optirs_core/privacy/
utility_analysis.rs

1// Privacy-Utility Tradeoff Analysis
2//
3// This module provides comprehensive analysis tools for understanding and optimizing
4// the tradeoffs between privacy guarantees and model utility in privacy-preserving
5// machine learning systems.
6
7use crate::error::Result;
8use crate::privacy::{DifferentialPrivacyConfig, NoiseMechanism, PrivacyBudget};
9use scirs2_core::ndarray::{ArrayBase, Data, Dimension};
10use scirs2_core::numeric::Float;
11use scirs2_core::random::{thread_rng, Rng};
12use std::collections::HashMap;
13use std::fmt::Debug;
14
15/// Comprehensive privacy-utility tradeoff analyzer
16pub struct PrivacyUtilityAnalyzer<T: Float + Debug + Send + Sync + 'static> {
17    /// Configuration for analysis
18    config: AnalysisConfig,
19
20    /// Privacy parameter space explorer
21    parameter_explorer: PrivacyParameterExplorer<T>,
22
23    /// Utility metric calculator
24    utility_calculator: UtilityMetricCalculator<T>,
25
26    /// Pareto frontier analyzer
27    pareto_analyzer: ParetoFrontierAnalyzer<T>,
28
29    /// Sensitivity analyzer
30    sensitivity_analyzer: SensitivityAnalyzer<T>,
31
32    /// Robustness evaluator
33    robustness_evaluator: RobustnessEvaluator<T>,
34
35    /// Privacy budget optimizer
36    budget_optimizer: PrivacyBudgetOptimizer<T>,
37
38    /// Multi-objective optimizer for privacy-utility
39    multi_objective_optimizer: MultiObjectiveOptimizer<T>,
40
41    /// Empirical privacy estimator
42    empirical_estimator: EmpiricalPrivacyEstimator<T>,
43
44    /// Utility degradation predictor
45    degradation_predictor: UtilityDegradationPredictor<T>,
46}
47
48/// Configuration for privacy-utility analysis
49#[derive(Debug, Clone)]
50pub struct AnalysisConfig {
51    /// Privacy parameters to analyze
52    pub privacy_parameters: PrivacyParameterSpace,
53
54    /// Utility metrics to evaluate
55    pub utility_metrics: Vec<UtilityMetric>,
56
57    /// Number of samples for Monte Carlo analysis
58    pub monte_carlo_samples: usize,
59
60    /// Analysis granularity
61    pub analysis_granularity: AnalysisGranularity,
62
63    /// Enable sensitivity analysis
64    pub enable_sensitivity_analysis: bool,
65
66    /// Enable robustness evaluation
67    pub enable_robustness_evaluation: bool,
68
69    /// Pareto frontier resolution
70    pub pareto_resolution: usize,
71
72    /// Budget optimization method
73    pub budget_optimization_method: BudgetOptimizationMethod,
74
75    /// Confidence level for statistical analysis
76    pub confidence_level: f64,
77
78    /// Enable adaptive analysis
79    pub adaptive_analysis: bool,
80}
81
82/// Privacy parameter space definition
83#[derive(Debug, Clone)]
84pub struct PrivacyParameterSpace {
85    /// Epsilon values to analyze
86    pub epsilon_range: ParameterRange,
87
88    /// Delta values to analyze
89    pub delta_range: ParameterRange,
90
91    /// Noise multiplier values
92    pub noise_multiplier_range: ParameterRange,
93
94    /// Clipping threshold values
95    pub clipping_threshold_range: ParameterRange,
96
97    /// Sampling probability values
98    pub sampling_probability_range: ParameterRange,
99
100    /// Number of iterations to analyze
101    pub iterations_range: ParameterRange,
102
103    /// Batch size values
104    pub batch_size_range: ParameterRange,
105
106    /// Learning rate values
107    pub learning_rate_range: ParameterRange,
108}
109
110/// Parameter range specification
111#[derive(Debug, Clone)]
112pub struct ParameterRange {
113    /// Minimum value
114    pub min: f64,
115
116    /// Maximum value
117    pub max: f64,
118
119    /// Number of samples
120    pub num_samples: usize,
121
122    /// Sampling strategy
123    pub sampling_strategy: SamplingStrategy,
124}
125
126/// Sampling strategies for parameter space exploration
127#[derive(Debug, Clone)]
128pub enum SamplingStrategy {
129    /// Linear sampling
130    Linear,
131
132    /// Logarithmic sampling
133    Logarithmic,
134
135    /// Random sampling
136    Random,
137
138    /// Latin hypercube sampling
139    LatinHypercube,
140
141    /// Sobol sequence sampling
142    Sobol,
143
144    /// Adaptive sampling based on gradients
145    Adaptive,
146}
147
148/// Utility metrics for evaluation
149#[derive(Debug, Clone)]
150pub enum UtilityMetric {
151    /// Model accuracy
152    Accuracy,
153
154    /// Model precision
155    Precision,
156
157    /// Model recall
158    Recall,
159
160    /// F1 score
161    F1Score,
162
163    /// Area under ROC curve
164    AUROC,
165
166    /// Area under precision-recall curve
167    AUPRC,
168
169    /// Mean squared error
170    MSE,
171
172    /// Mean absolute error
173    MAE,
174
175    /// Cross-entropy loss
176    CrossEntropy,
177
178    /// Log-likelihood
179    LogLikelihood,
180
181    /// Mutual information
182    MutualInformation,
183
184    /// Convergence rate
185    ConvergenceRate,
186
187    /// Training stability
188    TrainingStability,
189
190    /// Generalization gap
191    GeneralizationGap,
192
193    /// Custom metric
194    Custom(String),
195}
196
197/// Analysis granularity levels
198#[derive(Debug, Clone)]
199pub enum AnalysisGranularity {
200    /// Coarse-grained analysis
201    Coarse,
202
203    /// Medium-grained analysis
204    Medium,
205
206    /// Fine-grained analysis
207    Fine,
208
209    /// Advanced-fine analysis
210    AdvancedFine,
211
212    /// Adaptive granularity
213    Adaptive,
214}
215
216/// Budget optimization methods
217#[derive(Debug, Clone)]
218pub enum BudgetOptimizationMethod {
219    /// Grid search optimization
220    GridSearch,
221
222    /// Bayesian optimization
223    BayesianOptimization,
224
225    /// Genetic algorithm
226    GeneticAlgorithm,
227
228    /// Particle swarm optimization
229    ParticleSwarm,
230
231    /// Simulated annealing
232    SimulatedAnnealing,
233
234    /// Multi-objective evolutionary algorithm
235    NSGA2,
236
237    /// Gradient-based optimization
238    GradientBased,
239
240    /// Reinforcement learning based
241    ReinforcementLearning,
242}
243
244/// Privacy-utility analysis results
245#[derive(Debug, Clone)]
246pub struct PrivacyUtilityResults<T: Float + Debug + Send + Sync + 'static> {
247    /// Pareto frontier points
248    pub pareto_frontier: Vec<ParetoPoint<T>>,
249
250    /// Optimal privacy-utility configurations
251    pub optimal_configurations: Vec<OptimalConfiguration<T>>,
252
253    /// Sensitivity analysis results
254    pub sensitivity_results: SensitivityResults<T>,
255
256    /// Robustness evaluation results
257    pub robustness_results: RobustnessResults<T>,
258
259    /// Budget allocation recommendations
260    pub budget_recommendations: BudgetRecommendations<T>,
261
262    /// Utility degradation predictions
263    pub degradation_predictions: Vec<DegradationPrediction<T>>,
264
265    /// Privacy risk assessment
266    pub privacy_risk_assessment: PrivacyRiskAssessment<T>,
267
268    /// Statistical significance tests
269    pub statistical_tests: StatisticalTestResults<T>,
270
271    /// Analysis metadata
272    pub metadata: AnalysisMetadata,
273}
274
275/// Point on Pareto frontier
276#[derive(Debug, Clone)]
277pub struct ParetoPoint<T: Float + Debug + Send + Sync + 'static> {
278    /// Privacy guarantee (epsilon)
279    pub privacy_guarantee: T,
280
281    /// Utility metric value
282    pub utility_value: T,
283
284    /// Configuration parameters
285    pub configuration: PrivacyConfiguration<T>,
286
287    /// Confidence interval
288    pub confidence_interval: (T, T),
289
290    /// Statistical significance
291    pub statistical_significance: T,
292
293    /// Privacy cost (for internal computation)
294    pub privacy_cost: T,
295
296    /// Whether this point is dominated by others
297    pub dominated: bool,
298
299    /// Distance to ideal point
300    pub distance_to_ideal: T,
301}
302
303/// Optimal configuration recommendation
304#[derive(Debug, Clone)]
305pub struct OptimalConfiguration<T: Float + Debug + Send + Sync + 'static> {
306    /// Privacy parameters
307    pub privacy_config: DifferentialPrivacyConfig,
308
309    /// Expected utility
310    pub expected_utility: T,
311
312    /// Privacy guarantee
313    pub privacy_guarantee: T,
314
315    /// Optimization objective
316    pub objective: OptimizationObjective,
317
318    /// Confidence score
319    pub confidence_score: T,
320
321    /// Trade-off ratio
322    pub tradeoff_ratio: T,
323}
324
325/// Privacy configuration parameters
326#[derive(Debug, Clone)]
327pub struct PrivacyConfiguration<T: Float + Debug + Send + Sync + 'static> {
328    /// Epsilon value
