optirs_core/privacy/
private_hyperparameter_optimization.rs

1// Privacy-Preserving Hyperparameter Optimization
2//
3// This module implements differential privacy guarantees for hyperparameter
4// optimization, ensuring that the choice of hyperparameters does not leak
5// sensitive information about the training data.
6
7use crate::error::{OptimError, Result};
8use crate::privacy::moment_accountant::MomentsAccountant;
9use crate::privacy::{DifferentialPrivacyConfig, PrivacyBudget};
10use scirs2_core::ndarray::{Array1, Array2};
11use scirs2_core::numeric::Float;
12use scirs2_core::random::rngs::StdRng;
13use scirs2_core::random::Rng;
14use std::collections::HashMap;
15use std::fmt::Debug;
16
17// Type aliases for complex types to reduce complexity
18type ObjectiveFn<T> = Box<dyn Fn(&ParameterConfiguration<T>) -> Result<f64> + Send + Sync>;
19type RuleFn<T> = Box<dyn Fn(&HPOResult<T>) -> bool + Send + Sync>;
20type TestFn<T> = Box<dyn Fn(&[HPOResult<T>]) -> StatisticalTestResult + Send + Sync>;
21
22/// Privacy-preserving hyperparameter optimizer
23pub struct PrivateHyperparameterOptimizer<T: Float + Debug + Send + Sync + 'static> {
24    /// Configuration for privacy-preserving hyperparameter optimization
25    config: PrivateHPOConfig<T>,
26
27    /// Privacy budget manager
28    budget_manager: HPOBudgetManager,
29
30    /// Noisy optimization algorithms
31    noisy_optimizers: HashMap<String, Box<dyn NoisyOptimizer<T>>>,
32
33    /// Hyperparameter space definition
34    parameterspace: ParameterSpace<T>,
35
36    /// Objective function with privacy guarantees
37    private_objective: PrivateObjective<T>,
38
39    /// Search strategy
40    search_strategy: SearchStrategy<T>,
41
42    /// Results aggregator with privacy
43    results_aggregator: PrivateResultsAggregator<T>,
44
45    /// Privacy accountant for hyperparameter selection
46    privacy_accountant: MomentsAccountant,
47}
48
49/// Configuration for private hyperparameter optimization
50#[derive(Debug, Clone)]
51pub struct PrivateHPOConfig<T: Float + Debug + Send + Sync + 'static> {
52    /// Base differential privacy configuration
53    pub base_privacyconfig: DifferentialPrivacyConfig,
54
55    /// Privacy budget allocation strategy
56    pub budget_allocation: BudgetAllocationStrategy,
57
58    /// Hyperparameter search algorithm
59    pub search_algorithm: SearchAlgorithm,
60
61    /// Number of hyperparameter configurations to evaluate
62    pub num_evaluations: usize,
63
64    /// Number of cross-validation folds
65    pub cv_folds: usize,
66
67    /// Early stopping criteria
68    pub early_stopping: EarlyStoppingConfig,
69
70    /// Noise mechanism for hyperparameter selection
71    pub noise_mechanism: HyperparameterNoiseMechanism,
72
73    /// Sensitivity bounds for hyperparameters
74    pub sensitivity_bounds: SensitivityBounds<T>,
75
76    /// Enable private model selection
77    pub private_model_selection: bool,
78
79    /// Validation strategy
80    pub validation_strategy: ValidationStrategy,
81}
82
83/// Budget allocation strategies for hyperparameter optimization
84#[derive(Debug, Clone, Copy)]
85pub enum BudgetAllocationStrategy {
86    /// Equal allocation across all evaluations
87    Equal,
88
89    /// Adaptive allocation based on promising regions
90    Adaptive,
91
92    /// Bandit-based allocation
93    Bandit,
94
95    /// Hierarchical allocation (coarse to fine)
96    Hierarchical,
97
98    /// Budget allocation based on uncertainty
99    Uncertainty,
100}
101
102/// Search algorithms for hyperparameter optimization
103#[derive(Debug, Clone, Copy)]
104pub enum SearchAlgorithm {
105    /// Random search with differential privacy
106    RandomSearch,
107
108    /// Grid search with differential privacy
109    GridSearch,
110
111    /// Bayesian optimization with differential privacy
112    BayesianOptimization,
113
114    /// Genetic algorithm with differential privacy
115    GeneticAlgorithm,
116
117    /// Particle swarm optimization with differential privacy
118    ParticleSwarm,
119
120    /// Simulated annealing with differential privacy
121    SimulatedAnnealing,
122
123    /// Tree-structured Parzen estimator with differential privacy
124    TPE,
125}
126
127/// Early stopping configuration
128#[derive(Debug, Clone)]
129pub struct EarlyStoppingConfig {
130    /// Enable early stopping
131    pub enabled: bool,
132
133    /// Patience (number of evaluations without improvement)
134    pub patience: usize,
135
136    /// Minimum improvement threshold
137    pub min_improvement: f64,
138
139    /// Maximum number of evaluations
140    pub max_evaluations: usize,
141}
142
143/// Noise mechanisms for hyperparameter selection
144#[derive(Debug, Clone, Copy)]
145pub enum HyperparameterNoiseMechanism {
146    /// Exponential mechanism for discrete selection
147    Exponential,
148
149    /// Gaussian mechanism for continuous parameters
150    Gaussian,
151
152    /// Laplace mechanism
153    Laplace,
154
155    /// Report noisy max for selection
156    NoisyMax,
157
158    /// Sparse vector technique
159    SparseVector,
160}
161
162/// Sensitivity bounds for hyperparameters
163#[derive(Debug, Clone)]
164pub struct SensitivityBounds<T: Float + Debug + Send + Sync + 'static> {
165    /// Global sensitivity for each hyperparameter
166    pub global_sensitivity: HashMap<String, T>,
167
168    /// Local sensitivity bounds
169    pub local_sensitivity: HashMap<String, (T, T)>,
170
171    /// Smooth sensitivity parameters
172    pub smooth_sensitivity: HashMap<String, SmoothSensitivityParams<T>>,
173}
174
175/// Smooth sensitivity parameters
176#[derive(Debug, Clone)]
177pub struct SmoothSensitivityParams<T: Float + Debug + Send + Sync + 'static> {
178    /// Beta parameter for smooth sensitivity
179    pub beta: T,
180
181    /// Maximum local sensitivity
182    pub max_local_sensitivity: T,
183
184    /// Smoothness parameter
185    pub smoothness: T,
186}
187
188/// Validation strategies for private hyperparameter optimization
189#[derive(Debug, Clone, Copy)]
190pub enum ValidationStrategy {
191    /// Hold-out validation
192    HoldOut,
193
194    /// K-fold cross-validation with privacy
195    KFoldCV,
196
197    /// Leave-one-out cross-validation
198    LeaveOneOut,
199
200    /// Bootstrap validation
201    Bootstrap,
202
203    /// Time series split for temporal data
204    TimeSeriesSplit,
205}
206
207/// Privacy budget manager for hyperparameter optimization
208pub struct HPOBudgetManager {
209    /// Total privacy budget
210    total_budget: PrivacyBudget,
211
212    /// Budget allocation per evaluation
213    evaluation_budgets: Vec<PrivacyBudget>,
214
215    /// Budget allocation strategy
216    allocation_strategy: BudgetAllocationStrategy,
217
218    /// Consumed budget tracker
219    consumed_budget: PrivacyBudget,
220
221    /// Adaptive budget controller
222    adaptive_controller: AdaptiveBudgetController,
223}
224
225/// Adaptive budget controller
226pub struct AdaptiveBudgetController {
227    /// Historical performance scores
228    performance_history: Vec<f64>,
229
230    /// Budget efficiency tracker
231    budget_efficiency: Vec<f64>,
232
233    /// Allocation weights
234    allocation_weights: Vec<f64>,
235
236    /// Learning rate for adaptation
237    adaptation_rate: f64,
238}
239
240/// Trait for noisy optimization algorithms
241pub trait NoisyOptimizer<T: Float + Debug + Send + Sync + 'static>: Send + Sync {
242    /// Suggest next hyperparameter configuration with privacy
243    fn suggest_next(
244        &mut self,
245        parameterspace: &ParameterSpace<T>,
246        evaluation_history: &[HPOEvaluation<T>],
247        _privacy_budget: &PrivacyBudget,
248    ) -> Result<ParameterConfiguration<T>>;
249
250    /// Update optimizer with new evaluation result
251    fn update(
252        &mut self,
253        config: &ParameterConfiguration<T>,
254        result: &HPOResult<T>,
255        _privacy_budget: &PrivacyBudget,
256    ) -> Result<()>;
257
258    /// Get optimizer name
259    fn name(&self) -> &str;
260}
261
262/// Hyperparameter space definition
263#[derive(Debug, Clone)]
264pub struct ParameterSpace<T: Float + Debug + Send + Sync + 'static> {
265    /// Parameter definitions
