone)]
100pub struct AnomalyContext<A: Float + Send + Sync> {
101    /// Recent data statistics
102    pub recent_statistics: DataStatistics<A>,
103    /// Performance metrics at detection time
104    pub performance_metrics: Vec<A>,
105    /// Resource usage at detection time
106    pub resource_usage: Vec<A>,
107    /// Recent drift indicators
108    pub drift_indicators: Vec<A>,
109    /// Time since last anomaly
110    pub time_since_last_anomaly: Duration,
111}
112
113/// Data statistics for anomaly context
114#[derive(Debug, Clone)]
115pub struct DataStatistics<A: Float + Send + Sync> {
116    /// Mean values for features
117    pub means: Vec<A>,
118    /// Standard deviations for features
119    pub std_devs: Vec<A>,
120    /// Minimum values
121    pub min_values: Vec<A>,
122    /// Maximum values
123    pub max_values: Vec<A>,
124    /// Median values
125    pub medians: Vec<A>,
126    /// Skewness values
127    pub skewness: Vec<A>,
128    /// Kurtosis values
129    pub kurtosis: Vec<A>,
130}
131
132/// Trait for statistical anomaly detectors
133pub trait StatisticalAnomalyDetector<A: Float + Send + Sync>: Send + Sync {
134    /// Detects anomalies in the given data point
135    fn detect_anomaly(
136        &mut self,
137        data_point: &StreamingDataPoint<A>,
138    ) -> Result<AnomalyDetectionResult<A>, String>;
139
140    /// Updates the detector with new data
141    fn update(&mut self, data_point: &StreamingDataPoint<A>) -> Result<(), String>;
142
143    /// Resets the detector state
144    fn reset(&mut self);
145
146    /// Gets the detector name
147    fn name(&self) -> String;
148
149    /// Gets current detection threshold
150    fn get_threshold(&self) -> A;
151
152    /// Sets detection threshold
153    fn set_threshold(&mut self, threshold: A);
154}
155
156/// Trait for machine learning-based anomaly detectors
157pub trait MLAnomalyDetector<A: Float + Send + Sync>: Send + Sync {
158    /// Detects anomalies using ML model
159    fn detect_anomaly(
160        &mut self,
161        data_point: &StreamingDataPoint<A>,
162    ) -> Result<AnomalyDetectionResult<A>, String>;
163
164    /// Trains the ML model with new data
165    fn train(&mut self, training_data: &[StreamingDataPoint<A>]) -> Result<(), String>;
166
167    /// Updates the model incrementally
168    fn update_incremental(&mut self, data_point: &StreamingDataPoint<A>) -> Result<(), String>;
169
170    /// Gets model performance metrics
171    fn get_performance_metrics(&self) -> MLModelMetrics<A>;
172
173    /// Gets detector name
174    fn name(&self) -> String;
175}
176
177/// Result of anomaly detection
178#[derive(Debug, Clone)]
179pub struct AnomalyDetectionResult<A: Float + Send + Sync> {
180    /// Whether an anomaly was detected
181    pub is_anomaly: bool,
182    /// Anomaly score (higher = more anomalous)
183    pub anomaly_score: A,
184    /// Confidence in the detection
185    pub confidence: A,
186    /// Anomaly type if detected
187    pub anomaly_type: Option<AnomalyType>,
188    /// Severity level
189    pub severity: AnomalySeverity,
190    /// Additional metadata
191    pub metadata: HashMap<String, A>,
192}
193
194/// Performance metrics for ML models
195#[derive(Debug, Clone)]
196pub struct MLModelMetrics<A: Float + Send + Sync> {
197    /// Accuracy of anomaly detection
198    pub accuracy: A,
199    /// Precision (true positives / (true positives + false positives))
200    pub precision: A,
201    /// Recall (true positives / (true positives + false negatives))
202    pub recall: A,
203    /// F1 score
204    pub f1_score: A,
205    /// Area under ROC curve
206    pub auc_roc: A,
207    /// False positive rate
208    pub false_positive_rate: A,
209    /// Training time
210    pub training_time: Duration,
211    /// Inference time per sample
212    pub inference_time: Duration,
213}
214
215/// Ensemble anomaly detector combining multiple methods
216pub struct EnsembleAnomalyDetector<A: Float + Send + Sync> {
217    /// Individual detector results
218    detector_results: HashMap<String, AnomalyDetectionResult<A>>,
219    /// Ensemble voting strategy
220    voting_strategy: EnsembleVotingStrategy,
221    /// Detector weights for weighted voting
222    detector_weights: HashMap<String, A>,
223    /// Performance tracking for adaptive weighting
224    detector_performance: HashMap<String, DetectorPerformance<A>>,
225    /// Ensemble configuration
226    ensemble_config: EnsembleConfig<A>,
227}
228
229/// Ensemble voting strategies
230#[derive(Debug, Clone)]
231pub enum EnsembleVotingStrategy {
232    /// Simple majority voting
233    Majority,
234    /// Weighted voting based on detector performance
235    Weighted,
236    /// Maximum anomaly score
237    MaxScore,
238    /// Average anomaly score
239    AverageScore,
240    /// Median anomaly score
241    MedianScore,
242    /// Adaptive voting based on context
243    Adaptive,
244    /// Stacking with meta-learner
245    Stacking,
246}
247
248/// Performance tracking for individual detectors
249#[derive(Debug, Clone)]
250pub struct DetectorPerformance<A: Float + Send + Sync> {
251    /// Recent accuracy
252    pub recent_accuracy: A,
253    /// Historical accuracy
254    pub historical_accuracy: A,
255    /// False positive rate
256    pub false_positive_rate: A,
257    /// False negative rate
258    pub false_negative_rate: A,
259    /// Detection latency
260    pub detection_latency: Duration,
261    /// Reliability score
262    pub reliability_score: A,
263}
264
265/// Ensemble configuration
266#[derive(Debug, Clone)]
267pub struct EnsembleConfig<A: Float + Send + Sync> {
268    /// Minimum number of detectors that must agree
269    pub min_consensus: usize,
270    /// Threshold for ensemble anomaly score
271    pub ensemble_threshold: A,
272    /// Enable dynamic detector weighting
273    pub dynamic_weighting: bool,
274    /// Performance evaluation window
275    pub evaluation_window: usize,
276    /// Enable detector selection based on context
277    pub context_based_selection: bool,
278}
279
280/// Adaptive threshold management system
281pub struct AdaptiveThresholdManager<A: Float + Send + Sync> {
282    /// Current thresholds for different detectors
283    thresholds: HashMap<String, A>,
284    /// Threshold adaptation strategy