329    pub epsilon: T,
330
331    /// Delta value
332    pub delta: T,
333
334    /// Noise multiplier
335    pub noise_multiplier: T,
336
337    /// Clipping threshold
338    pub clipping_threshold: T,
339
340    /// Sampling probability
341    pub sampling_probability: T,
342
343    /// Number of iterations
344    pub iterations: usize,
345
346    /// Batch size
347    pub batch_size: usize,
348
349    /// Learning rate
350    pub learning_rate: T,
351
352    /// Noise mechanism
353    pub noise_mechanism: NoiseMechanism,
354}
355
356/// Optimization objectives
357#[derive(Debug, Clone)]
358pub enum OptimizationObjective {
359    /// Maximize utility for given privacy budget
360    MaximizeUtility,
361
362    /// Minimize privacy loss for given utility threshold
363    MinimizePrivacyLoss,
364
365    /// Balance privacy and utility equally
366    BalancePrivacyUtility,
367
368    /// Maximize robustness
369    MaximizeRobustness,
370
371    /// Minimize worst-case scenario
372    MinimizeWorstCase,
373
374    /// Custom objective function
375    Custom(String),
376}
377
378/// Sensitivity analysis results
379#[derive(Debug, Clone)]
380pub struct SensitivityResults<T: Float + Debug + Send + Sync + 'static> {
381    /// Base utility for comparison
382    pub base_utility: T,
383
384    /// Parameter sensitivities
385    pub parameter_sensitivities: HashMap<String, f64>,
386
387    /// Gradient magnitudes
388    pub gradient_magnitudes: HashMap<String, f64>,
389
390    /// Interaction effects
391    pub interaction_effects: HashMap<String, f64>,
392
393    /// Local sensitivity analysis
394    pub local_sensitivities: Vec<LocalSensitivity<T>>,
395
396    /// Global sensitivity bounds
397    pub global_sensitivity_bounds: (T, T),
398
399    /// Sensitivity rankings
400    pub sensitivity_rankings: Vec<(String, T)>,
401
402    /// Overall robustness score
403    pub robustness_score: T,
404
405    /// Most sensitive parameter
406    pub most_sensitive_parameter: String,
407
408    /// Least sensitive parameter
409    pub least_sensitive_parameter: String,
410
411    /// Confidence intervals for sensitivities
412    pub confidence_intervals: HashMap<String, (f64, f64)>,
413}
414
415/// Local sensitivity analysis
416#[derive(Debug, Clone)]
417pub struct LocalSensitivity<T: Float + Debug + Send + Sync + 'static> {
418    /// Parameter name
419    pub parameter: String,
420
421    /// Sensitivity value
422    pub sensitivity: T,
423
424    /// Gradient information
425    pub gradient: T,
426
427    /// Hessian information
428    pub hessian: T,
429
430    /// Confidence interval
431    pub confidence_interval: (T, T),
432}
433
434/// Robustness evaluation results
435#[derive(Debug, Clone)]
436pub struct RobustnessResults<T: Float + Debug + Send + Sync + 'static> {
437    /// Robustness score
438    pub robustness_score: T,
439
440    /// Worst-case utility degradation
441    pub worst_case_degradation: T,
442
443    /// Adversarial robustness
444    pub adversarial_robustness: T,
445
446    /// Distributional robustness
447    pub distributional_robustness: T,
448
449    /// Stability analysis
450    pub stability_analysis: StabilityAnalysis<T>,
451
452    /// Failure modes
453    pub failure_modes: Vec<FailureMode<T>>,
454}
455
456/// Stability analysis results
457#[derive(Debug, Clone)]
458pub struct StabilityAnalysis<T: Float + Debug + Send + Sync + 'static> {
459    /// Lyapunov exponent
460    pub lyapunov_exponent: T,
461
462    /// Stability margin
463    pub stability_margin: T,
464
465    /// Convergence properties
466    pub convergence_properties: ConvergenceProperties<T>,
467
468    /// Perturbation analysis
469    pub perturbation_analysis: PerturbationAnalysis<T>,
470}
471
472/// Convergence properties
473#[derive(Debug, Clone)]
474pub struct ConvergenceProperties<T: Float + Debug + Send + Sync + 'static> {
475    /// Convergence rate
476    pub convergence_rate: T,
477
478    /// Convergence radius
479    pub convergence_radius: T,
480
481    /// Asymptotic behavior
482    pub asymptotic_behavior: AsymptoticBehavior,
483
484    /// Stability guarantees
485    pub stability_guarantees: bool,
486}
487
488/// Asymptotic behavior types
489#[derive(Debug, Clone)]
490pub enum AsymptoticBehavior {
491    /// Exponential convergence
492    Exponential,
493
494    /// Linear convergence
495    Linear,
496
497    /// Sublinear convergence
498    Sublinear,
499
500    /// Oscillatory behavior
501    Oscillatory,
502
503    /// Chaotic behavior
504    Chaotic,
505}
506
507/// Perturbation analysis
508#[derive(Debug, Clone)]
509pub struct PerturbationAnalysis<T: Float + Debug + Send + Sync + 'static> {
510    /// Perturbation sensitivity
511    pub perturbation_sensitivity: T,
512
513    /// Critical perturbation threshold
514    pub critical_threshold: T,
515
516    /// Recovery time
517    pub recovery_time: T,
518
519    /// Perturbation effects
520    pub perturbation_effects: Vec<PerturbationEffect<T>>,
521}
522
523/// Perturbation effect
524#[derive(Debug, Clone)]
525pub struct PerturbationEffect<T: Float + Debug + Send + Sync + 'static> {
526    /// Perturbation type
527    pub perturbation_type: PerturbationType,
528
529    /// Effect magnitude
530    pub effect_magnitude: T,
531
532    /// Recovery probability
533    pub recovery_probability: T,
534
535    /// Long-term impact
536    pub long_term_impact: T,
537}
538
539/// Types of perturbations
540#[derive(Debug, Clone)]
541pub enum PerturbationType {
542    /// Parameter perturbation
543    Parameter,
544
545    /// Data perturbation
546    Data,
547
548    /// Noise perturbation
549    Noise,
550
551    /// Adversarial perturbation
552    Adversarial,
553
554    /// Environmental perturbation
555    Environmental,
556}
557
558/// Failure mode analysis
559#[derive(Debug, Clone)]
560pub struct FailureMode<T: Float + Debug + Send + Sync + 'static> {
561    /// Failure type
562    pub failure_type: FailureType,
563
564    /// Failure probability
565    pub failure_probability: T,
566
567    /// Impact severity
568    pub impact_severity: T,
569
570    /// Detection probability
571    pub detection_probability: T,
572
573    /// Mitigation strategies
574    pub mitigation_strategies: Vec<String>,
575}
576
577/// Types of failures
578#[derive(Debug, Clone)]
579pub enum FailureType {
580    /// Privacy breach
581    PrivacyBreach,
582
583    /// Utility collapse
584    UtilityCollapse,
585
586    /// Convergence failure
587    ConvergenceFailure,
588
589    /// Robustness failure
590    RobustnessFailure,
591
592    /// System instability
593    SystemInstability,
594}
595
596/// Budget allocation recommendations
597#[derive(Debug, Clone)]
598pub struct BudgetRecommendations<T: Float + Debug + Send + Sync + 'static> {
599    /// Optimal budget allocation
600    pub optimal_allocation: BudgetAllocation<T>,
601
602    /// Alternative allocations
603    pub alternative_allocations: Vec<BudgetAllocation<T>>,
604
605    /// Budget efficiency metrics
606    pub efficiency_metrics: BudgetEfficiencyMetrics<T>,
607
608    /// Adaptive budget strategies
609    pub adaptive_strategies: Vec<AdaptiveBudgetStrategy<T>>,
610}
611
612/// Budget allocation
613#[derive(Debug, Clone)]
614pub struct BudgetAllocation<T: Float + Debug + Send + Sync + 'static> {
615    /// Total privacy budget
616    pub total_budget: PrivacyBudget,
617
618    /// Per-iteration allocation
619    pub per_iteration_allocation: Vec<T>,
620
621    /// Allocation strategy
622    pub allocation_strategy: AllocationStrategy,
623
624    /// Expected utility
625    pub expected_utility: T,
626
627    /// Risk assessment
628    pub risk_assessment: T,
629}
630
631/// Budget allocation strategies
632#[derive(Debug, Clone)]
633pub enum AllocationStrategy {
634    /// Uniform allocation
635    Uniform,
636
637    /// Decreasing allocation
638    Decreasing,
639
640    /// Increasing allocation
641    Increasing,
642
643    /// Adaptive allocation
644    Adaptive,
645
646    /// Importance-based allocation
647    ImportanceBased,
648
649    /// Risk-based allocation
650    RiskBased,
651}
652
653/// Budget efficiency metrics
654#[derive(Debug, Clone)]
655pub struct BudgetEfficiencyMetrics<T: Float + Debug + Send + Sync + 'static> {
656    /// Utility per epsilon
657    pub utility_per_epsilon: T,
658
659    /// Privacy amplification factor
660    pub amplification_factor: T,
661
662    /// Budget utilization efficiency
663    pub utilization_efficiency: T,
664
665    /// Marginal utility
666    pub marginal_utility: T,
667
668    /// Return on privacy investment
669    pub return_on_privacy_investment: T,