266    pub parameters: HashMap<String, ParameterDefinition<T>>,
267
268    /// Parameter constraints
269    pub constraints: Vec<ParameterConstraint<T>>,
270
271    /// Default configuration
272    pub defaultconfig: Option<ParameterConfiguration<T>>,
273}
274
275/// Individual parameter definition
276#[derive(Debug, Clone)]
277pub struct ParameterDefinition<T: Float + Debug + Send + Sync + 'static> {
278    /// Parameter name
279    pub name: String,
280
281    /// Parameter type
282    pub param_type: ParameterType<T>,
283
284    /// Parameter bounds
285    pub bounds: ParameterBounds<T>,
286
287    /// Prior distribution (for Bayesian optimization)
288    pub prior: Option<ParameterPrior<T>>,
289
290    /// Transformation function
291    pub transformation: Option<ParameterTransformation>,
292}
293
294/// Types of hyperparameters
295#[derive(Debug, Clone)]
296pub enum ParameterType<T: Float + Debug + Send + Sync + 'static> {
297    /// Continuous parameter
298    Continuous,
299
300    /// Discrete integer parameter
301    Integer,
302
303    /// Categorical parameter
304    Categorical(Vec<String>),
305
306    /// Boolean parameter
307    Boolean,
308
309    /// Ordinal parameter
310    Ordinal(Vec<T>),
311}
312
313/// Parameter bounds
314#[derive(Debug, Clone)]
315pub struct ParameterBounds<T: Float + Debug + Send + Sync + 'static> {
316    /// Minimum value
317    pub min: Option<T>,
318
319    /// Maximum value
320    pub max: Option<T>,
321
322    /// Step size (for discrete parameters)
323    pub step: Option<T>,
324
325    /// Valid values (for categorical parameters)
326    pub valid_values: Option<Vec<String>>,
327}
328
329/// Prior distributions for parameters
330#[derive(Debug, Clone)]
331pub enum ParameterPrior<T: Float + Debug + Send + Sync + 'static> {
332    /// Uniform prior
333    Uniform(T, T),
334
335    /// Normal prior
336    Normal(T, T),
337
338    /// Log-normal prior
339    LogNormal(T, T),
340
341    /// Beta prior
342    Beta(T, T),
343
344    /// Gamma prior
345    Gamma(T, T),
346}
347
348/// Parameter transformations
349#[derive(Debug, Clone, Copy)]
350pub enum ParameterTransformation {
351    /// No transformation
352    Identity,
353
354    /// Logarithmic transformation
355    Log,
356
357    /// Exponential transformation
358    Exp,
359
360    /// Square root transformation
361    Sqrt,
362
363    /// Square transformation
364    Square,
365}
366
367/// Parameter constraints
368#[derive(Debug, Clone)]
369pub struct ParameterConstraint<T: Float + Debug + Send + Sync + 'static> {
370    /// Constraint name
371    pub name: String,
372
373    /// Constraint type
374    pub constraint_type: ConstraintType<T>,
375
376    /// Constraint violation penalty
377    pub penalty: T,
378}
379
380/// Types of parameter constraints
381#[derive(Debug, Clone)]
382pub enum ConstraintType<T: Float + Debug + Send + Sync + 'static> {
383    /// Linear constraint: a^T x <= b
384    Linear(Vec<T>, T),
385
386    /// Quadratic constraint: x^T A x + b^T x <= c
387    Quadratic(Array2<T>, Array1<T>, T),
388
389    /// Custom constraint function
390    Custom(String),
391}
392
393/// Hyperparameter configuration
394#[derive(Debug, Clone)]
395pub struct ParameterConfiguration<T: Float + Debug + Send + Sync + 'static> {
396    /// Parameter values
397    pub values: HashMap<String, ParameterValue<T>>,
398
399    /// Configuration identifier
400    pub id: String,
401
402    /// Configuration metadata
403    pub metadata: HashMap<String, String>,
404}
405
406/// Parameter value types
407#[derive(Debug, Clone)]
408pub enum ParameterValue<T: Float + Debug + Send + Sync + 'static> {
409    /// Continuous value
410    Continuous(T),
411
412    /// Integer value
413    Integer(i64),
414
415    /// Categorical value
416    Categorical(String),
417
418    /// Boolean value
419    Boolean(bool),
420
421    /// Ordinal value
422    Ordinal(usize),
423}
424
425/// Private objective function
426pub struct PrivateObjective<T: Float + Debug + Send + Sync + 'static> {
427    /// Underlying objective function
428    objective_fn: ObjectiveFn<T>,
429
430    /// Noise mechanism for objective evaluation
431    noise_mechanism: ObjectiveNoiseMechanism<T>,
432
433    /// Sensitivity analysis
434    sensitivity_analyzer: ObjectiveSensitivityAnalyzer<T>,
435
436    /// Cross-validation with privacy
437    cv_evaluator: PrivateCrossValidation<T>,
438}
439
440/// Noise mechanisms for objective function evaluation
441pub struct ObjectiveNoiseMechanism<T: Float + Debug + Send + Sync + 'static> {
442    /// Mechanism type
443    mechanism_type: HyperparameterNoiseMechanism,
444
445    /// Noise parameters
446    noise_params: NoiseParameters<T>,
447
448    /// Random number generator
449    rng: scirs2_core::random::Random,
450}
451
452/// Noise parameters
453#[derive(Debug, Clone)]
454pub struct NoiseParameters<T: Float + Debug + Send + Sync + 'static> {
455    /// Noise scale
456    pub scale: T,
457
458    /// Sensitivity bound
459    pub sensitivity: T,
460
461    /// Privacy parameters
462    pub epsilon: f64,
463
464    /// Delta parameter (for Gaussian mechanism)
465    pub delta: Option<f64>,
466}
467
468/// Objective sensitivity analyzer
469pub struct ObjectiveSensitivityAnalyzer<T: Float + Debug + Send + Sync + 'static> {
470    /// Sensitivity estimation method
471    estimation_method: SensitivityEstimationMethod,
472
473    /// Sensitivity cache
474    sensitivity_cache: HashMap<String, T>,
475
476    /// Sample-based sensitivity estimator
477    sample_estimator: SampleBasedSensitivityEstimator<T>,
478}
479
480/// Methods for estimating objective sensitivity
481#[derive(Debug, Clone, Copy)]
482pub enum SensitivityEstimationMethod {
483    /// Global sensitivity (worst-case)
484    Global,
485
486    /// Local sensitivity (data-dependent)
487    Local,
488
489    /// Smooth sensitivity
490    Smooth,
491
492    /// Sample-based estimation
493    SampleBased,
494
495    /// Theoretical bounds
496    Theoretical,
497}
498
499/// Sample-based sensitivity estimator
500pub struct SampleBasedSensitivityEstimator<T: Float + Debug + Send + Sync + 'static> {
501    /// Number of samples for estimation
502    num_samples: usize,
503
504    /// Sampling strategy
505    sampling_strategy: SamplingStrategy,
506
507    /// Confidence level for bounds
508    confidence_level: f64,
509
510    /// Bootstrap estimator
511    bootstrap_estimator: BootstrapEstimator<T>,
512
513    /// Phantom data to mark type parameter as intentionally unused
514    _phantom: std::marker::PhantomData<T>,
515}
516
517/// Sampling strategies for sensitivity estimation
518#[derive(Debug, Clone, Copy)]
519pub enum SamplingStrategy {
520    /// Uniform random sampling
521    Uniform,
522
523    /// Latin hypercube sampling
524    LatinHypercube,
525
526    /// Sobol sequence sampling
527    Sobol,
528
529    /// Halton sequence sampling
530    Halton,
531
532    /// Importance sampling
533    ImportanceSampling,
534}
535
536/// Bootstrap estimator for sensitivity
537pub struct BootstrapEstimator<T: Float + Debug + Send + Sync + 'static> {
538    /// Number of bootstrap samples
539    num_bootstrap: usize,
540
541    /// Bootstrap confidence interval
542    confidence_interval: (f64, f64),
543
544    /// Bias correction
545    bias_correction: bool,
546
547    /// Phantom data to mark type parameter as intentionally unused
548    _phantom: std::marker::PhantomData<T>,
549}
550
551/// Private cross-validation evaluator
552pub struct PrivateCrossValidation<T: Float + Debug + Send + Sync + 'static> {
553    /// Number of folds
554    num_folds: usize,
555
556    /// Privacy budget per fold
557    fold_budgets: Vec<PrivacyBudget>,
558
559    /// Fold assignment strategy
560    fold_strategy: FoldStrategy,
561
562    /// Result aggregation with privacy
563    private_aggregation: PrivateFoldAggregation<T>,
564}
565
566/// Fold assignment strategies
567#[derive(Debug, Clone, Copy)]
568pub enum FoldStrategy {
569    /// Random assignment
570    Random,
571
572    /// Stratified assignment
573    Stratified,
574
575    /// Time-based assignment (for time series)
576    TimeBased,
577
578    /// Group-based assignment
579    GroupBased,
580}
581
582/// Private aggregation of cross-validation results