285    adaptation_strategy: ThresholdAdaptationStrategy,
286    /// Performance feedback for threshold adjustment
287    performance_feedback: VecDeque<ThresholdPerformanceFeedback<A>>,
288    /// Threshold bounds
289    threshold_bounds: HashMap<String, (A, A)>,
290    /// Adaptation parameters
291    adaptation_params: ThresholdAdaptationParams<A>,
292}
293
294/// Threshold adaptation strategies
295#[derive(Debug, Clone)]
296pub enum ThresholdAdaptationStrategy {
297    /// Fixed thresholds
298    Fixed,
299    /// Performance-based adaptation
300    PerformanceBased,
301    /// Quantile-based adaptation
302    QuantileBased { quantile: f64 },
303    /// ROC-optimized thresholds
304    ROCOptimized,
305    /// Precision-recall optimized
306    PROptimized,
307    /// False positive rate controlled
308    FPRControlled { target_fpr: f64 },
309    /// Adaptive based on data distribution
310    DistributionAdaptive,
311}
312
313/// Performance feedback for threshold adaptation
314#[derive(Debug, Clone)]
315pub struct ThresholdPerformanceFeedback<A: Float + Send + Sync> {
316    /// Detector name
317    pub detector_name: String,
318    /// Threshold value
319    pub threshold: A,
320    /// True positives
321    pub true_positives: usize,
322    /// False positives
323    pub false_positives: usize,
324    /// True negatives
325    pub true_negatives: usize,
326    /// False negatives
327    pub false_negatives: usize,
328    /// Timestamp
329    pub timestamp: Instant,
330}
331
332/// Threshold adaptation parameters
333#[derive(Debug, Clone)]
334pub struct ThresholdAdaptationParams<A: Float + Send + Sync> {
335    /// Learning rate for threshold updates
336    pub learning_rate: A,
337    /// Momentum for threshold changes
338    pub momentum: A,
339    /// Minimum threshold change
340    pub min_change: A,
341    /// Maximum threshold change per update
342    pub max_change: A,
343    /// Adaptation frequency
344    pub adaptation_frequency: usize,
345}
346
347/// False positive tracking system
348pub struct FalsePositiveTracker<A: Float + Send + Sync> {
349    /// Recent false positive events
350    false_positives: VecDeque<FalsePositiveEvent<A>>,
351    /// False positive rate calculation
352    fp_rate_calculator: FPRateCalculator<A>,
353    /// Patterns in false positives
354    fp_patterns: FalsePositivePatterns<A>,
355    /// Mitigation strategies
356    mitigation_strategies: Vec<FPMitigationStrategy>,
357}
358
359/// False positive event
360#[derive(Debug, Clone)]
361pub struct FalsePositiveEvent<A: Float + Send + Sync> {
362    /// Event timestamp
363    pub timestamp: Instant,
364    /// Data point incorrectly flagged
365    pub data_point: StreamingDataPoint<A>,
366    /// Detector that generated false positive
367    pub detector_name: String,
368    /// Anomaly score given
369    pub anomaly_score: A,
370    /// Context at time of false positive
371    pub context: AnomalyContext<A>,
372}
373
374/// False positive rate calculator
375pub struct FPRateCalculator<A: Float + Send + Sync> {
376    /// Recent detection results
377    recent_results: VecDeque<DetectionResult>,
378    /// Calculation window size
379    window_size: usize,
380    /// Current false positive rate
381    current_fp_rate: A,
382    /// Target false positive rate
383    target_fp_rate: A,
384}
385
386/// Detection result for FP rate calculation
387#[derive(Debug, Clone)]
388pub struct DetectionResult {
389    /// Timestamp
390    pub timestamp: Instant,
391    /// Was anomaly detected
392    pub anomaly_detected: bool,
393    /// Was it actually an anomaly (ground truth)
394    pub ground_truth: Option<bool>,
395    /// Detector name
396    pub detector_name: String,
397}
398
399/// Patterns in false positives
400#[derive(Debug, Clone)]
401pub struct FalsePositivePatterns<A: Float + Send + Sync> {
402    /// Temporal patterns
403    pub temporal_patterns: Vec<TemporalPattern>,
404    /// Feature-based patterns
405    pub feature_patterns: HashMap<String, A>,
406    /// Context patterns
407    pub context_patterns: Vec<ContextPattern<A>>,
408    /// Detector-specific patterns
409    pub detector_patterns: HashMap<String, Vec<A>>,
410}
411
412/// Temporal pattern in false positives
413#[derive(Debug, Clone)]
414pub struct TemporalPattern {
415    /// Pattern type
416    pub pattern_type: TemporalPatternType,
417    /// Pattern strength
418    pub strength: f64,
419    /// Pattern period (if periodic)
420    pub period: Option<Duration>,
421    /// Pattern confidence
422    pub confidence: f64,
423}
424
425/// Types of temporal patterns
426#[derive(Debug, Clone)]
427pub enum TemporalPatternType {
428    /// Periodic false positives
429    Periodic,
430    /// False positives at specific times
431    TimeSpecific,
432    /// Burst of false positives
433    Burst,
434    /// Gradual increase in false positives
435    Trend,
436}
437
438/// Context pattern for false positives
439#[derive(Debug, Clone)]
440pub struct ContextPattern<A: Float + Send + Sync> {
441    /// Context features associated with false positives
442    pub context_features: Vec<A>,
443    /// Pattern frequency
444    pub frequency: usize,
445    /// Pattern reliability
446    pub reliability: A,
447}
448
449/// False positive mitigation strategies
450#[derive(Debug, Clone)]
451pub enum FPMitigationStrategy {
452    /// Adjust detection thresholds
453    ThresholdAdjustment,
454    /// Feature selection/weighting
455    FeatureAdjustment,
456    /// Ensemble reweighting
457    EnsembleReweighting,
458    /// Context-aware filtering
459    ContextFiltering,
460    /// Temporal filtering
461    TemporalFiltering,
462    /// Model retraining
463    ModelRetraining,
464}
465
466/// Anomaly response system
467pub struct AnomalyResponseSystem<A: Float + Send + Sync> {
468    /// Response strategies
469    response_strategies: HashMap<AnomalyType, Vec<ResponseAction>>,
470    /// Response execution engine
471    response_executor: ResponseExecutor<A>,
472    /// Response effectiveness tracking
473    effectiveness_tracker: ResponseEffectivenessTracker<A>,
474    /// Escalation rules
475    escalation_rules: Vec<EscalationRule<A>>,
476}
477
478/// Response actions for anomalies
479#[derive(Debug, Clone)]
480pub enum ResponseAction {
481    /// Log the anomaly
482    Log,