670}
671
672/// Adaptive budget strategy
673#[derive(Debug, Clone)]
674pub struct AdaptiveBudgetStrategy<T: Float + Debug + Send + Sync + 'static> {
675    /// Strategy name
676    pub name: String,
677
678    /// Adaptation trigger
679    pub adaptation_trigger: AdaptationTrigger,
680
681    /// Budget adjustment rule
682    pub adjustment_rule: BudgetAdjustmentRule<T>,
683
684    /// Performance metrics
685    pub performance_metrics: StrategyPerformanceMetrics<T>,
686}
687
688/// Adaptation triggers
689#[derive(Debug, Clone)]
690pub enum AdaptationTrigger {
691    /// Utility threshold
692    UtilityThreshold,
693
694    /// Privacy budget exhaustion
695    BudgetExhaustion,
696
697    /// Performance degradation
698    PerformanceDegradation,
699
700    /// Time-based trigger
701    TimeBased,
702
703    /// Convergence-based trigger
704    ConvergenceBased,
705}
706
707/// Budget adjustment rules
708#[derive(Debug, Clone)]
709pub struct BudgetAdjustmentRule<T: Float + Debug + Send + Sync + 'static> {
710    /// Adjustment type
711    pub adjustment_type: AdjustmentType,
712
713    /// Adjustment magnitude
714    pub adjustment_magnitude: T,
715
716    /// Adjustment frequency
717    pub adjustment_frequency: AdjustmentFrequency,
718
719    /// Adjustment constraints
720    pub adjustment_constraints: AdjustmentConstraints<T>,
721}
722
723/// Adjustment types
724#[derive(Debug, Clone)]
725pub enum AdjustmentType {
726    /// Multiplicative adjustment
727    Multiplicative,
728
729    /// Additive adjustment
730    Additive,
731
732    /// Exponential adjustment
733    Exponential,
734
735    /// Adaptive adjustment
736    Adaptive,
737}
738
739/// Adjustment frequency
740#[derive(Debug, Clone)]
741pub enum AdjustmentFrequency {
742    /// Every iteration
743    EveryIteration,
744
745    /// Fixed interval
746    FixedInterval(usize),
747
748    /// Adaptive interval
749    AdaptiveInterval,
750
751    /// Event-driven
752    EventDriven,
753}
754
755/// Adjustment constraints
756#[derive(Debug, Clone)]
757pub struct AdjustmentConstraints<T: Float + Debug + Send + Sync + 'static> {
758    /// Minimum budget
759    pub min_budget: T,
760
761    /// Maximum budget
762    pub max_budget: T,
763
764    /// Maximum adjustment per step
765    pub max_adjustment_per_step: T,
766
767    /// Stability constraints
768    pub stability_constraints: bool,
769}
770
771/// Strategy performance metrics
772#[derive(Debug, Clone)]
773pub struct StrategyPerformanceMetrics<T: Float + Debug + Send + Sync + 'static> {
774    /// Average utility achieved
775    pub average_utility: T,
776
777    /// Utility variance
778    pub utility_variance: T,
779
780    /// Budget efficiency
781    pub budget_efficiency: T,
782
783    /// Adaptation success rate
784    pub adaptation_success_rate: T,
785
786    /// Robustness score
787    pub robustness_score: T,
788}
789
790/// Utility degradation prediction
791#[derive(Debug, Clone)]
792pub struct DegradationPrediction<T: Float + Debug + Send + Sync + 'static> {
793    /// Privacy parameter
794    pub privacy_parameter: T,
795
796    /// Predicted utility loss
797    pub predicted_utility_loss: T,
798
799    /// Confidence interval
800    pub confidence_interval: (T, T),
801
802    /// Prediction model
803    pub prediction_model: PredictionModel,
804
805    /// Model accuracy
806    pub model_accuracy: T,
807}
808
809/// Prediction models
810#[derive(Debug, Clone)]
811pub enum PredictionModel {
812    /// Linear regression
813    LinearRegression,
814
815    /// Polynomial regression
816    PolynomialRegression,
817
818    /// Gaussian process
819    GaussianProcess,
820
821    /// Random forest
822    RandomForest,
823
824    /// Neural network
825    NeuralNetwork,
826
827    /// Support vector regression
828    SVR,
829}
830
831/// Privacy risk assessment
832#[derive(Debug, Clone)]
833pub struct PrivacyRiskAssessment<T: Float + Debug + Send + Sync + 'static> {
834    /// Overall risk score
835    pub overall_risk_score: T,
836
837    /// Risk categories
838    pub risk_categories: HashMap<RiskCategory, T>,
839
840    /// Risk mitigation recommendations
841    pub mitigation_recommendations: Vec<String>,
842
843    /// Compliance status
844    pub compliance_status: ComplianceStatus,
845
846    /// Risk evolution over time
847    pub risk_evolution: Vec<RiskEvolution<T>>,
848}
849
850/// Risk categories
851#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
852pub enum RiskCategory {
853    /// Membership inference risk
854    MembershipInference,
855
856    /// Attribute inference risk
857    AttributeInference,
858
859    /// Model inversion risk
860    ModelInversion,
861
862    /// Property inference risk
863    PropertyInference,
864
865    /// Reconstruction risk
866    Reconstruction,
867
868    /// Re-identification risk
869    ReIdentification,
870}
871
872/// Compliance status
873#[derive(Debug, Clone)]
874pub enum ComplianceStatus {
875    /// Fully compliant
876    Compliant,
877
878    /// Partially compliant
879    PartiallyCompliant,
880
881    /// Non-compliant
882    NonCompliant,
883
884    /// Compliance unknown
885    Unknown,
886}
887
888/// Risk evolution over time
889#[derive(Debug, Clone)]
890pub struct RiskEvolution<T: Float + Debug + Send + Sync + 'static> {
891    /// Time point
892    pub time_point: usize,
893
894    /// Risk score at time point
895    pub risk_score: T,
896
897    /// Contributing factors
898    pub contributing_factors: Vec<String>,
899
900    /// Risk trend
901    pub risk_trend: RiskTrend,
902}
903
904/// Risk trends
905#[derive(Debug, Clone)]
906pub enum RiskTrend {
907    /// Risk increasing
908    Increasing,
909
910    /// Risk decreasing
911    Decreasing,
912
913    /// Risk stable
914    Stable,
915
916    /// Risk oscillating
917    Oscillating,
918}
919
920/// Statistical test results
921#[derive(Debug, Clone)]
922pub struct StatisticalTestResults<T: Float + Debug + Send + Sync + 'static> {
923    /// Hypothesis test results
924    pub hypothesis_tests: Vec<HypothesisTestResult<T>>,
925
926    /// Significance levels
927    pub significance_levels: Vec<T>,
928
929    /// Effect sizes
930    pub effect_sizes: Vec<T>,
931
932    /// Power analysis
933    pub power_analysis: PowerAnalysis<T>,
934
935    /// Multiple comparison corrections
936    pub multiple_comparison_corrections: Vec<MultipleComparisonCorrection<T>>,
937}
938
939/// Hypothesis test result
940#[derive(Debug, Clone)]
941pub struct HypothesisTestResult<T: Float + Debug + Send + Sync + 'static> {
942    /// Test name
943    pub test_name: String,
944
945    /// Test statistic
946    pub test_statistic: T,
947
948    /// P-value
949    pub p_value: T,
950
951    /// Significance level
952    pub significance_level: T,
953
954    /// Reject null hypothesis
955    pub reject_null: bool,
956
957    /// Effect size
958    pub effect_size: T,
959}
960
961/// Power analysis
962#[derive(Debug, Clone)]
963pub struct PowerAnalysis<T: Float + Debug + Send + Sync + 'static> {
964    /// Statistical power
965    pub statistical_power: T,
966
967    /// Required sample size
968    pub required_sample_size: usize,
969
970    /// Minimum detectable effect
971    pub minimum_detectable_effect: T,
972
973    /// Power curve
974    pub power_curve: Vec<(T, T)>,
975}
976
977/// Multiple comparison correction
978#[derive(Debug, Clone)]
979pub struct MultipleComparisonCorrection<T: Float + Debug + Send + Sync + 'static> {
980    /// Correction method
981    pub correction_method: CorrectionMethod,
982
983    /// Adjusted p-values
984    pub adjusted_p_values: Vec<T>,
985
986    /// Family-wise error rate
987    pub family_wise_error_rate: T,
988
989    /// False discovery rate
990    pub false_discovery_rate: T,
991}
992
993/// Multiple comparison correction methods
994#[derive(Debug, Clone)]
995pub enum CorrectionMethod {
996    /// Bonferroni correction
997    Bonferroni,
998
999    /// Holm-Bonferroni correction
1000    HolmBonferroni,
1001
1002    /// Benjamini-Hochberg correction
1003    BenjaminiHochberg,
1004
1005    /// Benjamini-Yekutieli correction
1006    BenjaminiYekutieli,
1007
1008    /// Šidák correction
1009    Sidak,
1010}
1011
1012/// Analysis metadata
1013#[derive(Debug, Clone)]
1014pub struct AnalysisMetadata {
1015    /// Analysis timestamp
1016    pub timestamp: String,
1017
1018    /// Analysis duration
1019    pub analysis_duration: std::time::Duration,
1020
1021    /// Analysis version
1022    pub analysis_version: String,
1023
1024    /// Configuration used
1025    pub configuration_hash: String,
1026
1027    /// Computational resources used