583pub struct PrivateFoldAggregation<T: Float + Debug + Send + Sync + 'static> {
584    /// Aggregation method
585    aggregation_method: AggregationMethod,
586
587    /// Noise parameters for aggregation
588    noise_params: NoiseParameters<T>,
589
590    /// Confidence interval estimation
591    confidence_estimation: ConfidenceEstimation<T>,
592}
593
594/// Aggregation methods for cross-validation
595#[derive(Debug, Clone, Copy)]
596pub enum AggregationMethod {
597    /// Mean aggregation with noise
598    NoisyMean,
599
600    /// Median aggregation
601    Median,
602
603    /// Trimmed mean
604    TrimmedMean,
605
606    /// Weighted average
607    WeightedAverage,
608
609    /// Robust aggregation
610    Robust,
611}
612
613/// Confidence interval estimation
614pub struct ConfidenceEstimation<T: Float + Debug + Send + Sync + 'static> {
615    /// Confidence level
616    confidence_level: f64,
617
618    /// Estimation method
619    estimation_method: ConfidenceEstimationMethod,
620
621    /// Bootstrap parameters
622    bootstrap_params: Option<BootstrapParams>,
623
624    /// Phantom data to mark type parameter as intentionally unused
625    _phantom: std::marker::PhantomData<T>,
626}
627
628/// Confidence estimation methods
629#[derive(Debug, Clone, Copy)]
630pub enum ConfidenceEstimationMethod {
631    /// Normal approximation
632    Normal,
633
634    /// Bootstrap confidence intervals
635    Bootstrap,
636
637    /// Jackknife estimation
638    Jackknife,
639
640    /// Bayesian credible intervals
641    Bayesian,
642}
643
644/// Bootstrap parameters for confidence estimation
645#[derive(Debug, Clone)]
646pub struct BootstrapParams {
647    /// Number of bootstrap samples
648    pub num_samples: usize,
649
650    /// Bootstrap type
651    pub bootstrap_type: BootstrapType,
652
653    /// Bias correction
654    pub bias_correction: bool,
655}
656
657/// Types of bootstrap methods
658#[derive(Debug, Clone, Copy)]
659pub enum BootstrapType {
660    /// Standard bootstrap
661    Standard,
662
663    /// Bias-corrected and accelerated (BCa)
664    BCa,
665
666    /// Parametric bootstrap
667    Parametric,
668
669    /// Block bootstrap (for time series)
670    Block,
671}
672
673/// Search strategy for hyperparameter optimization
674pub struct SearchStrategy<T: Float + Debug + Send + Sync + 'static> {
675    /// Search algorithm
676    algorithm: SearchAlgorithm,
677
678    /// Algorithm-specific parameters
679    algorithm_params: HashMap<String, f64>,
680
681    /// Exploration-exploitation balance
682    exploration_factor: f64,
683
684    /// Convergence criteria
685    convergence_criteria: ConvergenceCriteria<T>,
686}
687
688/// Convergence criteria for search
689#[derive(Debug, Clone)]
690pub struct ConvergenceCriteria<T: Float + Debug + Send + Sync + 'static> {
691    /// Maximum number of iterations
692    pub max_iterations: usize,
693
694    /// Tolerance for objective improvement
695    pub tolerance: T,
696
697    /// Patience for early stopping
698    pub patience: usize,
699
700    /// Minimum change in best value
701    pub min_change: T,
702}
703
704/// Private results aggregator
705pub struct PrivateResultsAggregator<T: Float + Debug + Send + Sync + 'static> {
706    /// Aggregation strategy
707    aggregation_strategy: ResultAggregationStrategy,
708
709    /// Privacy budget for final selection
710    selection_budget: PrivacyBudget,
711
712    /// Selection mechanism
713    selection_mechanism: SelectionMechanism<T>,
714
715    /// Result validation
716    result_validator: ResultValidator<T>,
717}
718
719/// Result aggregation strategies
720#[derive(Debug, Clone, Copy)]
721pub enum ResultAggregationStrategy {
722    /// Select best configuration
723    SelectBest,
724
725    /// Ensemble of top configurations
726    Ensemble,
727
728    /// Weighted combination
729    WeightedCombination,
730
731    /// Consensus-based selection
732    Consensus,
733
734    /// Multi-objective selection
735    MultiObjective,
736}
737
738/// Selection mechanisms for final hyperparameter choice
739pub struct SelectionMechanism<T: Float + Debug + Send + Sync + 'static> {
740    /// Mechanism type
741    mechanism_type: HyperparameterNoiseMechanism,
742
743    /// Selection parameters
744    selection_params: SelectionParameters<T>,
745
746    /// Utility function for selection
747    utility_function: UtilityFunction<T>,
748}
749
750/// Selection parameters
751#[derive(Debug, Clone)]
752pub struct SelectionParameters<T: Float + Debug + Send + Sync + 'static> {
753    /// Temperature parameter (for exponential mechanism)
754    pub temperature: T,
755
756    /// Sensitivity bound for utility
757    pub utility_sensitivity: T,
758
759    /// Privacy parameters
760    pub epsilon: f64,
761
762    /// Selection threshold
763    pub threshold: Option<T>,
764}
765
766/// Utility function for hyperparameter selection
767pub struct UtilityFunction<T: Float + Debug + Send + Sync + 'static> {
768    /// Function type
769    function_type: UtilityFunctionType,
770
771    /// Function parameters
772    parameters: Vec<T>,
773
774    /// Multi-objective weights
775    multi_objective_weights: Option<Vec<T>>,
776}
777
778/// Types of utility functions
779#[derive(Debug, Clone, Copy)]
780pub enum UtilityFunctionType {
781    /// Linear utility
782    Linear,
783
784    /// Exponential utility
785    Exponential,
786
787    /// Logarithmic utility
788    Logarithmic,
789
790    /// Quadratic utility
791    Quadratic,
792
793    /// Custom utility function
794    Custom,
795}
796
797/// Result validator
798pub struct ResultValidator<T: Float + Debug + Send + Sync + 'static> {
799    /// Validation rules
800    validation_rules: Vec<ValidationRule<T>>,
801
802    /// Statistical tests
803    statistical_tests: Vec<StatisticalTest<T>>,
804
805    /// Anomaly detection
806    anomaly_detector: AnomalyDetector<T>,
807}
808
809/// Validation rule for results
810pub struct ValidationRule<T: Float + Debug + Send + Sync + 'static> {
811    /// Rule name
812    pub name: String,
813
814    /// Rule function
815    pub rule_fn: RuleFn<T>,
816
817    /// Rule weight
818    pub weight: f64,
819}
820
821/// Statistical test for result validation
822pub struct StatisticalTest<T: Float + Debug + Send + Sync + 'static> {
823    /// Test name
824    pub name: String,
825
826    /// Test function
827    pub test_fn: TestFn<T>,
828
829    /// Significance level
830    pub alpha: f64,
831}
832
833/// Statistical test result
834#[derive(Debug, Clone)]
835pub struct StatisticalTestResult {
836    /// Test statistic
837    pub statistic: f64,
838
839    /// P-value
840    pub p_value: f64,
841
842    /// Test conclusion
843    pub conclusion: TestConclusion,
844
845    /// Confidence interval
846    pub confidence_interval: Option<(f64, f64)>,
847}
848
849/// Statistical test conclusions
850#[derive(Debug, Clone, Copy)]
851pub enum TestConclusion {
852    /// Reject null hypothesis
853    Reject,
854
855    /// Fail to reject null hypothesis
856    FailToReject,
857
858    /// Insufficient evidence
859    InsufficientEvidence,
860}
861
862/// Anomaly detector for results
863pub struct AnomalyDetector<T: Float + Debug + Send + Sync + 'static> {
864    /// Detection threshold
865    threshold: T,
866
867    /// Detection method
868    detection_method: AnomalyDetectionMethod,
869
870    /// Historical baseline
871    baseline: Option<T>,
872}
873
874/// Anomaly detection methods
875#[derive(Debug, Clone, Copy)]
876pub enum AnomalyDetectionMethod {
877    /// Z-score based detection
878    ZScore,
879
880    /// Interquartile range method
881    IQR,
882
883    /// Isolation forest
884    IsolationForest,
885
886    /// Local outlier factor
887    LocalOutlierFactor,
888}
889
890/// Hyperparameter optimization evaluation
891#[derive(Debug, Clone)]
892pub struct HPOEvaluation<T: Float + Debug + Send + Sync + 'static> {
893    /// Evaluation identifier
894    pub id: String,
895
896    /// Parameter configuration
897    pub configuration: ParameterConfiguration<T>,
898
899    /// Evaluation result
900    pub result: HPOResult<T>,
901
902    /// Privacy budget consumed
903    pub privacy_cost: PrivacyBudget,
904
905    /// Evaluation timestamp
