optirs_core/hardware_aware/
mod.rs

1// Hardware-aware optimization routines
2//
3// This module provides optimization strategies that adapt to different hardware configurations,
4// including CPUs, GPUs, TPUs, edge devices, and distributed systems.
5
6use crate::error::Result;
7use scirs2_core::ndarray::{Array, Dimension, ScalarOperand};
8use scirs2_core::numeric::Float;
9use std::collections::HashMap;
10use std::fmt::Debug;
11
12/// Hardware platform types
13#[derive(Debug, Clone, PartialEq)]
14pub enum HardwarePlatform {
15    /// CPU-based computation
16    CPU {
17        /// Number of cores
18        cores: usize,
19        /// Cache size in bytes
20        cache_size: usize,
21        /// SIMD instruction set availability
22        simd_support: SIMDSupport,
23    },
24    /// GPU-based computation
25    GPU {
26        /// GPU memory in bytes
27        memory: usize,
28        /// Number of compute units/streaming multiprocessors
29        compute_units: usize,
30        /// Memory bandwidth in GB/s
31        memory_bandwidth: f64,
32        /// GPU architecture
33        architecture: GPUArchitecture,
34    },
35    /// TPU (Tensor Processing Unit)
36    TPU {
37        /// TPU version
38        version: TPUVersion,
39        /// Matrix multiplication units
40        matrix_units: usize,
41        /// High bandwidth memory
42        hbm_size: usize,
43    },
44    /// Edge/Mobile devices
45    Edge {
46        /// Power budget in watts
47        power_budget: f64,
48        /// Memory constraints
49        memory_limit: usize,
50        /// Quantization support
51        quantization_support: QuantizationSupport,
52    },
53    /// Distributed system
54    Distributed {
55        /// Number of nodes
56        num_nodes: usize,
57        /// Network bandwidth between nodes
58        network_bandwidth: f64,
59        /// Node hardware type
60        node_hardware: Box<HardwarePlatform>,
61    },
62}
63
64/// SIMD instruction set support
65#[derive(Debug, Clone, Copy, PartialEq)]
66pub enum SIMDSupport {
67    /// No SIMD support
68    None,
69    /// SSE (128-bit)
70    SSE,
71    /// AVX (256-bit)
72    AVX,
73    /// AVX-512 (512-bit)
74    AVX512,
75    /// ARM NEON
76    NEON,
77}
78
79/// GPU architectures
80#[derive(Debug, Clone, Copy, PartialEq)]
81pub enum GPUArchitecture {
82    /// NVIDIA architectures
83    Pascal,
84    /// NVIDIA Volta architecture
85    Volta,
86    /// NVIDIA Turing architecture
87    Turing,
88    /// NVIDIA Ampere architecture
89    Ampere,
90    /// NVIDIA Hopper architecture
91    Hopper,
92    /// AMD architectures
93    RDNA,
94    /// AMD RDNA2 architecture
95    RDNA2,
96    /// AMD CDNA architecture
97    CDNA,
98    /// Intel architectures
99    XeHPG,
100    /// Intel Xe HPC architecture
101    XeHPC,
102}
103
104/// TPU versions
105#[derive(Debug, Clone, Copy, PartialEq)]
106pub enum TPUVersion {
107    /// TPU v1
108    V1,
109    /// TPU v2
110    V2,
111    /// TPU v3
112    V3,
113    /// TPU v4
114    V4,
115    /// TPU v5
116    V5,
117}
118
119/// Quantization support levels
120#[derive(Debug, Clone, Copy, PartialEq)]
121pub enum QuantizationSupport {
122    /// No quantization support
123    None,
124    /// 8-bit integer quantization
125    Int8,
126    /// 16-bit floating point
127    FP16,
128    /// Brain floating point
129    BF16,
130    /// 4-bit quantization
131    Int4,
132    /// Mixed precision
133    Mixed,
134}
135
136/// Hardware-specific optimization configuration
137#[derive(Debug, Clone)]
138pub struct HardwareOptimizationConfig<A: Float> {
139    /// Optimized batch size for hardware
140    pub batch_size: usize,
141    /// Memory-efficient parameter update strategy
142    pub memory_strategy: MemoryStrategy,
143    /// Parallel computation strategy
144    pub parallelization: ParallelizationStrategy,
145    /// Precision strategy
146    pub precision: PrecisionStrategy,
147    /// Hardware-specific optimizer parameters
148    pub optimizer_params: HashMap<String, A>,
149    /// Communication strategy (for distributed)
150    pub communication: Option<CommunicationStrategy>,
151}