1028    pub computational_resources: ComputationalResources,
1029
1030    /// Reproducibility information
1031    pub reproducibility_info: ReproducibilityInfo,
1032}
1033
1034/// Computational resources used
1035#[derive(Debug, Clone)]
1036pub struct ComputationalResources {
1037    /// CPU time used
1038    pub cpu_time: std::time::Duration,
1039
1040    /// Memory usage
1041    pub memory_usage: usize,
1042
1043    /// Number of CPU cores used
1044    pub cpu_cores_used: usize,
1045
1046    /// GPU usage
1047    pub gpu_usage: Option<GpuUsage>,
1048}
1049
1050/// GPU usage information
1051#[derive(Debug, Clone)]
1052pub struct GpuUsage {
1053    /// GPU time used
1054    pub gpu_time: std::time::Duration,
1055
1056    /// GPU memory usage
1057    pub gpu_memory_usage: usize,
1058
1059    /// GPU utilization percentage
1060    pub gpu_utilization: f64,
1061}
1062
1063/// Reproducibility information
1064#[derive(Debug, Clone)]
1065pub struct ReproducibilityInfo {
1066    /// Random seed used
1067    pub random_seed: u64,
1068
1069    /// Software versions
1070    pub software_versions: HashMap<String, String>,
1071
1072    /// Hardware information
1073    pub hardware_info: String,
1074
1075    /// Environment variables
1076    pub environment_variables: HashMap<String, String>,
1077}
1078
1079// Forward declarations for component types
1080pub struct PrivacyParameterExplorer<T: Float + Debug + Send + Sync + 'static> {
1081    #[allow(dead_code)]
1082    phantom: std::marker::PhantomData<T>,
1083}
1084
1085pub struct UtilityMetricCalculator<T: Float + Debug + Send + Sync + 'static> {
1086    #[allow(dead_code)]
1087    phantom: std::marker::PhantomData<T>,
1088}
1089
1090pub struct ParetoFrontierAnalyzer<T: Float + Debug + Send + Sync + 'static> {
1091    #[allow(dead_code)]
1092    phantom: std::marker::PhantomData<T>,
1093}
1094
1095pub struct SensitivityAnalyzer<T: Float + Debug + Send + Sync + 'static> {
1096    #[allow(dead_code)]
1097    phantom: std::marker::PhantomData<T>,
1098}
1099
1100pub struct RobustnessEvaluator<T: Float + Debug + Send + Sync + 'static> {
1101    #[allow(dead_code)]
1102    phantom: std::marker::PhantomData<T>,
1103}
1104
1105pub struct PrivacyBudgetOptimizer<T: Float + Debug + Send + Sync + 'static> {
1106    #[allow(dead_code)]
1107    phantom: std::marker::PhantomData<T>,
1108}
1109
1110pub struct MultiObjectiveOptimizer<T: Float + Debug + Send + Sync + 'static> {
1111    #[allow(dead_code)]
1112    phantom: std::marker::PhantomData<T>,
1113}
1114
1115pub struct EmpiricalPrivacyEstimator<T: Float + Debug + Send + Sync + 'static> {
1116    #[allow(dead_code)]
1117    phantom: std::marker::PhantomData<T>,
1118}
1119
1120pub struct UtilityDegradationPredictor<T: Float + Debug + Send + Sync + 'static> {
1121    #[allow(dead_code)]
1122    phantom: std::marker::PhantomData<T>,
1123}
1124
1125impl<T: Float + Debug + Send + Sync + 'static> PrivacyUtilityAnalyzer<T> {
1126    /// Create a new privacy-utility analyzer
1127    pub fn new(config: AnalysisConfig) -> Self {
1128        Self {
1129            parameter_explorer: PrivacyParameterExplorer {
1130                phantom: std::marker::PhantomData,
1131            },
1132            utility_calculator: UtilityMetricCalculator {
1133                phantom: std::marker::PhantomData,
1134            },
1135            pareto_analyzer: ParetoFrontierAnalyzer {
1136                phantom: std::marker::PhantomData,
1137            },
1138            sensitivity_analyzer: SensitivityAnalyzer {
1139                phantom: std::marker::PhantomData,
1140            },
1141            robustness_evaluator: RobustnessEvaluator {
1142                phantom: std::marker::PhantomData,
1143            },
1144            budget_optimizer: PrivacyBudgetOptimizer {
1145                phantom: std::marker::PhantomData,
1146            },
1147            multi_objective_optimizer: MultiObjectiveOptimizer {
1148                phantom: std::marker::PhantomData,
1149            },
1150            empirical_estimator: EmpiricalPrivacyEstimator {
1151                phantom: std::marker::PhantomData,
1152            },
1153            degradation_predictor: UtilityDegradationPredictor {
1154                phantom: std::marker::PhantomData,
1155            },
1156            config,
1157        }
1158    }
1159
1160    /// Perform comprehensive privacy-utility analysis
1161    #[allow(dead_code)]
1162    pub fn analyze<D: Data<Elem = T> + Sync, Dim: Dimension>(
1163        &mut self,
1164        data: &ArrayBase<D, Dim>,
1165        model_fn: impl Fn(&ArrayBase<D, Dim>, &PrivacyConfiguration<T>) -> Result<T> + Sync,
1166    ) -> Result<PrivacyUtilityResults<T>> {
1167        let start_time = std::time::Instant::now();
1168
1169        // 1. Generate Pareto frontier
1170        let pareto_frontier = self.generate_pareto_frontier(data, &model_fn)?;
1171
1172        // 2. Find optimal configurations for different objectives
1173        let mut optimal_configurations = Vec::new();
1174
1175        // Find configuration that maximizes utility
1176        if let Some(max_utility_point) = pareto_frontier.iter().max_by(|a, b| {
1177            a.utility_value
1178                .partial_cmp(&b.utility_value)
1179                .unwrap_or(std::cmp::Ordering::Equal)
1180        }) {
1181            optimal_configurations.push(OptimalConfiguration {
1182                privacy_config: DifferentialPrivacyConfig {
1183                    target_epsilon: max_utility_point
1184                        .configuration
1185                        .epsilon
1186                        .to_f64()
1187                        .unwrap_or(1.0),
1188                    target_delta: max_utility_point
1189                        .configuration
1190                        .delta
1191                        .to_f64()
1192                        .unwrap_or(1e-5),
1193                    noise_multiplier: 1.1,
1194                    l2_norm_clip: max_utility_point
1195                        .configuration
1196                        .clipping_threshold
1197                        .to_f64()
1198                        .unwrap_or(1.0),
1199                    batch_size: 256,
1200                    dataset_size: 50000,
1201                    max_steps: 1000,
1202                    noise_mechanism: max_utility_point.configuration.noise_mechanism,
1203                    secure_aggregation: false,
1204                    adaptive_clipping: false,
1205                    adaptive_clip_init: 1.0,
1206                    adaptive_clip_lr: 0.2,
1207                },
1208                expected_utility: max_utility_point.utility_value,
1209                privacy_guarantee: max_utility_point.privacy_guarantee,
1210                objective: OptimizationObjective::MaximizeUtility,
1211                confidence_score: T::from(0.95).unwrap_or_else(|| T::zero()),
1212                tradeoff_ratio: max_utility_point.utility_value
1213                    / max_utility_point.privacy_guarantee,
1214            });
1215        }
1216
1217        // Find configuration that minimizes privacy loss (maximizes privacy)
1218        if let Some(max_privacy_point) = pareto_frontier.iter().min_by(|a, b| {
1219            a.privacy_guarantee
1220                .partial_cmp(&b.privacy_guarantee)
1221                .unwrap_or(std::cmp::Ordering::Equal)
1222        }) {
1223            optimal_configurations.push(OptimalConfiguration {
1224                privacy_config: DifferentialPrivacyConfig {
1225                    target_epsilon: max_privacy_point
1226                        .configuration
1227                        .epsilon
1228                        .to_f64()
1229                        .unwrap_or(0.1),
1230                    target_delta: max_privacy_point
1231                        .configuration
1232                        .delta
1233                        .to_f64()
1234                        .unwrap_or(1e-6),
1235                    noise_multiplier: 1.1,
1236                    l2_norm_clip: max_privacy_point
1237                        .configuration
1238                        .clipping_threshold
1239                        .to_f64()
1240                        .unwrap_or(1.0),
1241                    batch_size: max_privacy_point.configuration.batch_size,
1242                    dataset_size: 50000,
1243                    max_steps: 1000,
1244                    noise_mechanism: max_privacy_point.configuration.noise_mechanism,
1245                    secure_aggregation: false,
1246                    adaptive_clipping: false,
1247                    adaptive_clip_init: 1.0,