906    pub timestamp: u64,
907
908    /// Evaluation metadata
909    pub metadata: HashMap<String, String>,
910}
911
912/// Hyperparameter optimization result
913#[derive(Debug, Clone)]
914pub struct HPOResult<T: Float + Debug + Send + Sync + 'static> {
915    /// Objective value
916    pub objective_value: T,
917
918    /// Standard error (if available)
919    pub standard_error: Option<T>,
920
921    /// Cross-validation scores
922    pub cv_scores: Option<Vec<T>>,
923
924    /// Training time
925    pub training_time: Option<f64>,
926
927    /// Model complexity metrics
928    pub complexity_metrics: HashMap<String, T>,
929
930    /// Additional metrics
931    pub additional_metrics: HashMap<String, T>,
932
933    /// Result status
934    pub status: EvaluationStatus,
935}
936
937/// Evaluation status
938#[derive(Debug, Clone, Copy)]
939pub enum EvaluationStatus {
940    /// Evaluation completed successfully
941    Success,
942
943    /// Evaluation failed
944    Failed,
945
946    /// Evaluation timed out
947    Timeout,
948
949    /// Evaluation was cancelled
950    Cancelled,
951
952    /// Evaluation is in progress
953    InProgress,
954}
955
956impl<T: Float + Debug + Send + Sync + 'static> PrivateHyperparameterOptimizer<T> {
957    /// Create new private hyperparameter optimizer
958    pub fn new(config: PrivateHPOConfig<T>, parameterspace: ParameterSpace<T>) -> Result<Self> {
959        let budget_manager = HPOBudgetManager::new(
960            config.base_privacyconfig.clone(),
961            config.budget_allocation,
962            config.num_evaluations,
963        )?;
964
965        let privacy_accountant = MomentsAccountant::new(
966            config.base_privacyconfig.noise_multiplier,
967            config.base_privacyconfig.target_delta,
968            config.base_privacyconfig.batch_size,
969            config.base_privacyconfig.dataset_size,
970        );
971
972        let mut noisy_optimizers: HashMap<String, Box<dyn NoisyOptimizer<T>>> = HashMap::new();
973
974        // Add default noisy optimizers based on configuration
975        match config.search_algorithm {
976            SearchAlgorithm::RandomSearch => {
977                noisy_optimizers.insert(
978                    "random_search".to_string(),
979                    Box::new(PrivateRandomSearch::new(config.clone())?),
980                );
981            }
982            SearchAlgorithm::BayesianOptimization => {
983                noisy_optimizers.insert(
984                    "bayesian_opt".to_string(),
985                    Box::new(PrivateBayesianOptimization::new(config.clone())?),
986                );
987            }
988            _ => {
989                // Default to random search
990                noisy_optimizers.insert(
991                    "random_search".to_string(),
992                    Box::new(PrivateRandomSearch::new(config.clone())?),
993                );
994            }
995        }
996
997        Ok(Self {
998            config,
999            budget_manager,
1000            noisy_optimizers,
1001            parameterspace,
1002            private_objective: PrivateObjective::new()?,
1003            search_strategy: SearchStrategy::new(),
1004            results_aggregator: PrivateResultsAggregator::new()?,
1005            privacy_accountant,
1006        })
1007    }
1008
1009    /// Optimize hyperparameters with differential privacy
1010    pub fn optimize(&mut self, objective_fn: ObjectiveFn<T>) -> Result<PrivateHPOResults<T>> {
1011        // Set up private objective function
1012        self.private_objective.set_objective(objective_fn)?;
1013
1014        let mut evaluations = Vec::new();
1015        let mut bestconfig: Option<ParameterConfiguration<T>> = None;
1016        let mut best_score = T::neg_infinity();
1017
1018        // Get the primary optimizer
1019        let optimizer_name = match self.config.search_algorithm {
1020            SearchAlgorithm::RandomSearch => "random_search",
1021            SearchAlgorithm::BayesianOptimization => "bayesian_opt",
1022            _ => "random_search",
1023        };
1024
1025        for iteration in 0..self.config.num_evaluations {
1026            // Check if we have remaining privacy budget
1027            if !self.budget_manager.has_budget_remaining()? {
1028                break;
1029            }
1030
1031            // Get privacy budget for this evaluation
1032            let evaluation_budget = self.budget_manager.get_evaluation_budget(iteration)?;
1033
1034            // Suggest next configuration
1035            let config = if let Some(optimizer) = self.noisy_optimizers.get_mut(optimizer_name) {
1036                optimizer.suggest_next(&self.parameterspace, &evaluations, &evaluation_budget)?
1037            } else {
1038                return Err(OptimError::InvalidConfig(
1039                    "No optimizer available".to_string(),
1040                ));
1041            };
1042
1043            // Evaluate configuration with privacy
1044            let result = self
1045                .private_objective
1046                .evaluate(&config, &evaluation_budget)?;
1047
1048            // Create evaluation record
1049            let evaluation = HPOEvaluation {
1050                id: format!("eval_{}", iteration),
1051                configuration: config.clone(),
1052                result: result.clone(),
1053                privacy_cost: evaluation_budget.clone(),
1054                timestamp: std::time::SystemTime::now()
1055                    .duration_since(std::time::UNIX_EPOCH)
1056                    .unwrap()
1057                    .as_secs(),
1058                metadata: HashMap::new(),
1059            };
1060
1061            // Update best configuration
1062            if result.objective_value > best_score {
1063                best_score = result.objective_value;
1064                bestconfig = Some(config.clone());
1065            }
1066
1067            // Update optimizer with result
1068            if let Some(optimizer) = self.noisy_optimizers.get_mut(optimizer_name) {
1069                optimizer.update(&config, &result, &evaluation_budget)?;
1070            }
1071
1072            // Record evaluation
1073            evaluations.push(evaluation);
1074
1075            // Update budget manager
1076            self.budget_manager.record_evaluation(
1077                &evaluation_budget,
1078                result.objective_value.to_f64().unwrap_or(0.0),
1079            )?;
1080
1081            // Check early stopping criteria
1082            if self.should_stop_early(&evaluations)? {
1083                break;
1084            }
1085        }
1086
1087        // Aggregate results with privacy guarantees
1088        let final_results = self.results_aggregator.aggregate_results(&evaluations)?;
1089
1090        Ok(PrivateHPOResults {
1091            bestconfiguration: bestconfig,
1092            best_score,
1093            all_evaluations: evaluations,
1094            final_results,
1095            total_privacy_cost: self.budget_manager.get_total_consumed_budget(),
1096            optimization_stats: self.compute_optimization_stats()?,
1097        })
1098    }
1099
1100    /// Check early stopping criteria
1101    fn should_stop_early(&self, evaluations: &[HPOEvaluation<T>]) -> Result<bool> {
1102        if !self.config.early_stopping.enabled {
1103            return Ok(false);
1104        }
1105
1106        if evaluations.len() < self.config.early_stopping.patience {
1107            return Ok(false);
1108        }
1109
1110        // Check for improvement in recent evaluations
1111        let recent_scores: Vec<T> = evaluations
1112            .iter()
1113            .rev()
1114            .take(self.config.early_stopping.patience)
1115            .map(|eval| eval.result.objective_value)
1116            .collect();
1117
1118        let best_recent =
1119            recent_scores
1120                .iter()
1121                .fold(T::neg_infinity(), |acc, &x| if x > acc { x } else { acc });
1122
1123        let best_overall = evaluations
1124            .iter()
1125            .map(|eval| eval.result.objective_value)
1126            .fold(T::neg_infinity(), |acc, x| if x > acc { x } else { acc });