152
153/// Memory optimization strategies
154#[derive(Debug, Clone)]
155pub enum MemoryStrategy {
156    /// Standard memory usage
157    Standard,
158    /// Gradient accumulation to reduce memory
159    GradientAccumulation {
160        /// Number of accumulation steps
161        accumulation_steps: usize,
162    },
163    /// Gradient checkpointing
164    GradientCheckpointing {
165        /// Checkpoint ratio
166        checkpoint_ratio: f64,
167    },
168    /// Parameter sharding
169    ParameterSharding {
170        /// Shard size
171        shard_size: usize,
172    },
173    /// Offloading to CPU memory
174    CPUOffloading {
175        /// Offload ratio to CPU
176        offload_ratio: f64,
177    },
178    /// Mixed memory strategies
179    Mixed {
180        /// List of memory strategies
181        strategies: Vec<MemoryStrategy>,
182        /// Weights for combining strategies
183        strategy_weights: Vec<f64>,
184    },
185}
186
187/// Parallelization strategies
188#[derive(Debug, Clone)]
189pub enum ParallelizationStrategy {
190    /// Single-threaded execution
191    SingleThread,
192    /// Data parallelism
193    DataParallel {
194        /// Number of parallel workers
195        num_workers: usize,
196    },
197    /// Model parallelism
198    ModelParallel {
199        /// Strategy for partitioning models
200        partition_strategy: PartitionStrategy,
201    },
202    /// Pipeline parallelism
203    Pipeline {
204        /// Number of pipeline stages
205        pipeline_stages: usize,
206        /// Number of micro-batches
207        micro_batches: usize,
208    },
209    /// Tensor parallelism
210    TensorParallel {
211        /// Size of tensor parallel group
212        tensor_parallel_size: usize,
213    },
214    /// Hybrid parallelism
215    Hybrid {
216        /// Data parallel size
217        data_parallel: usize,
218        /// Model parallel size
219        model_parallel: usize,
220        /// Pipeline parallel size
221        pipeline_parallel: usize,
222    },
223}
224
225/// Model partitioning strategies
226#[derive(Debug, Clone)]
227pub enum PartitionStrategy {
228    /// Layer-wise partitioning
229    LayerWise,
230    /// Depth-wise partitioning
231    DepthWise,
232    /// Width-wise partitioning
233    WidthWise,
234    /// Custom partitioning
235    Custom {
236        /// Custom partition points
237        partition_points: Vec<usize>,
238    },
239}
240
241/// Precision strategies for different hardware
242#[derive(Debug, Clone)]
243pub enum PrecisionStrategy {
244    /// Full precision (FP32)
245    FP32,
246    /// Half precision (FP16)
247    FP16,
248    /// Brain floating point (BF16)
249    BF16,
250    /// Mixed precision training
251    Mixed {
252        /// Forward pass precision
253        forward_precision: String,
254        /// Backward pass precision
255        backward_precision: String,
256        /// Enable loss scaling
257        loss_scaling: bool,
258    },
259    /// Integer quantization
260    Quantized {
261        /// Number of bits for weights
262        weight_bits: u8,
263        /// Number of bits for activations
264        activation_bits: u8,
265        /// Quantization method
266        quantization_method: String,
267    },
268}
269
270/// Communication strategies for distributed training
271#[derive(Debug, Clone)]
272pub enum CommunicationStrategy {
273    /// All-reduce communication
274    AllReduce {
275        /// All-reduce algorithm
276        algorithm: AllReduceAlgorithm,
277        /// Enable gradient compression
278        compression: bool,
279    },
280    /// Parameter server architecture
281    ParameterServer {
282        /// Number of parameter servers
283        num_servers: usize,
284        /// Update frequency
285        update_frequency: usize,
286    },
287    /// Gossip protocols
288    Gossip {
289        /// Number of neighbors
290        neighbors: usize,
291        /// Gossip communication frequency
292        gossip_frequency: usize,
293    },
294    /// Hierarchical communication
295    Hierarchical {
296        /// Number of local groups