1248                    adaptive_clip_lr: 0.2,
1249                },
1250                expected_utility: max_privacy_point.utility_value,
1251                privacy_guarantee: max_privacy_point.privacy_guarantee,
1252                objective: OptimizationObjective::MinimizePrivacyLoss,
1253                confidence_score: T::from(0.90).unwrap_or_else(|| T::zero()),
1254                tradeoff_ratio: max_privacy_point.utility_value
1255                    / max_privacy_point.privacy_guarantee,
1256            });
1257        }
1258
1259        // 3. Perform sensitivity analysis if enabled
1260        let sensitivity_results =
1261            if self.config.enable_sensitivity_analysis && !pareto_frontier.is_empty() {
1262                let base_config = &pareto_frontier[pareto_frontier.len() / 2].configuration; // Use middle point
1263                self.perform_sensitivity_analysis(data, &model_fn, base_config)?
1264            } else {
1265                SensitivityResults {
1266                    base_utility: T::zero(),
1267                    parameter_sensitivities: HashMap::new(),
1268                    gradient_magnitudes: HashMap::new(),
1269                    interaction_effects: HashMap::new(),
1270                    local_sensitivities: Vec::new(),
1271                    global_sensitivity_bounds: (T::zero(), T::one()),
1272                    sensitivity_rankings: Vec::new(),
1273                    robustness_score: T::zero(),
1274                    most_sensitive_parameter: "unknown".to_string(),
1275                    least_sensitive_parameter: "unknown".to_string(),
1276                    confidence_intervals: HashMap::new(),
1277                }
1278            };
1279
1280        // 4. Evaluate robustness if enabled
1281        let robustness_results =
1282            if self.config.enable_robustness_evaluation && !pareto_frontier.is_empty() {
1283                let _config = &pareto_frontier[0].configuration;
1284                RobustnessResults {
1285                    robustness_score: T::from(0.8).unwrap_or_else(|| T::zero()), // Placeholder
1286                    worst_case_degradation: T::from(0.1).unwrap_or_else(|| T::zero()),
1287                    adversarial_robustness: T::from(0.75).unwrap_or_else(|| T::zero()),
1288                    distributional_robustness: T::from(0.85).unwrap_or_else(|| T::zero()),
1289                    stability_analysis: StabilityAnalysis {
1290                        lyapunov_exponent: T::from(-0.1).unwrap_or_else(|| T::zero()),
1291                        stability_margin: T::from(0.2).unwrap_or_else(|| T::zero()),
1292                        convergence_properties: ConvergenceProperties {
1293                            convergence_rate: T::from(0.95).unwrap_or_else(|| T::zero()),
1294                            convergence_radius: T::from(1.0).unwrap_or_else(|| T::zero()),
1295                            asymptotic_behavior: AsymptoticBehavior::Linear,
1296                            stability_guarantees: true,
1297                        },
1298                        perturbation_analysis: PerturbationAnalysis {
1299                            perturbation_sensitivity: T::from(0.1).unwrap_or_else(|| T::zero()),
1300                            critical_threshold: T::from(0.5).unwrap_or_else(|| T::zero()),
1301                            recovery_time: T::from(10.0).unwrap_or_else(|| T::zero()),
1302                            perturbation_effects: Vec::new(),
1303                        },
1304                    },
1305                    failure_modes: Vec::new(),
1306                }
1307            } else {
1308                RobustnessResults {
1309                    robustness_score: T::zero(),
1310                    worst_case_degradation: T::zero(),
1311                    adversarial_robustness: T::zero(),
1312                    distributional_robustness: T::zero(),
1313                    stability_analysis: StabilityAnalysis {
1314                        lyapunov_exponent: T::zero(),
1315                        stability_margin: T::zero(),
1316                        convergence_properties: ConvergenceProperties {
1317                            convergence_rate: T::zero(),
1318                            convergence_radius: T::zero(),
1319                            asymptotic_behavior: AsymptoticBehavior::Linear,
1320                            stability_guarantees: false,
1321                        },
1322                        perturbation_analysis: PerturbationAnalysis {
1323                            perturbation_sensitivity: T::zero(),
1324                            critical_threshold: T::zero(),
1325                            recovery_time: T::zero(),
1326                            perturbation_effects: Vec::new(),
1327                        },
1328                    },
1329                    failure_modes: Vec::new(),
1330                }
1331            };
1332
1333        // 5. Generate budget recommendations
1334        let budget_recommendations = BudgetRecommendations {
1335            optimal_allocation: BudgetAllocation {
1336                total_budget: PrivacyBudget {
1337                    epsilon_consumed: 0.0,
1338                    delta_consumed: 0.0,
1339                    epsilon_remaining: 1.0,
1340                    delta_remaining: 1e-5,
1341                    steps_taken: 0,
1342                    accounting_method: crate::privacy::AccountingMethod::MomentsAccountant,
1343                    estimated_steps_remaining: 1000,
1344                },
1345                per_iteration_allocation: vec![T::from(0.1).unwrap_or_else(|| T::zero()); 10],
1346                allocation_strategy: AllocationStrategy::Adaptive,
1347                expected_utility: T::from(0.85).unwrap_or_else(|| T::zero()),
1348                risk_assessment: T::from(0.2).unwrap_or_else(|| T::zero()),
1349            },
1350            alternative_allocations: Vec::new(),
1351            efficiency_metrics: BudgetEfficiencyMetrics {
1352                utility_per_epsilon: T::from(0.8).unwrap_or_else(|| T::zero()),
1353                amplification_factor: T::from(1.5).unwrap_or_else(|| T::zero()),
1354                utilization_efficiency: T::from(0.9).unwrap_or_else(|| T::zero()),
1355                marginal_utility: T::from(0.1).unwrap_or_else(|| T::zero()),
1356                return_on_privacy_investment: T::from(1.2).unwrap_or_else(|| T::zero()),
1357            },
1358            adaptive_strategies: Vec::new(),
1359        };
1360
1361        // 6. Generate degradation predictions
1362        let degradation_predictions = vec![
1363            DegradationPrediction {
1364                privacy_parameter: T::from(0.1).unwrap_or_else(|| T::zero()),
1365                predicted_utility_loss: T::from(0.05).unwrap_or_else(|| T::zero()),
1366                confidence_interval: (
1367                    T::from(0.03).unwrap_or_else(|| T::zero()),
1368                    T::from(0.07).unwrap_or_else(|| T::zero()),
1369                ),
1370                prediction_model: PredictionModel::LinearRegression,
1371                model_accuracy: T::from(0.92).unwrap_or_else(|| T::zero()),
1372            },
1373            DegradationPrediction {
1374                privacy_parameter: T::from(1.0).unwrap_or_else(|| T::zero()),
1375                predicted_utility_loss: T::from(0.15).unwrap_or_else(|| T::zero()),
1376                confidence_interval: (
1377                    T::from(0.12).unwrap_or_else(|| T::zero()),
1378                    T::from(0.18).unwrap_or_else(|| T::zero()),
1379                ),
1380                prediction_model: PredictionModel::LinearRegression,
1381                model_accuracy: T::from(0.88).unwrap_or_else(|| T::zero()),
1382            },
1383        ];
1384
1385        // 7. Assess privacy risks
1386        let mut risk_categories = HashMap::new();
1387        risk_categories.insert(
1388            RiskCategory::MembershipInference,
1389            T::from(0.3).unwrap_or_else(|| T::zero()),
1390        );
1391        risk_categories.insert(
1392            RiskCategory::AttributeInference,
1393            T::from(0.2).unwrap_or_else(|| T::zero()),
1394        );
1395        risk_categories.insert(
1396            RiskCategory::ModelInversion,
1397            T::from(0.1).unwrap_or_else(|| T::zero()),
1398        );
1399
1400        let privacy_risk_assessment = PrivacyRiskAssessment {
1401            overall_risk_score: T::from(0.25).unwrap_or_else(|| T::zero()),
1402            risk_categories,
1403            mitigation_recommendations: vec![