483    /// Alert operators
484    Alert,
485    /// Quarantine the data
486    Quarantine,
487    /// Adjust model parameters
488    ModelAdjustment,
489    /// Increase monitoring
490    IncreaseMonitoring,
491    /// Trigger recovery procedure
492    TriggerRecovery,
493    /// Custom action
494    Custom(String),
495}
496
497/// Response execution engine
498pub struct ResponseExecutor<A: Float + Send + Sync> {
499    /// Pending responses
500    pending_responses: VecDeque<PendingResponse<A>>,
501    /// Response execution history
502    execution_history: VecDeque<ResponseExecution<A>>,
503    /// Resource limits for responses
504    resource_limits: ResponseResourceLimits,
505}
506
507/// Pending response action
508#[derive(Debug, Clone)]
509pub struct PendingResponse<A: Float + Send + Sync> {
510    /// Response ID
511    pub id: u64,
512    /// Associated anomaly event
513    pub anomaly_event: AnomalyEvent<A>,
514    /// Response action to execute
515    pub action: ResponseAction,
516    /// Priority level
517    pub priority: ResponsePriority,
518    /// Scheduled execution time
519    pub scheduled_time: Instant,
520    /// Timeout for execution
521    pub timeout: Duration,
522}
523
524/// Response execution record
525#[derive(Debug, Clone)]
526pub struct ResponseExecution<A: Float + Send + Sync> {
527    /// Execution ID
528    pub id: u64,
529    /// Response that was executed
530    pub response: PendingResponse<A>,
531    /// Execution start time
532    pub start_time: Instant,
533    /// Execution duration
534    pub duration: Duration,
535    /// Success status
536    pub success: bool,
537    /// Error message if failed
538    pub error_message: Option<String>,
539    /// Resources consumed
540    pub resources_consumed: HashMap<String, A>,
541}
542
543/// Response priority levels
544#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord)]
545pub enum ResponsePriority {
546    /// Low priority
547    Low = 0,
548    /// Normal priority
549    Normal = 1,
550    /// High priority
551    High = 2,
552    /// Critical priority
553    Critical = 3,
554}
555
556/// Resource limits for response execution
557#[derive(Debug, Clone)]
558pub struct ResponseResourceLimits {
559    /// Maximum concurrent responses
560    pub max_concurrent_responses: usize,
561    /// Maximum CPU usage for responses
562    pub max_cpu_usage: f64,
563    /// Maximum memory usage for responses
564    pub max_memory_usage: usize,
565    /// Maximum response execution time
566    pub max_execution_time: Duration,
567}
568
569/// Response effectiveness tracking
570pub struct ResponseEffectivenessTracker<A: Float + Send + Sync> {
571    /// Effectiveness metrics per response type
572    effectiveness_metrics: HashMap<ResponseAction, EffectivenessMetrics<A>>,
573    /// Response outcome tracking
574    outcome_tracking: VecDeque<ResponseOutcome<A>>,
575    /// Effectiveness trends
576    effectiveness_trends: HashMap<ResponseAction, TrendAnalysis<A>>,
577}
578
579/// Effectiveness metrics for responses
580#[derive(Debug, Clone)]
581pub struct EffectivenessMetrics<A: Float + Send + Sync> {
582    /// Success rate
583    pub success_rate: A,
584    /// Average response time
585    pub avg_response_time: Duration,
586    /// Problem resolution rate
587    pub resolution_rate: A,
588    /// False alarm reduction
589    pub false_alarm_reduction: A,
590    /// Cost-benefit ratio
591    pub cost_benefit_ratio: A,
592}
593
594/// Response outcome record
595#[derive(Debug, Clone)]
596pub struct ResponseOutcome<A: Float + Send + Sync> {
597    /// Response execution
598    pub execution: ResponseExecution<A>,
599    /// Outcome measurement
600    pub outcome: OutcomeMeasurement<A>,
601    /// Follow-up required
602    pub follow_up_required: bool,
603    /// Lessons learned
604    pub lessons_learned: Vec<String>,
605}
606
607/// Measurement of response outcome
608#[derive(Debug, Clone)]
609pub struct OutcomeMeasurement<A: Float + Send + Sync> {
610    /// Did response resolve the issue
611    pub issue_resolved: bool,
612    /// Time to resolution
613    pub time_to_resolution: Duration,
614    /// Performance impact
615    pub performance_impact: A,
616    /// Side effects observed
617    pub side_effects: Vec<String>,
618    /// Overall effectiveness score
619    pub effectiveness_score: A,
620}
621
622/// Trend analysis for response effectiveness
623#[derive(Debug, Clone)]
624pub struct TrendAnalysis<A: Float + Send + Sync> {
625    /// Trend direction
626    pub trend_direction: TrendDirection,
627    /// Trend magnitude
628    pub trend_magnitude: A,
629    /// Trend confidence
630    pub trend_confidence: A,
631    /// Trend stability
632    pub trend_stability: A,
633}
634
635/// Trend directions
636#[derive(Debug, Clone, PartialEq, Eq)]
637pub enum TrendDirection {
638    /// Improving effectiveness
639    Improving,
640    /// Declining effectiveness
641    Declining,
642    /// Stable effectiveness
643    Stable,
644    /// Oscillating effectiveness
645    Oscillating,
646}
647
648/// Escalation rules for severe anomalies
649#[derive(Debug, Clone)]
650pub struct EscalationRule<A: Float + Send + Sync> {
651    /// Rule name
652    pub name: String,
653    /// Conditions for escalation
654    pub conditions: Vec<EscalationCondition<A>>,
655    /// Escalation actions
656    pub actions: Vec<EscalationAction>,
657    /// Priority level
658    pub priority: EscalationPriority,
659}
660
661/// Escalation conditions
662#[derive(Debug, Clone)]
663pub struct EscalationCondition<A: Float + Send + Sync> {
664    /// Condition type
665    pub condition_type: EscalationConditionType,
666    /// Threshold value
667    pub threshold: A,
668    /// Time window for condition
669    pub time_window: Duration,
670}
671
672/// Types of escalation conditions
673#[derive(Debug, Clone)]
674pub enum EscalationConditionType {
675    /// Multiple anomalies in time window
676    MultipleAnomalies,
677    /// High severity anomaly
678    HighSeverity,
679    /// Response failure
680    ResponseFailure,
681    /// Performance degradation
682    PerformanceDegradation,
683    /// Resource exhaustion
684    ResourceExhaustion,
685}
686
687/// Escalation actions
688#[derive(Debug, Clone)]
689pub enum EscalationAction {
690    /// Notify administrators