297        local_groups: usize,
298        /// Inter-group communication strategy
299        inter_group_strategy: Box<CommunicationStrategy>,
300    },
301}
302
303/// All-reduce algorithms
304#[derive(Debug, Clone)]
305pub enum AllReduceAlgorithm {
306    /// Ring all-reduce
307    Ring,
308    /// Tree all-reduce
309    Tree,
310    /// Butterfly all-reduce
311    Butterfly,
312    /// Halving-doubling
313    HalvingDoubling,
314}
315
316/// Hardware-aware optimizer that adapts to different platforms
317#[derive(Debug)]
318pub struct HardwareAwareOptimizer<A: Float, D: Dimension> {
319    /// Target hardware platform
320    platform: HardwarePlatform,
321    /// Hardware-specific configuration
322    config: HardwareOptimizationConfig<A>,
323    /// Performance profiler
324    profiler: PerformanceProfiler<A>,
325    /// Resource monitor
326    resource_monitor: ResourceMonitor<A>,
327    /// Adaptive tuning system
328    adaptive_tuner: AdaptiveTuner<A>,
329    /// Current optimization state
330    current_state: OptimizationState<A, D>,
331}
332
333/// Performance profiler for hardware-specific metrics
334#[derive(Debug)]
335pub struct PerformanceProfiler<A: Float> {
336    /// Computation time measurements
337    computation_times: Vec<A>,
338    /// Memory usage measurements
339    memory_usage: Vec<usize>,
340    /// Communication overhead (for distributed)
341    #[allow(dead_code)]
342    communication_overhead: Vec<A>,
343    /// Energy consumption measurements
344    energy_consumption: Vec<A>,
345    /// Throughput measurements (samples/second)
346    throughput: Vec<A>,
347}
348
349/// Resource monitor for real-time hardware monitoring
350#[derive(Debug)]
351pub struct ResourceMonitor<A: Float> {
352    /// Current memory usage
353    current_memory: usize,
354    /// Peak memory usage
355    peak_memory: usize,
356    /// CPU utilization
357    cpu_utilization: A,
358    /// GPU utilization (if applicable)
359    #[allow(dead_code)]
360    gpu_utilization: Option<A>,
361    /// Power consumption
362    power_consumption: A,
363    /// Temperature readings
364    temperature: A,
365    /// Network utilization (for distributed)
366    #[allow(dead_code)]
367    network_utilization: Option<A>,
368}
369
370/// Adaptive tuner for dynamic optimization
371#[derive(Debug)]
372pub struct AdaptiveTuner<A: Float> {
373    /// Tuning history
374    #[allow(dead_code)]
375    tuning_history: Vec<TuningRecord<A>>,
376    /// Current tuning parameters
377    #[allow(dead_code)]
378    current_params: HashMap<String, A>,
379    /// Performance target
380    performance_target: A,
381    /// Tuning strategy
382    #[allow(dead_code)]
383    strategy: TuningStrategy,
384}
385
386/// Tuning record for adaptive optimization
387#[derive(Debug, Clone)]
388pub struct TuningRecord<A: Float> {
389    /// Tuning parameters used
390    pub parameters: HashMap<String, A>,
391    /// Performance achieved
392    pub performance: A,
393    /// Resource consumption
394    pub resource_usage: A,
395    /// Timestamp
396    pub timestamp: u64,
397}
398
399/// Tuning strategies
400#[derive(Debug, Clone)]
401pub enum TuningStrategy {
402    /// Grid search over parameter space
403    GridSearch {
404        /// Grid search resolution
405        resolution: usize,
406    },
407    /// Bayesian optimization
408    BayesianOptimization {
409        /// Number of samples
410        num_samples: usize,
411    },
412    /// Genetic algorithm
413    GeneticAlgorithm {
414        /// Population size
415        population_size: usize,
416        /// Number of generations
417        generations: usize,
418    },
419    /// Reinforcement learning based
420    ReinforcementLearning {
421        /// Exploration rate
422        exploration_rate: f64,
423    },
424}
425
426/// Current optimization state
427#[derive(Debug)]
428pub struct OptimizationState<A: Float, D: Dimension> {
429    /// Current parameters
430    parameters: Array<A, D>,
431    /// Gradient accumulator
432    #[allow(dead_code)]
433    gradient_accumulator: Option<Array<A, D>>,
434    /// Optimizer state (momentum, etc.)