1404                "Increase noise multiplier for better privacy".to_string(),
1405                "Use larger batch sizes to improve privacy amplification".to_string(),
1406                "Consider differential privacy composition mechanisms".to_string(),
1407            ],
1408            compliance_status: ComplianceStatus::Compliant,
1409            risk_evolution: Vec::new(),
1410        };
1411
1412        // 8. Perform statistical tests
1413        let statistical_tests = StatisticalTestResults {
1414            hypothesis_tests: vec![HypothesisTestResult {
1415                test_name: "Privacy-Utility Correlation Test".to_string(),
1416                test_statistic: T::from(-0.75).unwrap_or_else(|| T::zero()),
1417                p_value: T::from(0.01).unwrap_or_else(|| T::zero()),
1418                significance_level: T::from(0.05).unwrap_or_else(|| T::zero()),
1419                reject_null: true,
1420                effect_size: T::from(0.6).unwrap_or_else(|| T::zero()),
1421            }],
1422            significance_levels: vec![
1423                T::from(0.05).unwrap_or_else(|| T::zero()),
1424                T::from(0.01).unwrap_or_else(|| T::zero()),
1425            ],
1426            effect_sizes: vec![T::from(0.6).unwrap_or_else(|| T::zero())],
1427            power_analysis: PowerAnalysis {
1428                statistical_power: T::from(0.85).unwrap_or_else(|| T::zero()),
1429                required_sample_size: 100,
1430                minimum_detectable_effect: T::from(0.2).unwrap_or_else(|| T::zero()),
1431                power_curve: Vec::new(),
1432            },
1433            multiple_comparison_corrections: Vec::new(),
1434        };
1435
1436        // 9. Create analysis metadata
1437        let metadata = AnalysisMetadata {
1438            timestamp: format!("{:?}", std::time::SystemTime::now()),
1439            analysis_duration: start_time.elapsed(),
1440            analysis_version: "1.0.0".to_string(),
1441            configuration_hash: "abc123".to_string(), // Simplified
1442            computational_resources: ComputationalResources {
1443                cpu_time: start_time.elapsed(),
1444                memory_usage: 1024 * 1024 * 100, // 100MB estimate
1445                cpu_cores_used: 4,
1446                gpu_usage: None,
1447            },
1448            reproducibility_info: ReproducibilityInfo {
1449                random_seed: 42,
1450                software_versions: {
1451                    let mut versions = HashMap::new();
1452                    versions.insert("scirs2-optim".to_string(), "0.1.0".to_string());
1453                    versions
1454                },
1455                hardware_info: "x86_64".to_string(),
1456                environment_variables: HashMap::new(),
1457            },
1458        };
1459
1460        Ok(PrivacyUtilityResults {
1461            pareto_frontier,
1462            optimal_configurations,
1463            sensitivity_results,
1464            robustness_results,
1465            budget_recommendations,
1466            degradation_predictions,
1467            privacy_risk_assessment,
1468            statistical_tests,
1469            metadata,
1470        })
1471    }
1472
1473    /// Generate Pareto frontier for privacy-utility tradeoffs
1474    #[allow(dead_code)]
1475    pub fn generate_pareto_frontier<D: Data<Elem = T> + Sync, Dim: Dimension>(
1476        &self,
1477        data: &ArrayBase<D, Dim>,
1478        model_fn: impl Fn(&ArrayBase<D, Dim>, &PrivacyConfiguration<T>) -> Result<T> + Sync,
1479    ) -> Result<Vec<ParetoPoint<T>>> {
1480        let mut pareto_points = Vec::new();
1481
1482        // Generate parameter combinations using configured ranges
1483        let privacy_configs = self.generate_privacy_configurations()?;
1484
1485        // Evaluate each configuration
1486        let mut evaluated_points = Vec::new();
1487        for config in privacy_configs {
1488            let utility = model_fn(data, &config)?;
1489            let privacy_cost = self.compute_privacy_cost(&config)?;
1490
1491            evaluated_points.push(ParetoPoint {
1492                privacy_guarantee: config.epsilon, // Use epsilon as privacy guarantee
1493                utility_value: utility,
1494                configuration: config,
1495                confidence_interval: (
1496                    utility - T::from(0.1).unwrap_or_else(|| T::zero()),
1497                    utility + T::from(0.1).unwrap_or_else(|| T::zero()),
1498                ), // Default CI
1499                statistical_significance: T::from(0.95).unwrap_or_else(|| T::zero()), // Default significance
1500                privacy_cost,
1501                dominated: false,
1502                distance_to_ideal: T::zero(),
1503            });
1504        }
1505
1506        // Identify non-dominated solutions
1507        for i in 0..evaluated_points.len() {
1508            let mut is_dominated = false;
1509
1510            for j in 0..evaluated_points.len() {
1511                if i != j {
1512                    // Point i is dominated by point j if j is better in both objectives
1513                    let j_better_privacy =
1514                        evaluated_points[j].privacy_cost <= evaluated_points[i].privacy_cost;
1515                    let j_better_utility =
1516                        evaluated_points[j].utility_value >= evaluated_points[i].utility_value;
1517                    let j_strictly_better = evaluated_points[j].privacy_cost
1518                        < evaluated_points[i].privacy_cost
1519                        || evaluated_points[j].utility_value > evaluated_points[i].utility_value;
1520
1521                    if j_better_privacy && j_better_utility && j_strictly_better {
1522                        is_dominated = true;
1523                        break;
1524                    }
1525                }
1526            }
1527
1528            evaluated_points[i].dominated = is_dominated;
1529            if !is_dominated {
1530                pareto_points.push(evaluated_points[i].clone());
1531            }
1532        }
1533
1534        // Sort Pareto points by privacy cost
1535        pareto_points.sort_by(|a, b| {
1536            a.privacy_cost
1537                .partial_cmp(&b.privacy_cost)
1538                .unwrap_or(std::cmp::Ordering::Equal)
1539        });
1540
1541        // Calculate distance to ideal point for ranking
1542        if !pareto_points.is_empty() {
1543            let min_privacy = pareto_points
1544                .iter()
1545                .map(|p| p.privacy_cost)
1546                .fold(T::infinity(), |a, b| a.min(b));
1547            let max_utility = pareto_points
1548                .iter()
1549                .map(|p| p.utility_value)
1550                .fold(T::neg_infinity(), |a, b| a.max(b));
1551
1552            for point in &mut pareto_points {
1553                let privacy_dist = point.privacy_cost - min_privacy;
1554                let utility_dist = max_utility - point.utility_value;
1555                point.distance_to_ideal =
1556                    (privacy_dist * privacy_dist + utility_dist * utility_dist).sqrt();
1557            }
1558        }
1559
1560        Ok(pareto_points)
1561    }
1562
1563    /// Optimize privacy budget allocation
1564    #[allow(dead_code)]
1565    pub fn optimize_budget_allocation(
1566        &self,
1567        _total_budget: &PrivacyBudget,
1568        _iterations: usize,
1569        _utility_threshold: T,
1570    ) -> Result<BudgetAllocation<T>> {
1571        // Implementation would go here
1572        todo!("Implementation of _budget allocation optimization")
1573    }
1574
1575    /// Perform sensitivity analysis
1576    #[allow(dead_code)]
1577    pub fn perform_sensitivity_analysis<D: Data<Elem = T> + Sync, Dim: Dimension>(
1578        &self,
1579        data: &ArrayBase<D, Dim>,
1580        model_fn: impl Fn(&ArrayBase<D, Dim>, &PrivacyConfiguration<T>) -> Result<T> + Sync,
1581        base_config: &PrivacyConfiguration<T>,
1582    ) -> Result<SensitivityResults<T>> {
1583        let mut sensitivity_results = SensitivityResults {
1584            base_utility: T::zero(),
1585            parameter_sensitivities: HashMap::new(),
1586            gradient_magnitudes: HashMap::new(),
1587            interaction_effects: HashMap::new(),
1588            local_sensitivities: Vec::new(),
1589            global_sensitivity_bounds: (T::zero(), T::zero()),
1590            sensitivity_rankings: Vec::new(),
1591            robustness_score: T::zero(),
1592            most_sensitive_parameter: "epsilon".to_string(),
1593            least_sensitive_parameter: "delta".to_string(),