691    NotifyAdmin,
692    /// Trigger emergency protocols
693    EmergencyProtocol,
694    /// Shutdown affected systems
695    SystemShutdown,
696    /// Activate backup systems
697    ActivateBackup,
698    /// Increase resource allocation
699    IncreaseResources,
700}
701
702/// Escalation priority levels
703#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord)]
704pub enum EscalationPriority {
705    /// Normal escalation
706    Normal = 0,
707    /// Urgent escalation
708    Urgent = 1,
709    /// Emergency escalation
710    Emergency = 2,
711}
712
713impl<A: Float + Default + Clone + std::iter::Sum + Send + Sync + 'static> AnomalyDetector<A> {
714    /// Creates a new anomaly detector
715    pub fn new(config: &StreamingConfig) -> Result<Self, String> {
716        let anomaly_config = config.anomaly_config.clone();
717
718        let mut statistical_detectors: HashMap<String, Box<dyn StatisticalAnomalyDetector<A>>> =
719            HashMap::new();
720        let mut ml_detectors: HashMap<String, Box<dyn MLAnomalyDetector<A>>> = HashMap::new();
721
722        // Initialize statistical detectors
723        statistical_detectors.insert(
724            "zscore".to_string(),
725            Box::new(ZScoreDetector::new(anomaly_config.threshold)?),
726        );
727        statistical_detectors.insert(
728            "iqr".to_string(),
729            Box::new(IQRDetector::new(anomaly_config.threshold)?),
730        );
731
732        // Initialize ML detectors based on method
733        match anomaly_config.detection_method {
734            AnomalyDetectionMethod::IsolationForest => {
735                ml_detectors.insert(
736                    "isolation_forest".to_string(),
737                    Box::new(IsolationForestDetector::new()?),
738                );
739            }
740            AnomalyDetectionMethod::OneClassSVM => {
741                ml_detectors.insert(
742                    "one_class_svm".to_string(),
743                    Box::new(OneClassSVMDetector::new()?),
744                );
745            }
746            AnomalyDetectionMethod::LocalOutlierFactor => {
747                ml_detectors.insert("lof".to_string(), Box::new(LOFDetector::new()?));
748            }
749            _ => {
750                // Use statistical methods for other cases
751            }
752        }
753
754        let ensemble_detector = EnsembleAnomalyDetector::new(EnsembleVotingStrategy::Weighted)?;
755        let threshold_manager =
756            AdaptiveThresholdManager::new(ThresholdAdaptationStrategy::PerformanceBased)?;
757        let false_positive_tracker = FalsePositiveTracker::new();
758        let response_system = AnomalyResponseSystem::new(&anomaly_config.response_strategy)?;
759
760        Ok(Self {
761            config: anomaly_config,
762            statistical_detectors,
763            ml_detectors,
764            ensemble_detector,
765            threshold_manager,
766            anomaly_history: VecDeque::with_capacity(10000),
767            false_positive_tracker,
768            response_system,
769        })
770    }
771
772    /// Detects anomalies in a data point
773    pub fn detect_anomaly(&mut self, data_point: &StreamingDataPoint<A>) -> Result<bool, String> {
774        let mut detection_results = HashMap::new();
775
776        // Run statistical detectors
777        for (name, detector) in &mut self.statistical_detectors {
778            let result = detector.detect_anomaly(data_point)?;
779            detection_results.insert(name.clone(), result);
780        }
781
782        // Run ML detectors
783        for (name, detector) in &mut self.ml_detectors {
784            let result = detector.detect_anomaly(data_point)?;
785            detection_results.insert(name.clone(), result);
786        }
787
788        // Combine results using ensemble
789        let ensemble_result = self.ensemble_detector.combine_results(detection_results)?;
790
791        // Check if anomaly was detected
792        if ensemble_result.is_anomaly {
793            // Create anomaly event
794            let anomaly_event = AnomalyEvent {
795                id: self.generate_event_id(),
796                timestamp: Instant::now(),
797                anomaly_type: ensemble_result
798                    .anomaly_type
799                    .as_ref()
800                    .cloned()
801                    .unwrap_or(AnomalyType::StatisticalOutlier),
802                severity: ensemble_result.severity.clone(),
803                confidence: ensemble_result.confidence,
804                data_point: data_point.clone(),
805                detector_name: "ensemble".to_string(),
806                anomaly_score: ensemble_result.anomaly_score,
807                context: self.create_anomaly_context(data_point)?,
808                response_actions: Vec::new(),
809            };
810
811            // Record anomaly
812            self.record_anomaly(anomaly_event)?;
813
814            // Trigger response
815            self.response_system
816                .trigger_response(&ensemble_result, data_point)?;
817
818            return Ok(true);
819        }
820
821        // Update detectors with normal data
822        for detector in self.statistical_detectors.values_mut() {
823            detector.update(data_point)?;
824        }
825
826        for detector in self.ml_detectors.values_mut() {
827            detector.update_incremental(data_point)?;
828        }
829
830        Ok(false)
831    }
832
833    /// Generates unique event ID
834    fn generate_event_id(&self) -> u64 {
835        self.anomaly_history.len() as u64 + 1
836    }
837
838    /// Creates anomaly context
839    fn create_anomaly_context(
840        &self,
841        data_point: &StreamingDataPoint<A>,
842    ) -> Result<AnomalyContext<A>, String> {
843        // Calculate recent statistics
844        let recent_statistics = self.calculate_recent_statistics()?;
845
846        // Get performance metrics (simplified)
847        let performance_metrics = vec![A::from(0.8).unwrap(), A::from(0.7).unwrap()];
848
849        // Get resource usage (simplified)
850        let resource_usage = vec![A::from(0.6).unwrap(), A::from(0.5).unwrap()];
851
852        // Get drift indicators (simplified)
853        let drift_indicators = vec![A::from(0.1).unwrap()];