1127
1128        let improvement = best_recent - best_overall;
1129
1130        Ok(improvement
1131            < T::from(self.config.early_stopping.min_improvement).unwrap_or_else(|| T::zero()))
1132    }
1133
1134    /// Compute optimization statistics
1135    fn compute_optimization_stats(&self) -> Result<OptimizationStats<T>> {
1136        Ok(OptimizationStats {
1137            total_evaluations: 0,
1138            successful_evaluations: 0,
1139            failed_evaluations: 0,
1140            average_evaluation_time: 0.0,
1141            total_optimization_time: 0.0,
1142            convergence_iteration: None,
1143            budget_efficiency: 0.0,
1144            _phantom: std::marker::PhantomData,
1145        })
1146    }
1147}
1148
1149/// Private hyperparameter optimization results
1150#[derive(Debug, Clone)]
1151pub struct PrivateHPOResults<T: Float + Debug + Send + Sync + 'static> {
1152    /// Best configuration found
1153    pub bestconfiguration: Option<ParameterConfiguration<T>>,
1154
1155    /// Best objective score
1156    pub best_score: T,
1157
1158    /// All evaluations performed
1159    pub all_evaluations: Vec<HPOEvaluation<T>>,
1160
1161    /// Final aggregated results
1162    pub final_results: AggregatedResults<T>,
1163
1164    /// Total privacy cost
1165    pub total_privacy_cost: PrivacyBudget,
1166
1167    /// Optimization statistics
1168    pub optimization_stats: OptimizationStats<T>,
1169}
1170
1171/// Aggregated results from private optimization
1172#[derive(Debug, Clone)]
1173pub struct AggregatedResults<T: Float + Debug + Send + Sync + 'static> {
1174    /// Top-k configurations
1175    pub topconfigurations: Vec<(ParameterConfiguration<T>, T)>,
1176
1177    /// Confidence intervals for best score
1178    pub confidence_intervals: Option<(T, T)>,
1179
1180    /// Privacy-preserving summary statistics
1181    pub summary_stats: SummaryStatistics<T>,
1182
1183    /// Model selection results
1184    pub model_selection: Option<ModelSelectionResults<T>>,
1185}
1186
1187/// Summary statistics with privacy
1188#[derive(Debug, Clone)]
1189pub struct SummaryStatistics<T: Float + Debug + Send + Sync + 'static> {
1190    /// Noisy mean of objective values
1191    pub noisy_mean: T,
1192
1193    /// Noisy standard deviation
1194    pub noisy_std: T,
1195
1196    /// Noisy median
1197    pub noisy_median: T,
1198
1199    /// Noisy quantiles
1200    pub noisy_quantiles: Vec<(f64, T)>,
1201}
1202
1203/// Model selection results
1204#[derive(Debug, Clone)]
1205pub struct ModelSelectionResults<T: Float + Debug + Send + Sync + 'static> {
1206    /// Selected model configuration
1207    pub selectedconfig: ParameterConfiguration<T>,
1208
1209    /// Selection confidence
1210    pub selection_confidence: f64,
1211
1212    /// Alternative configurations
1213    pub alternatives: Vec<ParameterConfiguration<T>>,
1214}
1215
1216/// Optimization statistics
1217#[derive(Debug, Clone)]
1218pub struct OptimizationStats<T: Float + Debug + Send + Sync + 'static> {
1219    /// Total number of evaluations
1220    pub total_evaluations: usize,
1221
1222    /// Number of successful evaluations
1223    pub successful_evaluations: usize,
1224
1225    /// Number of failed evaluations
1226    pub failed_evaluations: usize,
1227
1228    /// Average evaluation time
1229    pub average_evaluation_time: f64,
1230
1231    /// Total optimization time
1232    pub total_optimization_time: f64,
1233
1234    /// Iteration where convergence was detected
1235    pub convergence_iteration: Option<usize>,
1236
1237    /// Budget efficiency score
1238    pub budget_efficiency: f64,
1239
1240    /// Phantom data to mark type parameter as intentionally unused
1241    _phantom: std::marker::PhantomData<T>,
1242}
1243
1244/// Private Random Search implementation
1245pub struct PrivateRandomSearch<T: Float + Debug + Send + Sync + 'static> {
1246    /// Configuration
1247    config: PrivateHPOConfig<T>,
1248
1249    /// Random number generator
1250    rng: scirs2_core::random::Random<StdRng>,
1251
1252    /// Evaluation history
1253    history: Vec<HPOEvaluation<T>>,
1254}
1255
1256impl<T: Float + Debug + Send + Sync + 'static> PrivateRandomSearch<T> {
1257    pub fn new(config: PrivateHPOConfig<T>) -> Result<Self> {
1258        Ok(Self {
1259            config,
1260            rng: scirs2_core::random::Random::seed(42),
1261            history: Vec::new(),
1262        })
1263    }
1264}
1265
1266impl<T: Float + Debug + Send + Sync + 'static> NoisyOptimizer<T> for PrivateRandomSearch<T> {
1267    fn suggest_next(
1268        &mut self,
1269        parameterspace: &ParameterSpace<T>,
1270        _evaluation_history: &[HPOEvaluation<T>],
1271        _privacy_budget: &PrivacyBudget,
1272    ) -> Result<ParameterConfiguration<T>> {
1273        let mut values = HashMap::new();
1274
1275        for (param_name, param_def) in &parameterspace.parameters {
1276            let value = match &param_def.param_type {
1277                ParameterType::Continuous => {
1278                    let min = param_def.bounds.min.unwrap_or(T::zero());
1279                    let max = param_def.bounds.max.unwrap_or(T::one());
1280                    let random_val = T::from(self.rng.gen_range(0.0..1.0)).unwrap();
1281                    ParameterValue::Continuous(min + random_val * (max - min))
1282                }
1283                ParameterType::Integer => {
1284                    let min = param_def
1285                        .bounds
1286                        .min
1287                        .unwrap_or(T::zero())
1288                        .to_i64()
1289                        .unwrap_or(0);
1290                    let max = param_def
1291                        .bounds
1292                        .max
1293                        .unwrap_or(T::from(100).unwrap_or_else(|| T::zero()))
1294                        .to_i64()
1295                        .unwrap_or(100);
1296                    ParameterValue::Integer(self.rng.gen_range(min..max + 1))
1297                }
1298                ParameterType::Boolean => ParameterValue::Boolean(self.rng.gen_range(0..2) == 1),
1299                ParameterType::Categorical(categories) => {
1300                    let idx = self.rng.gen_range(0..categories.len());
1301                    ParameterValue::Categorical(categories[idx].clone())
1302                }
1303                ParameterType::Ordinal(values) => {
1304                    let idx = self.rng.gen_range(0..values.len());
1305                    ParameterValue::Ordinal(idx)
1306                }
1307            };
1308
1309            values.insert(param_name.clone(), value);
1310        }
1311
1312        Ok(ParameterConfiguration {
1313            values,
1314            id: format!("config_{}", self.history.len()),
1315            metadata: HashMap::new(),
1316        })
1317    }
1318
1319    fn update(
1320        &mut self,
1321        config: &ParameterConfiguration<T>,
1322        _result: &HPOResult<T>,
1323        _privacy_budget: &PrivacyBudget,
1324    ) -> Result<()> {
1325        // Random search doesn't need to update based on results
1326        Ok(())
1327    }
1328
1329    fn name(&self) -> &str {
1330        "PrivateRandomSearch"
1331    }
1332}
1333
1334/// Private Bayesian Optimization implementation
1335pub struct PrivateBayesianOptimization<T: Float + Debug + Send + Sync + 'static> {
1336    /// Configuration
1337    config: PrivateHPOConfig<T>,
1338
1339    /// Gaussian process surrogate model
1340    gp_model: Option<GaussianProcessModel<T>>,
1341
1342    /// Acquisition function
1343    acquisition_fn: AcquisitionFunction<T>,
1344
1345    /// Evaluation history
1346    history: Vec<HPOEvaluation<T>>,
1347}
1348
1349impl<T: Float + Debug + Send + Sync + 'static> PrivateBayesianOptimization<T> {
1350    pub fn new(config: PrivateHPOConfig<T>) -> Result<Self> {
1351        Ok(Self {
1352            config,
1353            gp_model: None,
1354            acquisition_fn: AcquisitionFunction::new(),
1355            history: Vec::new(),
1356        })
1357    }
1358}
1359
1360impl<T: Float + Debug + Send + Sync + 'static> NoisyOptimizer<T>
1361    for PrivateBayesianOptimization<T>
1362{
1363    fn suggest_next(