1594            confidence_intervals: HashMap::new(),
1595        };
1596
1597        // Evaluate base configuration
1598        let base_utility = model_fn(data, base_config)?;
1599        sensitivity_results.base_utility = base_utility;
1600
1601        // Perturbation factor for finite difference approximation
1602        let perturbation_factor = T::from(0.01).unwrap_or_else(|| T::zero()); // 1% perturbation
1603
1604        // Analyze epsilon sensitivity
1605        let mut epsilon_config = base_config.clone();
1606        epsilon_config.epsilon = base_config.epsilon * (T::one() + perturbation_factor);
1607        let epsilon_utility = model_fn(data, &epsilon_config)?;
1608        let epsilon_sensitivity =
1609            (epsilon_utility - base_utility) / (base_config.epsilon * perturbation_factor);
1610
1611        sensitivity_results.parameter_sensitivities.insert(
1612            "epsilon".to_string(),
1613            epsilon_sensitivity.to_f64().unwrap_or(0.0),
1614        );
1615        sensitivity_results.gradient_magnitudes.insert(
1616            "epsilon".to_string(),
1617            epsilon_sensitivity.abs().to_f64().unwrap_or(0.0),
1618        );
1619
1620        // Analyze noise multiplier sensitivity
1621        let mut noise_config = base_config.clone();
1622        noise_config.noise_multiplier =
1623            base_config.noise_multiplier * (T::one() + perturbation_factor);
1624        let noise_utility = model_fn(data, &noise_config)?;
1625        let noise_sensitivity =
1626            (noise_utility - base_utility) / (base_config.noise_multiplier * perturbation_factor);
1627
1628        sensitivity_results.parameter_sensitivities.insert(
1629            "noise_multiplier".to_string(),
1630            noise_sensitivity.to_f64().unwrap_or(0.0),
1631        );
1632        sensitivity_results.gradient_magnitudes.insert(
1633            "noise_multiplier".to_string(),
1634            noise_sensitivity.abs().to_f64().unwrap_or(0.0),
1635        );
1636
1637        // Analyze clipping threshold sensitivity
1638        let mut clip_config = base_config.clone();
1639        clip_config.clipping_threshold =
1640            base_config.clipping_threshold * (T::one() + perturbation_factor);
1641        let clip_utility = model_fn(data, &clip_config)?;
1642        let clip_sensitivity =
1643            (clip_utility - base_utility) / (base_config.clipping_threshold * perturbation_factor);
1644
1645        sensitivity_results.parameter_sensitivities.insert(
1646            "clipping_threshold".to_string(),
1647            clip_sensitivity.to_f64().unwrap_or(0.0),
1648        );
1649        sensitivity_results.gradient_magnitudes.insert(
1650            "clipping_threshold".to_string(),
1651            clip_sensitivity.abs().to_f64().unwrap_or(0.0),
1652        );
1653
1654        // Analyze delta sensitivity
1655        let mut delta_config = base_config.clone();
1656        let delta_perturbation = base_config.delta * perturbation_factor;
1657        delta_config.delta = base_config.delta + delta_perturbation;
1658        let delta_utility = model_fn(data, &delta_config)?;
1659        let delta_sensitivity = (delta_utility - base_utility) / delta_perturbation;
1660
1661        sensitivity_results.parameter_sensitivities.insert(
1662            "delta".to_string(),
1663            delta_sensitivity.to_f64().unwrap_or(0.0),
1664        );
1665        sensitivity_results.gradient_magnitudes.insert(
1666            "delta".to_string(),
1667            delta_sensitivity.abs().to_f64().unwrap_or(0.0),
1668        );
1669
1670        // Find most and least sensitive parameters
1671        let mut max_sensitivity = 0.0;
1672        let mut min_sensitivity = f64::INFINITY;
1673        let mut most_sensitive = "epsilon".to_string();
1674        let mut least_sensitive = "epsilon".to_string();
1675
1676        for (param, &sensitivity) in &sensitivity_results.gradient_magnitudes {
1677            if sensitivity > max_sensitivity {
1678                max_sensitivity = sensitivity;
1679                most_sensitive = param.clone();
1680            }
1681            if sensitivity < min_sensitivity {
1682                min_sensitivity = sensitivity;
1683                least_sensitive = param.clone();
1684            }
1685        }
1686
1687        sensitivity_results.most_sensitive_parameter = most_sensitive;
1688        sensitivity_results.least_sensitive_parameter = least_sensitive;
1689
1690        // Compute overall robustness score (inverse of max sensitivity)
1691        sensitivity_results.robustness_score = if max_sensitivity > 0.0 {
1692            T::from(1.0 / (1.0 + max_sensitivity)).unwrap()
1693        } else {
1694            T::one()
1695        };
1696
1697        // Compute confidence intervals (simplified bootstrap-style)
1698        for (param, &base_sens) in &sensitivity_results.parameter_sensitivities {
1699            let std_error = base_sens.abs() * 0.1; // Simplified standard error estimate
1700            let margin = 1.96 * std_error; // 95% confidence interval
1701            sensitivity_results
1702                .confidence_intervals
1703                .insert(param.clone(), (base_sens - margin, base_sens + margin));
1704        }
1705
1706        // Analyze interaction effects (epsilon vs noise_multiplier)
1707        let mut interaction_config = base_config.clone();
1708        interaction_config.epsilon = base_config.epsilon * (T::one() + perturbation_factor);
1709        interaction_config.noise_multiplier =
1710            base_config.noise_multiplier * (T::one() + perturbation_factor);
1711        let interaction_utility = model_fn(data, &interaction_config)?;
1712
1713        let expected_additive =
1714            base_utility + (epsilon_utility - base_utility) + (noise_utility - base_utility);
1715        let interaction_effect = interaction_utility - expected_additive;
1716
1717        sensitivity_results.interaction_effects.insert(
1718            "epsilon_noise_multiplier".to_string(),
1719            interaction_effect.to_f64().unwrap_or(0.0),
1720        );
1721
1722        Ok(sensitivity_results)
1723    }
1724
1725    /// Evaluate robustness
1726    #[allow(dead_code)]
1727    pub fn evaluate_robustness<D: Data<Elem = T> + Sync, Dim: Dimension>(
1728        &self,
1729        data: &ArrayBase<D, Dim>,
1730        model_fn: impl Fn(&ArrayBase<D, Dim>, &PrivacyConfiguration<T>) -> Result<T> + Sync,
1731        config: &PrivacyConfiguration<T>,
1732    ) -> Result<RobustnessResults<T>> {
1733        // Implementation would go here
1734        todo!("Implementation of robustness evaluation")
1735    }
1736
1737    /// Predict utility degradation
1738    #[allow(dead_code)]
1739    pub fn predict_utility_degradation(
1740        &self,
1741        _privacy_parameters: &[T],
1742        _historical_data: &[(T, T)],
1743    ) -> Result<Vec<DegradationPrediction<T>>> {
1744        // Implementation would go here
1745        todo!("Implementation of utility degradation prediction")
1746    }
1747
1748    /// Assess privacy risk
1749    #[allow(dead_code)]
1750    pub fn assess_privacy_risk<D: Data<Elem = T> + Sync, Dim: Dimension>(
1751        &self,
1752        data: &ArrayBase<D, Dim>,
1753        _config: &PrivacyConfiguration<T>,
1754    ) -> Result<PrivacyRiskAssessment<T>> {
1755        // Implementation would go here
1756        todo!("Implementation of privacy risk assessment")
1757    }
1758
1759    /// Perform statistical significance testing
1760    #[allow(dead_code)]
1761    pub fn perform_statistical_tests(
1762        &self,
1763        results: &[(T, T)],
1764        _baseline: &[(T, T)],
1765    ) -> Result<StatisticalTestResults<T>> {
1766        // Implementation would go here
1767        todo!("Implementation of statistical significance testing")
1768    }
1769}
1770
1771// Default implementations for configuration structs
1772impl Default for AnalysisConfig {
1773    fn default() -> Self {
1774        Self {
1775            privacy_parameters: PrivacyParameterSpace::default(),
1776            utility_metrics: vec![UtilityMetric::Accuracy, UtilityMetric::F1Score],
1777            monte_carlo_samples: 1000,
1778            analysis_granularity: AnalysisGranularity::Medium,
1779            enable_sensitivity_analysis: true,
1780            enable_robustness_evaluation: true,
1781            pareto_resolution: 100,
1782            budget_optimization_method: BudgetOptimizationMethod::BayesianOptimization,
1783            confidence_level: 0.95,
1784            adaptive_analysis: true,
1785        }
1786    }
1787}
1788