854
855        // Calculate time since last anomaly
856        let time_since_last_anomaly = if let Some(last_anomaly) = self.anomaly_history.back() {
857            last_anomaly.timestamp.elapsed()
858        } else {
859            Duration::from_secs(3600) // Default 1 hour
860        };
861
862        Ok(AnomalyContext {
863            recent_statistics,
864            performance_metrics,
865            resource_usage,
866            drift_indicators,
867            time_since_last_anomaly,
868        })
869    }
870
871    /// Calculates recent data statistics
872    fn calculate_recent_statistics(&self) -> Result<DataStatistics<A>, String> {
873        // Simplified implementation - would use actual recent data
874        Ok(DataStatistics {
875            means: vec![A::from(0.5).unwrap(), A::from(0.3).unwrap()],
876            std_devs: vec![A::from(0.1).unwrap(), A::from(0.15).unwrap()],
877            min_values: vec![A::from(0.0).unwrap(), A::from(0.0).unwrap()],
878            max_values: vec![A::from(1.0).unwrap(), A::from(1.0).unwrap()],
879            medians: vec![A::from(0.5).unwrap(), A::from(0.3).unwrap()],
880            skewness: vec![A::from(0.0).unwrap(), A::from(0.1).unwrap()],
881            kurtosis: vec![A::from(0.0).unwrap(), A::from(0.0).unwrap()],
882        })
883    }
884
885    /// Records anomaly in history
886    fn record_anomaly(&mut self, anomaly_event: AnomalyEvent<A>) -> Result<(), String> {
887        if self.anomaly_history.len() >= 10000 {
888            self.anomaly_history.pop_front();
889        }
890        self.anomaly_history.push_back(anomaly_event);
891        Ok(())
892    }
893
894    /// Applies adaptation to anomaly detection parameters
895    pub fn apply_adaptation(&mut self, adaptation: &Adaptation<A>) -> Result<(), String> {
896        if adaptation.adaptation_type == AdaptationType::AnomalyDetection {
897            // Adjust detection thresholds
898            let threshold_adjustment = adaptation.magnitude;
899
900            for detector in self.statistical_detectors.values_mut() {
901                let current_threshold = detector.get_threshold();
902                let new_threshold = current_threshold + threshold_adjustment;
903                detector.set_threshold(new_threshold);
904            }
905
906            // Update ensemble configuration
907            self.ensemble_detector
908                .adjust_sensitivity(threshold_adjustment)?;
909        }
910
911        Ok(())
912    }
913
914    /// Gets recent anomaly events
915    pub fn get_recent_anomalies(&self, count: usize) -> Vec<&AnomalyEvent<A>> {
916        self.anomaly_history.iter().rev().take(count).collect()
917    }
918
919    /// Gets diagnostic information
920    pub fn get_diagnostics(&self) -> AnomalyDiagnostics {
921        AnomalyDiagnostics {
922            total_anomalies: self.anomaly_history.len(),
923            recent_anomaly_rate: self.calculate_recent_anomaly_rate(),
924            false_positive_rate: self.false_positive_tracker.get_current_fp_rate(),
925            detector_count: self.statistical_detectors.len() + self.ml_detectors.len(),
926            response_success_rate: self.response_system.get_success_rate(),
927        }
928    }
929
930    /// Calculates recent anomaly rate
931    fn calculate_recent_anomaly_rate(&self) -> f64 {
932        let recent_window = Duration::from_secs(3600); // 1 hour
933        let cutoff_time = Instant::now() - recent_window;
934
935        let recent_count = self
936            .anomaly_history
937            .iter()
938            .filter(|event| event.timestamp > cutoff_time)
939            .count();
940
941        recent_count as f64 / 3600.0 // Anomalies per second
942    }
943}
944
945// Simplified implementations of detector types
946
947/// Z-Score based statistical detector
948pub struct ZScoreDetector<A: Float + Send + Sync> {
949    threshold: A,
950    running_mean: A,
951    running_variance: A,
952    sample_count: usize,
953}
954
955impl<A: Float + Default + Clone + Send + Sync + Send + Sync> ZScoreDetector<A> {
956    fn new(threshold: f64) -> Result<Self, String> {
957        Ok(Self {
958            threshold: A::from(threshold).unwrap(),
959            running_mean: A::zero(),
960            running_variance: A::zero(),
961            sample_count: 0,
962        })
963    }
964}
965
966impl<A: Float + Default + Clone + Send + Sync + std::iter::Sum> StatisticalAnomalyDetector<A>
967    for ZScoreDetector<A>
968{
969    fn detect_anomaly(
970        &mut self,
971        data_point: &StreamingDataPoint<A>,
972    ) -> Result<AnomalyDetectionResult<A>, String> {
973        if self.sample_count < 10 {
974            // Not enough samples for reliable detection
975            return Ok(AnomalyDetectionResult {
976                is_anomaly: false,
977                anomaly_score: A::zero(),
978                confidence: A::zero(),
979                anomaly_type: None,
980                severity: AnomalySeverity::Low,
981                metadata: HashMap::new(),
982            });
983        }
984
985        // Calculate Z-score for the data point
986        let feature_sum = data_point.features.iter().cloned().sum::<A>();
987        let z_score = if self.running_variance > A::zero() {
988            (feature_sum - self.running_mean) / self.running_variance.sqrt()
989        } else {
990            A::zero()
991        };
992
993        let is_anomaly = z_score.abs() > self.threshold;
994        let anomaly_score = z_score.abs();
995
996        Ok(AnomalyDetectionResult {
997            is_anomaly,
998            anomaly_score,
999            confidence: if is_anomaly {
1000                A::from(0.8).unwrap()
1001            } else {
1002                A::from(0.2).unwrap()
1003            },
1004            anomaly_type: if is_anomaly {
1005                Some(AnomalyType::StatisticalOutlier)
1006            } else {
1007                None
1008            },
1009            severity: if anomaly_score > A::from(3.0).unwrap() {
1010                AnomalySeverity::High
1011            } else if anomaly_score > A::from(2.0).unwrap() {
1012                AnomalySeverity::Medium
1013            } else {
1014                AnomalySeverity::Low
1015            },
1016            metadata: HashMap::new(),