1364        &mut self,
1365        parameterspace: &ParameterSpace<T>,
1366        evaluation_history: &[HPOEvaluation<T>],
1367        _privacy_budget: &PrivacyBudget,
1368    ) -> Result<ParameterConfiguration<T>> {
1369        if evaluation_history.is_empty() {
1370            // First evaluation - use random sampling
1371            let mut rng = scirs2_core::random::Random::seed(42);
1372            let mut values = HashMap::new();
1373
1374            for (param_name, param_def) in &parameterspace.parameters {
1375                let value = match &param_def.param_type {
1376                    ParameterType::Continuous => {
1377                        let min = param_def.bounds.min.unwrap_or(T::zero());
1378                        let max = param_def.bounds.max.unwrap_or(T::one());
1379                        let random_val = T::from(rng.gen_range(0.0..1.0)).unwrap();
1380                        ParameterValue::Continuous(min + random_val * (max - min))
1381                    }
1382                    _ => {
1383                        // Simplified for other types
1384                        ParameterValue::Continuous(T::from(0.5).unwrap_or_else(|| T::zero()))
1385                    }
1386                };
1387                values.insert(param_name.clone(), value);
1388            }
1389
1390            return Ok(ParameterConfiguration {
1391                values,
1392                id: "initialconfig".to_string(),
1393                metadata: HashMap::new(),
1394            });
1395        }
1396
1397        // Use acquisition function to suggest next point
1398        // This is a simplified implementation
1399        Ok(ParameterConfiguration {
1400            values: HashMap::new(),
1401            id: format!("bayesianconfig_{}", evaluation_history.len()),
1402            metadata: HashMap::new(),
1403        })
1404    }
1405
1406    fn update(
1407        &mut self,
1408        config: &ParameterConfiguration<T>,
1409        _result: &HPOResult<T>,
1410        _privacy_budget: &PrivacyBudget,
1411    ) -> Result<()> {
1412        // Update Gaussian process model with new data point
1413        // This is a simplified implementation
1414        Ok(())
1415    }
1416
1417    fn name(&self) -> &str {
1418        "PrivateBayesianOptimization"
1419    }
1420}
1421
1422/// Gaussian process model for Bayesian optimization
1423pub struct GaussianProcessModel<T: Float + Debug + Send + Sync + 'static> {
1424    /// Training inputs
1425    training_inputs: Vec<Vec<T>>,
1426
1427    /// Training outputs
1428    training_outputs: Vec<T>,
1429
1430    /// Kernel function
1431    kernel: KernelFunction<T>,
1432
1433    /// Hyperparameters
1434    hyperparameters: Vec<T>,
1435}
1436
1437/// Kernel functions for Gaussian processes
1438pub struct KernelFunction<T: Float + Debug + Send + Sync + 'static> {
1439    /// Kernel type
1440    kernel_type: KernelType,
1441
1442    /// Kernel parameters
1443    parameters: Vec<T>,
1444}
1445
1446/// Types of kernel functions
1447#[derive(Debug, Clone, Copy)]
1448pub enum KernelType {
1449    /// Radial basis function kernel
1450    RBF,
1451
1452    /// Matern kernel
1453    Matern,
1454
1455    /// Linear kernel
1456    Linear,
1457
1458    /// Polynomial kernel
1459    Polynomial,
1460}
1461
1462/// Acquisition function for Bayesian optimization
1463pub struct AcquisitionFunction<T: Float + Debug + Send + Sync + 'static> {
1464    /// Function type
1465    function_type: AcquisitionFunctionType,
1466
1467    /// Function parameters
1468    parameters: Vec<T>,
1469
1470    /// Exploration-exploitation balance
1471    exploration_weight: T,
1472}
1473
1474/// Types of acquisition functions
1475#[derive(Debug, Clone, Copy)]
1476pub enum AcquisitionFunctionType {
1477    /// Expected Improvement
1478    ExpectedImprovement,
1479
1480    /// Upper Confidence Bound
1481    UpperConfidenceBound,
1482
1483    /// Probability of Improvement
1484    ProbabilityOfImprovement,
1485
1486    /// Knowledge Gradient
1487    KnowledgeGradient,
1488}
1489
1490// Implementation stubs for other components
1491impl HPOBudgetManager {
1492    pub fn new(
1493        baseconfig: DifferentialPrivacyConfig,
1494        allocation_strategy: BudgetAllocationStrategy,
1495        num_evaluations: usize,
1496    ) -> Result<Self> {
1497        let total_budget = PrivacyBudget {
1498            epsilon_consumed: 0.0,
1499            delta_consumed: 0.0,
1500            epsilon_remaining: baseconfig.target_epsilon,
1501            delta_remaining: baseconfig.target_delta,
1502            steps_taken: 0,
1503            accounting_method: crate::privacy::AccountingMethod::MomentsAccountant,
1504            estimated_steps_remaining: num_evaluations,
1505        };
1506
1507        Ok(Self {
1508            total_budget,
1509            evaluation_budgets: Vec::new(),
1510            allocation_strategy,
1511            consumed_budget: PrivacyBudget {
1512                epsilon_consumed: 0.0,
1513                delta_consumed: 0.0,
1514                epsilon_remaining: baseconfig.target_epsilon,
1515                delta_remaining: baseconfig.target_delta,
1516                steps_taken: 0,
1517                accounting_method: crate::privacy::AccountingMethod::MomentsAccountant,
1518                estimated_steps_remaining: num_evaluations,
1519            },
1520            adaptive_controller: AdaptiveBudgetController::new(),
1521        })
1522    }
1523
1524    pub fn has_budget_remaining(&self) -> Result<bool> {
1525        Ok(self.consumed_budget.epsilon_remaining > 0.0
1526            && self.consumed_budget.delta_remaining > 0.0)
1527    }
1528
1529    pub fn get_evaluation_budget(&mut self, iteration: usize) -> Result<PrivacyBudget> {
1530        let remaining_evaluations = self
1531            .total_budget
1532            .estimated_steps_remaining
1533            .saturating_sub(iteration);
1534        let epsilon_per_eval =
1535            self.consumed_budget.epsilon_remaining / remaining_evaluations.max(1) as f64;
1536        let delta_per_eval =
1537            self.consumed_budget.delta_remaining / remaining_evaluations.max(1) as f64;
1538
1539        Ok(PrivacyBudget {
1540            epsilon_consumed: 0.0,
1541            delta_consumed: 0.0,
1542            epsilon_remaining: epsilon_per_eval,
1543            delta_remaining: delta_per_eval,
1544            steps_taken: 0,
1545            accounting_method: crate::privacy::AccountingMethod::MomentsAccountant,
1546            estimated_steps_remaining: 1,
1547        })
1548    }
1549
1550    pub fn record_evaluation(&mut self, budgetused: &PrivacyBudget, score: f64) -> Result<()> {
1551        self.consumed_budget.epsilon_consumed += budgetused.epsilon_remaining;
1552        self.consumed_budget.delta_consumed += budgetused.delta_remaining;
1553        self.consumed_budget.epsilon_remaining -= budgetused.epsilon_remaining;
1554        self.consumed_budget.delta_remaining -= budgetused.delta_remaining;
1555        self.consumed_budget.steps_taken += 1;
1556
1557        self.adaptive_controller.record_performance(score);
1558        Ok(())
1559    }
1560
1561    pub fn get_total_consumed_budget(&self) -> PrivacyBudget {
1562        self.consumed_budget.clone()
1563    }
1564}
1565
1566impl Default for AdaptiveBudgetController {
1567    fn default() -> Self {
1568        Self::new()
1569    }
1570}
1571
1572impl AdaptiveBudgetController {
1573    pub fn new() -> Self {
1574        Self {
1575            performance_history: Vec::new(),
1576            budget_efficiency: Vec::new(),
1577            allocation_weights: Vec::new(),
1578            adaptation_rate: 0.1,
1579        }
1580    }
1581
1582    pub fn record_performance(&mut self, score: f64) {
1583        self.performance_history.push(score);
1584    }
1585}
1586
1587impl<T: Float + Debug + Send + Sync + 'static> PrivateObjective<T> {
1588    pub fn new() -> Result<Self> {
1589        Ok(Self {
1590            objective_fn: Box::new(|_| Ok(0.0)),
1591            noise_mechanism: ObjectiveNoiseMechanism::new(),
1592            sensitivity_analyzer: ObjectiveSensitivityAnalyzer::new(),
1593            cv_evaluator: PrivateCrossValidation::new(),
1594        })
1595    }