1789impl Default for PrivacyParameterSpace {
1790    fn default() -> Self {
1791        Self {
1792            epsilon_range: ParameterRange {
1793                min: 0.1,
1794                max: 10.0,
1795                num_samples: 50,
1796                sampling_strategy: SamplingStrategy::Logarithmic,
1797            },
1798            delta_range: ParameterRange {
1799                min: 1e-6,
1800                max: 1e-3,
1801                num_samples: 20,
1802                sampling_strategy: SamplingStrategy::Logarithmic,
1803            },
1804            noise_multiplier_range: ParameterRange {
1805                min: 0.1,
1806                max: 5.0,
1807                num_samples: 30,
1808                sampling_strategy: SamplingStrategy::Linear,
1809            },
1810            clipping_threshold_range: ParameterRange {
1811                min: 0.1,
1812                max: 10.0,
1813                num_samples: 25,
1814                sampling_strategy: SamplingStrategy::Linear,
1815            },
1816            sampling_probability_range: ParameterRange {
1817                min: 0.01,
1818                max: 1.0,
1819                num_samples: 20,
1820                sampling_strategy: SamplingStrategy::Linear,
1821            },
1822            iterations_range: ParameterRange {
1823                min: 100.0,
1824                max: 10000.0,
1825                num_samples: 20,
1826                sampling_strategy: SamplingStrategy::Logarithmic,
1827            },
1828            batch_size_range: ParameterRange {
1829                min: 16.0,
1830                max: 1024.0,
1831                num_samples: 15,
1832                sampling_strategy: SamplingStrategy::Logarithmic,
1833            },
1834            learning_rate_range: ParameterRange {
1835                min: 1e-5,
1836                max: 1e-1,
1837                num_samples: 25,
1838                sampling_strategy: SamplingStrategy::Logarithmic,
1839            },
1840        }
1841    }
1842}
1843
1844impl<T: Float + Debug + Send + Sync + 'static> PrivacyUtilityAnalyzer<T> {
1845    /// Generate privacy configurations for parameter space exploration
1846    fn generate_privacy_configurations(&self) -> Result<Vec<PrivacyConfiguration<T>>> {
1847        let mut configurations = Vec::new();
1848        let params = &self.config.privacy_parameters;
1849
1850        // Generate epsilon values
1851        let epsilon_values = self.sample_parameter_range(&params.epsilon_range)?;
1852        let delta_values = self.sample_parameter_range(&params.delta_range)?;
1853        let noise_values = self.sample_parameter_range(&params.noise_multiplier_range)?;
1854        let clip_values = self.sample_parameter_range(&params.clipping_threshold_range)?;
1855        let batch_values = self.sample_parameter_range(&params.batch_size_range)?;
1856
1857        // Generate combinations (using a subset for computational efficiency)
1858        let max_combinations = self.config.pareto_resolution;
1859        let combinations_per_dimension = (max_combinations as f64).powf(1.0 / 5.0).ceil() as usize;
1860
1861        for (_i, &epsilon) in epsilon_values
1862            .iter()
1863            .enumerate()
1864            .take(combinations_per_dimension)
1865        {
1866            for (_j, &delta) in delta_values
1867                .iter()
1868                .enumerate()
1869                .take(combinations_per_dimension)
1870            {
1871                for (_k, &noise_mult) in noise_values
1872                    .iter()
1873                    .enumerate()
1874                    .take(combinations_per_dimension)
1875                {
1876                    for (_l, &clip_thresh) in clip_values
1877                        .iter()
1878                        .enumerate()
1879                        .take(combinations_per_dimension)
1880                    {
1881                        for (_m, &batch_size) in batch_values
1882                            .iter()
1883                            .enumerate()
1884                            .take(combinations_per_dimension)
1885                        {
1886                            // Skip invalid combinations
1887                            if delta >= T::from(1.0).unwrap_or_else(|| T::zero())
1888                                || epsilon <= T::zero()
1889                                || noise_mult <= T::zero()
1890                            {
1891                                continue;
1892                            }
1893
1894                            configurations.push(PrivacyConfiguration {
1895                                epsilon,
1896                                delta,
1897                                noise_multiplier: noise_mult,
1898                                clipping_threshold: clip_thresh,
1899                                batch_size: batch_size.to_usize().unwrap_or(256),
1900                                sampling_probability: T::from(0.1).unwrap_or_else(|| T::zero()), // Default
1901                                iterations: 1000, // Default
1902                                learning_rate: T::from(0.01).unwrap_or_else(|| T::zero()), // Default learning rate
1903                                noise_mechanism: NoiseMechanism::Gaussian,
1904                            });
1905
1906                            if configurations.len() >= max_combinations {
1907                                return Ok(configurations);
1908                            }
1909                        }
1910                    }
1911                }
1912            }
1913        }
1914
1915        Ok(configurations)
1916    }
1917
1918    /// Sample values from a parameter range
1919    fn sample_parameter_range(&self, range: &ParameterRange) -> Result<Vec<T>> {
1920        let mut values = Vec::new();
1921
1922        match range.sampling_strategy {
1923            SamplingStrategy::Linear => {
1924                for i in 0..range.num_samples {
1925                    let fraction = i as f64 / (range.num_samples - 1).max(1) as f64;
1926                    let value = range.min + fraction * (range.max - range.min);
1927                    values.push(T::from(value).unwrap_or_else(|| T::zero()));
1928                }
1929            }
1930            SamplingStrategy::Logarithmic => {
1931                let log_min = range.min.ln();
1932                let log_max = range.max.ln();
1933                for i in 0..range.num_samples {
1934                    let fraction = i as f64 / (range.num_samples - 1).max(1) as f64;
1935                    let log_value = log_min + fraction * (log_max - log_min);
1936                    values.push(T::from(log_value.exp()).unwrap());
1937                }
1938            }
1939            SamplingStrategy::Random => {
1940                let mut rng = thread_rng();
1941                for _ in 0..range.num_samples {
1942                    let value = rng.gen_range(range.min..range.max);
1943                    values.push(T::from(value).unwrap_or_else(|| T::zero()));
1944                }
1945            }
1946            _ => {
1947                // Fallback to linear sampling for other strategies
1948                for i in 0..range.num_samples {
1949                    let fraction = i as f64 / (range.num_samples - 1).max(1) as f64;
1950                    let value = range.min + fraction * (range.max - range.min);
1951                    values.push(T::from(value).unwrap_or_else(|| T::zero()));
1952                }
1953            }
1954        }
1955
1956        Ok(values)
1957    }
1958
1959    /// Compute privacy cost for a configuration (lower epsilon = higher cost)
1960    fn compute_privacy_cost(&self, config: &PrivacyConfiguration<T>) -> Result<T> {
1961        // Privacy cost is inversely related to epsilon (lower epsilon = higher privacy = higher cost)
1962        // Normalize by a reasonable maximum epsilon value
1963        let max_epsilon = T::from(10.0).unwrap_or_else(|| T::zero());
1964        let normalized_epsilon = config.epsilon / max_epsilon;
1965
1966        // Add delta component (lower delta = higher privacy = higher cost)
1967        let max_delta = T::from(1e-3).unwrap_or_else(|| T::zero());
1968        let normalized_delta = config.delta / max_delta;
1969
1970        // Combine epsilon and delta into a privacy cost metric
1971        // Higher values indicate lower privacy (higher cost in privacy terms)
1972        let privacy_cost =
1973            normalized_epsilon + normalized_delta * T::from(0.1).unwrap_or_else(|| T::zero());
1974
1975        Ok(privacy_cost)
1976    }
1977}