1017        })
1018    }
1019
1020    fn update(&mut self, data_point: &StreamingDataPoint<A>) -> Result<(), String> {
1021        let feature_sum = data_point.features.iter().cloned().sum::<A>();
1022
1023        // Update running statistics
1024        self.sample_count += 1;
1025        let delta = feature_sum - self.running_mean;
1026        self.running_mean = self.running_mean + delta / A::from(self.sample_count).unwrap();
1027        let delta2 = feature_sum - self.running_mean;
1028        self.running_variance = self.running_variance + delta * delta2;
1029
1030        Ok(())
1031    }
1032
1033    fn reset(&mut self) {
1034        self.running_mean = A::zero();
1035        self.running_variance = A::zero();
1036        self.sample_count = 0;
1037    }
1038
1039    fn name(&self) -> String {
1040        "zscore".to_string()
1041    }
1042
1043    fn get_threshold(&self) -> A {
1044        self.threshold
1045    }
1046
1047    fn set_threshold(&mut self, threshold: A) {
1048        self.threshold = threshold;
1049    }
1050}
1051
1052/// IQR-based statistical detector
1053pub struct IQRDetector<A: Float + Send + Sync> {
1054    threshold: A,
1055    recent_values: VecDeque<A>,
1056    window_size: usize,
1057}
1058
1059impl<A: Float + Default + Clone + Send + Sync + Send + Sync> IQRDetector<A> {
1060    fn new(threshold: f64) -> Result<Self, String> {
1061        Ok(Self {
1062            threshold: A::from(threshold).unwrap(),
1063            recent_values: VecDeque::with_capacity(100),
1064            window_size: 100,
1065        })
1066    }
1067}
1068
1069impl<A: Float + Default + Clone + Send + Sync + std::iter::Sum> StatisticalAnomalyDetector<A>
1070    for IQRDetector<A>
1071{
1072    fn detect_anomaly(
1073        &mut self,
1074        data_point: &StreamingDataPoint<A>,
1075    ) -> Result<AnomalyDetectionResult<A>, String> {
1076        if self.recent_values.len() < 20 {
1077            return Ok(AnomalyDetectionResult {
1078                is_anomaly: false,
1079                anomaly_score: A::zero(),
1080                confidence: A::zero(),
1081                anomaly_type: None,
1082                severity: AnomalySeverity::Low,
1083                metadata: HashMap::new(),
1084            });
1085        }
1086
1087        // Calculate IQR
1088        let mut sorted_values: Vec<A> = self.recent_values.iter().cloned().collect();
1089        sorted_values.sort_by(|a, b| a.partial_cmp(b).unwrap());
1090
1091        let q1_idx = sorted_values.len() / 4;
1092        let q3_idx = 3 * sorted_values.len() / 4;
1093        let q1 = sorted_values[q1_idx];
1094        let q3 = sorted_values[q3_idx];
1095        let iqr = q3 - q1;
1096
1097        let lower_bound = q1 - self.threshold * iqr;
1098        let upper_bound = q3 + self.threshold * iqr;
1099
1100        let feature_sum = data_point.features.iter().cloned().sum::<A>();
1101        let is_anomaly = feature_sum < lower_bound || feature_sum > upper_bound;
1102
1103        let distance_from_bounds = if feature_sum < lower_bound {
1104            lower_bound - feature_sum
1105        } else if feature_sum > upper_bound {
1106            feature_sum - upper_bound
1107        } else {
1108            A::zero()
1109        };
1110
1111        Ok(AnomalyDetectionResult {
1112            is_anomaly,
1113            anomaly_score: distance_from_bounds / iqr.max(A::from(1e-8).unwrap()),
1114            confidence: if is_anomaly {
1115                A::from(0.7).unwrap()
1116            } else {
1117                A::from(0.3).unwrap()
1118            },
1119            anomaly_type: if is_anomaly {
1120                Some(AnomalyType::StatisticalOutlier)
1121            } else {
1122                None
1123            },
1124            severity: if distance_from_bounds > iqr * A::from(2.0).unwrap() {
1125                AnomalySeverity::High
1126            } else {
1127                AnomalySeverity::Medium
1128            },
1129            metadata: HashMap::new(),
1130        })
1131    }
1132
1133    fn update(&mut self, data_point: &StreamingDataPoint<A>) -> Result<(), String> {
1134        let feature_sum = data_point.features.iter().cloned().sum::<A>();
1135
1136        if self.recent_values.len() >= self.window_size {
1137            self.recent_values.pop_front();
1138        }
1139        self.recent_values.push_back(feature_sum);
1140
1141        Ok(())
1142    }
1143
1144    fn reset(&mut self) {
1145        self.recent_values.clear();
1146    }
1147
1148    fn name(&self) -> String {
1149        "iqr".to_string()
1150    }
1151
1152    fn get_threshold(&self) -> A {
1153        self.threshold
1154    }
1155
1156    fn set_threshold(&mut self, threshold: A) {
1157        self.threshold = threshold;
1158    }
1159}
1160
1161// Simplified ML detector implementations
1162pub struct IsolationForestDetector<A: Float + Send + Sync> {
1163    model_trained: bool,
1164    threshold: A,
1165}
1166
1167impl<A: Float + Default + Send + Sync + Send + Sync> IsolationForestDetector<A> {
1168    fn new() -> Result<Self, String> {
1169        Ok(Self {
1170            model_trained: false,
1171            threshold: A::from(0.5).unwrap(),
1172        })
1173    }
1174}
1175
1176impl<A: Float + Default + Clone + Send + Sync + std::iter::Sum> MLAnomalyDetector<A>
1177    for IsolationForestDetector<A>
1178{
1179    fn detect_anomaly(
1180        &mut self,
1181        data_point: &StreamingDataPoint<A>,
1182    ) -> Result<AnomalyDetectionResult<A>, String> {
1183        // Simplified implementation
1184        let anomaly_score = A::from(0.3).unwrap(); // Placeholder
1185        Ok(AnomalyDetectionResult {
1186            is_anomaly: anomaly_score > self.threshold,
1187            anomaly_score,
1188            confidence: A::from(0.6).unwrap(),
1189            anomaly_type: Some(AnomalyType::StatisticalOutlier),
1190            severity: AnomalySeverity::Medium,
1191            metadata: HashMap::new(),
1192        })
1193    }
1194
1195    fn train(&mut self, _training_data: &[StreamingDataPoint<A>]) -> Result<(), String> {
1196        self.model_trained = true;
1197        Ok(())
1198    }
1199
1200    fn update_incremental(&mut self, _data_point: &StreamingDataPoint<A>) -> Result<(), String> {
1201        Ok(())
1202    }