1596
1597    pub fn set_objective(&mut self, objective_fn: ObjectiveFn<T>) -> Result<()> {
1598        self.objective_fn = objective_fn;
1599        Ok(())
1600    }
1601
1602    pub fn evaluate(
1603        &mut self,
1604        config: &ParameterConfiguration<T>,
1605        privacy_budget: &PrivacyBudget,
1606    ) -> Result<HPOResult<T>> {
1607        let objective_value = (self.objective_fn)(config)?;
1608        let noisy_value = self
1609            .noise_mechanism
1610            .add_noise(objective_value, privacy_budget)?;
1611
1612        Ok(HPOResult {
1613            objective_value: T::from(noisy_value).unwrap_or_else(|| T::zero()),
1614            standard_error: None,
1615            cv_scores: None,
1616            training_time: None,
1617            complexity_metrics: HashMap::new(),
1618            additional_metrics: HashMap::new(),
1619            status: EvaluationStatus::Success,
1620        })
1621    }
1622}
1623
1624impl<T: Float + Debug + Send + Sync + 'static> Default for ObjectiveNoiseMechanism<T> {
1625    fn default() -> Self {
1626        Self::new()
1627    }
1628}
1629
1630impl<T: Float + Debug + Send + Sync + 'static> ObjectiveNoiseMechanism<T> {
1631    pub fn new() -> Self {
1632        Self {
1633            mechanism_type: HyperparameterNoiseMechanism::Gaussian,
1634            noise_params: NoiseParameters {
1635                scale: T::one(),
1636                sensitivity: T::one(),
1637                epsilon: 1.0,
1638                delta: Some(1e-5),
1639            },
1640            rng: scirs2_core::random::Random::default(),
1641        }
1642    }
1643
1644    pub fn add_noise(&mut self, value: f64, _privacybudget: &PrivacyBudget) -> Result<f64> {
1645        use scirs2_core::random::{RandNormal, Rng};
1646
1647        match self.mechanism_type {
1648            HyperparameterNoiseMechanism::Gaussian => {
1649                let noise_scale = self.noise_params.scale.to_f64().unwrap_or(1.0);
1650                let normal = RandNormal::new(0.0, noise_scale)
1651                    .map_err(|_| OptimError::InvalidConfig("Invalid noise scale".to_string()))?;
1652
1653                let noise = self.rng.sample(normal);
1654                Ok(value + noise)
1655            }
1656            _ => Ok(value), // Simplified for other mechanisms
1657        }
1658    }
1659}
1660
1661impl<T: Float + Debug + Send + Sync + 'static> Default for ObjectiveSensitivityAnalyzer<T> {
1662    fn default() -> Self {
1663        Self::new()
1664    }
1665}
1666
1667impl<T: Float + Debug + Send + Sync + 'static> ObjectiveSensitivityAnalyzer<T> {
1668    pub fn new() -> Self {
1669        Self {
1670            estimation_method: SensitivityEstimationMethod::Global,
1671            sensitivity_cache: HashMap::new(),
1672            sample_estimator: SampleBasedSensitivityEstimator::new(),
1673        }
1674    }
1675}
1676
1677impl<T: Float + Debug + Send + Sync + 'static> Default for SampleBasedSensitivityEstimator<T> {
1678    fn default() -> Self {
1679        Self::new()
1680    }
1681}
1682
1683impl<T: Float + Debug + Send + Sync + 'static> SampleBasedSensitivityEstimator<T> {
1684    pub fn new() -> Self {
1685        Self {
1686            num_samples: 1000,
1687            sampling_strategy: SamplingStrategy::Uniform,
1688            confidence_level: 0.95,
1689            bootstrap_estimator: BootstrapEstimator::new(),
1690            _phantom: std::marker::PhantomData,
1691        }
1692    }
1693}
1694
1695impl<T: Float + Debug + Send + Sync + 'static> Default for BootstrapEstimator<T> {
1696    fn default() -> Self {
1697        Self::new()
1698    }
1699}
1700
1701impl<T: Float + Debug + Send + Sync + 'static> BootstrapEstimator<T> {
1702    pub fn new() -> Self {
1703        Self {
1704            num_bootstrap: 1000,
1705            confidence_interval: (0.025, 0.975),
1706            bias_correction: true,
1707            _phantom: std::marker::PhantomData,
1708        }
1709    }
1710}
1711
1712impl<T: Float + Debug + Send + Sync + 'static> Default for PrivateCrossValidation<T> {
1713    fn default() -> Self {
1714        Self::new()
1715    }
1716}
1717
1718impl<T: Float + Debug + Send + Sync + 'static> PrivateCrossValidation<T> {
1719    pub fn new() -> Self {
1720        Self {
1721            num_folds: 5,
1722            fold_budgets: Vec::new(),
1723            fold_strategy: FoldStrategy::Random,
1724            private_aggregation: PrivateFoldAggregation::new(),
1725        }
1726    }
1727}
1728
1729impl<T: Float + Debug + Send + Sync + 'static> Default for PrivateFoldAggregation<T> {
1730    fn default() -> Self {
1731        Self::new()
1732    }
1733}
1734
1735impl<T: Float + Debug + Send + Sync + 'static> PrivateFoldAggregation<T> {
1736    pub fn new() -> Self {
1737        Self {
1738            aggregation_method: AggregationMethod::NoisyMean,
1739            noise_params: NoiseParameters {
1740                scale: T::one(),
1741                sensitivity: T::one(),
1742                epsilon: 1.0,
1743                delta: Some(1e-5),
1744            },
1745            confidence_estimation: ConfidenceEstimation::new(),
1746        }
1747    }
1748}
1749
1750impl<T: Float + Debug + Send + Sync + 'static> Default for ConfidenceEstimation<T> {
1751    fn default() -> Self {
1752        Self::new()
1753    }
1754}
1755
1756impl<T: Float + Debug + Send + Sync + 'static> ConfidenceEstimation<T> {
1757    pub fn new() -> Self {
1758        Self {
1759            confidence_level: 0.95,
1760            estimation_method: ConfidenceEstimationMethod::Normal,
1761            bootstrap_params: None,
1762            _phantom: std::marker::PhantomData,
1763        }
1764    }
1765}
1766
1767impl<T: Float + Debug + Send + Sync + 'static> Default for SearchStrategy<T> {
1768    fn default() -> Self {
1769        Self::new()
1770    }
1771}
1772
1773impl<T: Float + Debug + Send + Sync + 'static> SearchStrategy<T> {
1774    pub fn new() -> Self {
1775        Self {
1776            algorithm: SearchAlgorithm::RandomSearch,
1777            algorithm_params: HashMap::new(),
1778            exploration_factor: 0.1,
1779            convergence_criteria: ConvergenceCriteria {
1780                max_iterations: 100,
1781                tolerance: T::from(1e-6).unwrap_or_else(|| T::zero()),
1782                patience: 10,
1783                min_change: T::from(1e-4).unwrap_or_else(|| T::zero()),
1784            },
1785        }
1786    }
1787}
1788
1789impl<T: Float + Debug + Send + Sync + 'static> PrivateResultsAggregator<T> {
1790    pub fn new() -> Result<Self> {
1791        Ok(Self {
1792            aggregation_strategy: ResultAggregationStrategy::SelectBest,
1793            selection_budget: PrivacyBudget {
1794                epsilon_consumed: 0.0,
1795                delta_consumed: 0.0,
1796                epsilon_remaining: 0.1,
1797                delta_remaining: 1e-6,
1798                steps_taken: 0,
1799                accounting_method: crate::privacy::AccountingMethod::MomentsAccountant,
1800                estimated_steps_remaining: 1,
1801            },
1802            selection_mechanism: SelectionMechanism::new(),
1803            result_validator: ResultValidator::new(),
1804        })
1805    }
1806
1807    pub fn aggregate_results(
1808        &self,
1809        evaluations: &[HPOEvaluation<T>],
1810    ) -> Result<AggregatedResults<T>> {
1811        let mut topconfigs = Vec::new();
1812
1813        // Sort evaluations by objective value
1814        let mut sorted_evals = evaluations.to_vec();
1815        sorted_evals.sort_by(|a, b| {
1816            b.result
1817                .objective_value
1818                .partial_cmp(&a.result.objective_value)
1819                .unwrap_or(std::cmp::Ordering::Equal)
1820        });
1821
1822        // Take top configurations
1823        for eval in sorted_evals.iter().take(5) {
1824            topconfigs.push((eval.configuration.clone(), eval.result.objective_value));
1825        }
1826
1827        // Compute summary statistics
1828        let objective_values: Vec<T> = evaluations
1829            .iter()
1830            .map(|eval| eval.result.objective_value)
1831            .collect();
1832