1203
1204    fn get_performance_metrics(&self) -> MLModelMetrics<A> {
1205        MLModelMetrics {
1206            accuracy: A::from(0.85).unwrap(),
1207            precision: A::from(0.8).unwrap(),
1208            recall: A::from(0.75).unwrap(),
1209            f1_score: A::from(0.77).unwrap(),
1210            auc_roc: A::from(0.88).unwrap(),
1211            false_positive_rate: A::from(0.05).unwrap(),
1212            training_time: Duration::from_secs(60),
1213            inference_time: Duration::from_millis(10),
1214        }
1215    }
1216
1217    fn name(&self) -> String {
1218        "isolation_forest".to_string()
1219    }
1220}
1221
1222pub struct OneClassSVMDetector<A: Float + Send + Sync> {
1223    model_trained: bool,
1224    threshold: A,
1225}
1226
1227impl<A: Float + Default + Send + Sync + Send + Sync> OneClassSVMDetector<A> {
1228    fn new() -> Result<Self, String> {
1229        Ok(Self {
1230            model_trained: false,
1231            threshold: A::from(0.0).unwrap(),
1232        })
1233    }
1234}
1235
1236impl<A: Float + Default + Clone + Send + Sync + std::iter::Sum> MLAnomalyDetector<A>
1237    for OneClassSVMDetector<A>
1238{
1239    fn detect_anomaly(
1240        &mut self,
1241        _data_point: &StreamingDataPoint<A>,
1242    ) -> Result<AnomalyDetectionResult<A>, String> {
1243        // Simplified implementation
1244        Ok(AnomalyDetectionResult {
1245            is_anomaly: false,
1246            anomaly_score: A::from(0.2).unwrap(),
1247            confidence: A::from(0.5).unwrap(),
1248            anomaly_type: None,
1249            severity: AnomalySeverity::Low,
1250            metadata: HashMap::new(),
1251        })
1252    }
1253
1254    fn train(&mut self, _training_data: &[StreamingDataPoint<A>]) -> Result<(), String> {
1255        self.model_trained = true;
1256        Ok(())
1257    }
1258
1259    fn update_incremental(&mut self, _data_point: &StreamingDataPoint<A>) -> Result<(), String> {
1260        Ok(())
1261    }
1262
1263    fn get_performance_metrics(&self) -> MLModelMetrics<A> {
1264        MLModelMetrics {
1265            accuracy: A::from(0.82).unwrap(),
1266            precision: A::from(0.78).unwrap(),
1267            recall: A::from(0.73).unwrap(),
1268            f1_score: A::from(0.75).unwrap(),
1269            auc_roc: A::from(0.85).unwrap(),
1270            false_positive_rate: A::from(0.08).unwrap(),
1271            training_time: Duration::from_secs(120),
1272            inference_time: Duration::from_millis(5),
1273        }
1274    }
1275
1276    fn name(&self) -> String {
1277        "one_class_svm".to_string()
1278    }
1279}
1280
1281pub struct LOFDetector<A: Float + Send + Sync> {
1282    model_trained: bool,
1283    threshold: A,
1284}
1285
1286impl<A: Float + Default + Send + Sync + Send + Sync> LOFDetector<A> {
1287    fn new() -> Result<Self, String> {
1288        Ok(Self {
1289            model_trained: false,
1290            threshold: A::from(1.5).unwrap(),
1291        })
1292    }
1293}
1294
1295impl<A: Float + Default + Clone + Send + Sync + std::iter::Sum> MLAnomalyDetector<A>
1296    for LOFDetector<A>
1297{
1298    fn detect_anomaly(
1299        &mut self,
1300        _data_point: &StreamingDataPoint<A>,
1301    ) -> Result<AnomalyDetectionResult<A>, String> {
1302        // Simplified implementation
1303        Ok(AnomalyDetectionResult {
1304            is_anomaly: false,
1305            anomaly_score: A::from(0.1).unwrap(),
1306            confidence: A::from(0.4).unwrap(),
1307            anomaly_type: None,
1308            severity: AnomalySeverity::Low,
1309            metadata: HashMap::new(),
1310        })
1311    }
1312
1313    fn train(&mut self, _training_data: &[StreamingDataPoint<A>]) -> Result<(), String> {
1314        self.model_trained = true;
1315        Ok(())
1316    }
1317
1318    fn update_incremental(&mut self, _data_point: &StreamingDataPoint<A>) -> Result<(), String> {
1319        Ok(())
1320    }
1321
1322    fn get_performance_metrics(&self) -> MLModelMetrics<A> {
1323        MLModelMetrics {
1324            accuracy: A::from(0.79).unwrap(),
1325            precision: A::from(0.76).unwrap(),
1326            recall: A::from(0.71).unwrap(),
1327            f1_score: A::from(0.73).unwrap(),
1328            auc_roc: A::from(0.83).unwrap(),
1329            false_positive_rate: A::from(0.12).unwrap(),
1330            training_time: Duration::from_secs(90),
1331            inference_time: Duration::from_millis(15),
1332        }
1333    }
1334
1335    fn name(&self) -> String {
1336        "lof".to_string()
1337    }
1338}
1339
1340// Simplified implementations for supporting structures
1341
1342impl<A: Float + Default + Clone + Send + Sync + std::iter::Sum> EnsembleAnomalyDetector<A> {
1343    fn new(voting_strategy: EnsembleVotingStrategy) -> Result<Self, String> {
1344        Ok(Self {
1345            detector_results: HashMap::new(),
1346            voting_strategy,
1347            detector_weights: HashMap::new(),
1348            detector_performance: HashMap::new(),
1349            ensemble_config: EnsembleConfig {
1350                min_consensus: 2,
1351                ensemble_threshold: A::from(0.5).unwrap(),
1352                dynamic_weighting: true,
1353                evaluation_window: 100,
1354                context_based_selection: false,
1355            },
1356        })
1357    }
1358
1359    fn combine_results(
1360        &mut self,
1361        results: HashMap<String, AnomalyDetectionResult<A>>,
1362    ) -> Result<AnomalyDetectionResult<A>, String> {
1363        if results.is_empty() {
1364            return Ok(AnomalyDetectionResult {
1365                is_anomaly: false,
1366                anomaly_score: A::zero(),
1367                confidence: A::zero(),
1368                anomaly_type: None,
1369                severity: AnomalySeverity::Low,
1370                metadata: HashMap::new(),
1371            });
1372        }
1373
1374        let anomaly_count = results.values().filter(|r| r.is_anomaly).count();
1375        let total_count = results.len();
1376
1377        let avg_score =
1378            results.values().map(|r| r.anomaly_score).sum::<A>() / A::from(total_count).unwrap();
1379        let avg_confidence =
1380            results.values().map(|r| r.confidence).sum::<A>() / A::from(total_count).unwrap();
1381
1382        let is_anomaly = match self.voting_strategy {
1383            EnsembleVotingStrategy::Majority => anomaly_count > total_count / 2,
1384            EnsembleVotingStrategy::MaxScore => avg_score > self.ensemble_config.ensemble_threshold,
1385            _ => anomaly_count >= self.ensemble_config.min_consensus,
1386        };
1387
1388        Ok(AnomalyDetectionResult {
1389            is_anomaly,
1390            anomaly_score: avg_score,
1391            confidence: avg_confidence,
1392            anomaly_type: if is_anomaly {
1393                Some(AnomalyType::StatisticalOutlier)
1394            } else {
1395                None
1396            },
1397            severity: if avg_score > A::from(0.8).unwrap() {
1398                AnomalySeverity::High
1399            } else if avg_score > A::from(0.5).unwrap() {
1400                AnomalySeverity::Medium
1401            } else {
1402                AnomalySeverity::Low
1403            },
1404            metadata: HashMap::new(),
1405        })
1406    }
1407
1408    fn adjust_sensitivity(&mut self, adjustment: A) -> Result<(), String> {
1409        self.ensemble_config.ensemble_threshold = (self.ensemble_config.ensemble_threshold
1410            + adjustment)
1411            .max(A::from(0.1).unwrap())
1412            .min(A::from(0.9).unwrap());
1413        Ok(())
1414    }
1415}
1416
1417impl<A: Float + Default + Clone + Send + Sync + Send + Sync> AdaptiveThresholdManager<A> {
1418    fn new(strategy: ThresholdAdaptationStrategy) -> Result<Self, String> {
1419        Ok(Self {
1420            thresholds: HashMap::new(),
1421            adaptation_strategy: strategy,
1422            performance_feedback: VecDeque::with_capacity(1000),
1423            threshold_bounds: HashMap::new(),
1424            adaptation_params: ThresholdAdaptationParams {
1425                learning_rate: A::from(0.01).unwrap(),
1426                momentum: A::from(0.9).unwrap(),
1427                min_change: A::from(0.001).unwrap(),
1428                max_change: A::from(0.1).unwrap(),
1429                adaptation_frequency: 100,
1430            },
1431        })
1432    }
1433}
1434
1435impl<A: Float + Default + Clone + Send + Sync + Send + Sync> FalsePositiveTracker<A> {
1436    fn new() -> Self {
1437        Self {
1438            false_positives: VecDeque::with_capacity(1000),
1439            fp_rate_calculator: FPRateCalculator {
1440                recent_results: VecDeque::with_capacity(1000),
1441                window_size: 1000,
1442                current_fp_rate: A::from(0.05).unwrap(),
1443                target_fp_rate: A::from(0.05).unwrap(),
1444            },
1445            fp_patterns: FalsePositivePatterns {
1446                temporal_patterns: Vec::new(),
1447                feature_patterns: HashMap::new(),
1448                context_patterns: Vec::new(),
1449                detector_patterns: HashMap::new(),
1450            },
1451            mitigation_strategies: vec![
1452                FPMitigationStrategy::ThresholdAdjustment,
1453                FPMitigationStrategy::ContextFiltering,
1454            ],
1455        }
1456    }
1457
1458    fn get_current_fp_rate(&self) -> f64 {
1459        self.fp_rate_calculator
1460            .current_fp_rate
1461            .to_f64()
1462            .unwrap_or(0.05)
1463    }
1464}
1465
1466impl<A: Float + Default + Clone + Send + Sync + Send + Sync> AnomalyResponseSystem<A> {
1467    fn new(response_strategy: &AnomalyResponseStrategy) -> Result<Self, String> {
1468        let mut response_strategies = HashMap::new();
1469
1470        // Set up default response strategies
1471        match response_strategy {
1472            AnomalyResponseStrategy::Ignore => {
1473                response_strategies
1474                    .insert(AnomalyType::StatisticalOutlier, vec![ResponseAction::Log]);
1475            }
1476            AnomalyResponseStrategy::Filter => {
1477                response_strategies.insert(
1478                    AnomalyType::StatisticalOutlier,
1479                    vec![ResponseAction::Quarantine],
1480                );
1481            }
1482            AnomalyResponseStrategy::Adaptive => {
1483                response_strategies.insert(
1484                    AnomalyType::StatisticalOutlier,
1485                    vec![ResponseAction::Log, ResponseAction::ModelAdjustment],
1486                );
1487            }
1488            _ => {
1489                response_strategies
1490                    .insert(AnomalyType::StatisticalOutlier, vec![ResponseAction::Alert]);
1491            }
1492        }
1493
1494        Ok(Self {
1495            response_strategies,
1496            response_executor: ResponseExecutor {
1497                pending_responses: VecDeque::new(),
1498                execution_history: VecDeque::with_capacity(1000),
1499                resource_limits: ResponseResourceLimits {
1500                    max_concurrent_responses: 10,
1501                    max_cpu_usage: 0.2,
1502                    max_memory_usage: 100 * 1024 * 1024, // 100MB
1503                    max_execution_time: Duration::from_secs(60),
1504                },
1505            },
1506            effectiveness_tracker: ResponseEffectivenessTracker {
1507                effectiveness_metrics: HashMap::new(),
1508                outcome_tracking: VecDeque::with_capacity(1000),
1509                effectiveness_trends: HashMap::new(),
1510            },
1511            escalation_rules: Vec::new(),
1512        })
1513    }
1514
1515    fn trigger_response(
1516        &mut self,
1517        _result: &AnomalyDetectionResult<A>,
1518        _data_point: &StreamingDataPoint<A>,
1519    ) -> Result<(), String> {
1520        // Simplified response triggering
1521        Ok(())
1522    }
1523
1524    fn get_success_rate(&self) -> f64 {
1525        // Simplified success rate calculation
1526        0.85
1527    }
1528}
1529
1530/// Diagnostic information for anomaly detection
1531#[derive(Debug, Clone)]
1532pub struct AnomalyDiagnostics {
1533    pub total_anomalies: usize,
1534    pub recent_anomaly_rate: f64,
1535    pub false_positive_rate: f64,
1536    pub detector_count: usize,
1537    pub response_success_rate: f64,
1538}