1833        let mean = if !objective_values.is_empty() {
1834            objective_values.iter().fold(T::zero(), |acc, &x| acc + x)
1835                / T::from(objective_values.len()).unwrap()
1836        } else {
1837            T::zero()
1838        };
1839
1840        let summary_stats = SummaryStatistics {
1841            noisy_mean: mean,
1842            noisy_std: T::zero(), // Simplified
1843            noisy_median: mean,
1844            noisy_quantiles: vec![(0.5, mean)],
1845        };
1846
1847        Ok(AggregatedResults {
1848            topconfigurations: topconfigs,
1849            confidence_intervals: None,
1850            summary_stats,
1851            model_selection: None,
1852        })
1853    }
1854}
1855
1856impl<T: Float + Debug + Send + Sync + 'static> Default for SelectionMechanism<T> {
1857    fn default() -> Self {
1858        Self::new()
1859    }
1860}
1861
1862impl<T: Float + Debug + Send + Sync + 'static> SelectionMechanism<T> {
1863    pub fn new() -> Self {
1864        Self {
1865            mechanism_type: HyperparameterNoiseMechanism::Exponential,
1866            selection_params: SelectionParameters {
1867                temperature: T::one(),
1868                utility_sensitivity: T::one(),
1869                epsilon: 1.0,
1870                threshold: None,
1871            },
1872            utility_function: UtilityFunction::new(),
1873        }
1874    }
1875}
1876
1877impl<T: Float + Debug + Send + Sync + 'static> Default for UtilityFunction<T> {
1878    fn default() -> Self {
1879        Self::new()
1880    }
1881}
1882
1883impl<T: Float + Debug + Send + Sync + 'static> UtilityFunction<T> {
1884    pub fn new() -> Self {
1885        Self {
1886            function_type: UtilityFunctionType::Linear,
1887            parameters: vec![T::one()],
1888            multi_objective_weights: None,
1889        }
1890    }
1891}
1892
1893impl<T: Float + Debug + Send + Sync + 'static> Default for ResultValidator<T> {
1894    fn default() -> Self {
1895        Self::new()
1896    }
1897}
1898
1899impl<T: Float + Debug + Send + Sync + 'static> ResultValidator<T> {
1900    pub fn new() -> Self {
1901        Self {
1902            validation_rules: Vec::new(),
1903            statistical_tests: Vec::new(),
1904            anomaly_detector: AnomalyDetector::new(),
1905        }
1906    }
1907}
1908
1909impl<T: Float + Debug + Send + Sync + 'static> Default for AnomalyDetector<T> {
1910    fn default() -> Self {
1911        Self::new()
1912    }
1913}
1914
1915impl<T: Float + Debug + Send + Sync + 'static> AnomalyDetector<T> {
1916    pub fn new() -> Self {
1917        Self {
1918            threshold: T::from(3.0).unwrap_or_else(|| T::zero()),
1919            detection_method: AnomalyDetectionMethod::ZScore,
1920            baseline: None,
1921        }
1922    }
1923}
1924
1925impl<T: Float + Debug + Send + Sync + 'static> Default for GaussianProcessModel<T> {
1926    fn default() -> Self {
1927        Self::new()
1928    }
1929}
1930
1931impl<T: Float + Debug + Send + Sync + 'static> GaussianProcessModel<T> {
1932    pub fn new() -> Self {
1933        Self {
1934            training_inputs: Vec::new(),
1935            training_outputs: Vec::new(),
1936            kernel: KernelFunction::new(),
1937            hyperparameters: Vec::new(),
1938        }
1939    }
1940}
1941
1942impl<T: Float + Debug + Send + Sync + 'static> Default for KernelFunction<T> {
1943    fn default() -> Self {
1944        Self::new()
1945    }
1946}
1947
1948impl<T: Float + Debug + Send + Sync + 'static> KernelFunction<T> {
1949    pub fn new() -> Self {
1950        Self {
1951            kernel_type: KernelType::RBF,
1952            parameters: vec![T::one()],
1953        }
1954    }
1955}
1956
1957impl<T: Float + Debug + Send + Sync + 'static> Default for AcquisitionFunction<T> {
1958    fn default() -> Self {
1959        Self::new()
1960    }
1961}
1962
1963impl<T: Float + Debug + Send + Sync + 'static> AcquisitionFunction<T> {
1964    pub fn new() -> Self {
1965        Self {
1966            function_type: AcquisitionFunctionType::ExpectedImprovement,
1967            parameters: Vec::new(),
1968            exploration_weight: T::from(0.1).unwrap_or_else(|| T::zero()),
1969        }
1970    }
1971}
1972
1973#[cfg(test)]
1974mod tests {
1975    use super::*;
1976
1977    #[test]
1978    fn test_private_hpoconfig() {
1979        let config = PrivateHPOConfig {
1980            base_privacyconfig: DifferentialPrivacyConfig::default(),
1981            budget_allocation: BudgetAllocationStrategy::Equal,
1982            search_algorithm: SearchAlgorithm::RandomSearch,
1983            num_evaluations: 100,
1984            cv_folds: 5,
1985            early_stopping: EarlyStoppingConfig {
1986                enabled: true,
1987                patience: 10,
1988                min_improvement: 0.01,
1989                max_evaluations: 100,
1990            },
1991            noise_mechanism: HyperparameterNoiseMechanism::Gaussian,
1992            sensitivity_bounds: SensitivityBounds {
1993                global_sensitivity: HashMap::<String, f64>::new(),
1994                local_sensitivity: HashMap::<String, (f64, f64)>::new(),
1995                smooth_sensitivity: HashMap::<String, SmoothSensitivityParams<f64>>::new(),
1996            },
1997            private_model_selection: true,
1998            validation_strategy: ValidationStrategy::KFoldCV,
1999        };
2000
2001        assert_eq!(config.num_evaluations, 100);
2002        assert_eq!(config.cv_folds, 5);
2003        assert!(config.early_stopping.enabled);
2004    }
2005
2006    #[test]
2007    fn test_parameter_space() {
2008        let mut parameters = HashMap::new();
2009
2010        parameters.insert(
2011            "learning_rate".to_string(),
2012            ParameterDefinition {
2013                name: "learning_rate".to_string(),
2014                param_type: ParameterType::Continuous,
2015                bounds: ParameterBounds {
2016                    min: Some(0.001),
2017                    max: Some(0.1),
2018                    step: None,
2019                    valid_values: None,
2020                },
2021                prior: Some(ParameterPrior::LogNormal(-3.0, 1.0)),
2022                transformation: Some(ParameterTransformation::Log),
2023            },
2024        );
2025
2026        let parameterspace = ParameterSpace {
2027            parameters,
2028            constraints: Vec::new(),
2029            defaultconfig: None,
2030        };
2031
2032        assert!(parameterspace.parameters.contains_key("learning_rate"));
2033    }
2034
2035    #[test]
2036    fn test_budget_manager() {
2037        let baseconfig = DifferentialPrivacyConfig::default();
2038        let budget_manager =
2039            HPOBudgetManager::new(baseconfig, BudgetAllocationStrategy::Equal, 10).unwrap();
2040
2041        assert!(budget_manager.has_budget_remaining().unwrap());
2042    }
2043
2044    #[test]
2045    fn test_private_random_search() {
2046        let config = PrivateHPOConfig {
2047            base_privacyconfig: DifferentialPrivacyConfig::default(),
2048            budget_allocation: BudgetAllocationStrategy::Equal,
2049            search_algorithm: SearchAlgorithm::RandomSearch,
2050            num_evaluations: 10,
2051            cv_folds: 3,
2052            early_stopping: EarlyStoppingConfig {
2053                enabled: false,
2054                patience: 5,
2055                min_improvement: 0.01,
2056                max_evaluations: 10,
2057            },
2058            noise_mechanism: HyperparameterNoiseMechanism::Gaussian,
2059            sensitivity_bounds: SensitivityBounds {
2060                global_sensitivity: HashMap::<String, f64>::new(),
2061                local_sensitivity: HashMap::<String, (f64, f64)>::new(),
2062                smooth_sensitivity: HashMap::<String, SmoothSensitivityParams<f64>>::new(),
2063            },
2064            private_model_selection: false,
2065            validation_strategy: ValidationStrategy::HoldOut,
2066        };
2067
2068        let optimizer = PrivateRandomSearch::new(config).unwrap();
2069        assert_eq!(optimizer.name(), "PrivateRandomSearch");
2070    }
2071}