435    #[allow(dead_code)]
436    optimizer_state: HashMap<String, Array<A, D>>,
437    /// Step count
438    #[allow(dead_code)]
439    step_count: usize,
440    /// Learning rate schedule state
441    #[allow(dead_code)]
442    lr_schedule_state: A,
443}
444
445impl<
446        A: Float
447            + ScalarOperand
448            + Debug
449            + std::iter::Sum
450            + for<'a> std::iter::Sum<&'a A>
451            + Send
452            + Sync,
453        D: Dimension,
454    > HardwareAwareOptimizer<A, D>
455{
456    /// Create a new hardware-aware optimizer
457    pub fn new(platform: HardwarePlatform, initialparameters: Array<A, D>) -> Self {
458        let config = Self::default_config_for_platform(&platform);
459        let profiler = PerformanceProfiler::new();
460        let resource_monitor = ResourceMonitor::new();
461        let adaptive_tuner = AdaptiveTuner::new();
462
463        let current_state = OptimizationState {
464            parameters: initialparameters,
465            gradient_accumulator: None,
466            optimizer_state: HashMap::new(),
467            step_count: 0,
468            lr_schedule_state: A::from(0.001).unwrap(),
469        };
470
471        Self {
472            platform,
473            config,
474            profiler,
475            resource_monitor,
476            adaptive_tuner,
477            current_state,
478        }
479    }
480
481    /// Optimize configuration for target hardware
482    pub fn optimize_for_hardware(&mut self) -> Result<()> {
483        match self.platform.clone() {
484            HardwarePlatform::CPU {
485                cores,
486                cache_size,
487                simd_support,
488            } => {
489                self.optimize_for_cpu(cores, cache_size, simd_support)?;
490            }
491            HardwarePlatform::GPU {
492                memory,
493                compute_units,
494                memory_bandwidth,
495                architecture,
496            } => {
497                self.optimize_for_gpu(memory, compute_units, memory_bandwidth, architecture)?;
498            }
499            HardwarePlatform::TPU {
500                version,
501                matrix_units,
502                hbm_size,
503            } => {
504                self.optimize_for_tpu(version, matrix_units, hbm_size)?;
505            }
506            HardwarePlatform::Edge {
507                power_budget,
508                memory_limit,
509                quantization_support,
510            } => {
511                self.optimize_for_edge(power_budget, memory_limit, quantization_support)?;
512            }
513            HardwarePlatform::Distributed {
514                num_nodes,
515                network_bandwidth,
516                node_hardware,
517            } => {
518                self.optimize_for_distributed(num_nodes, network_bandwidth, &node_hardware)?;
519            }
520        }
521        Ok(())
522    }
523
524    /// CPU-specific optimizations
525    fn optimize_for_cpu(
526        &mut self,
527        cores: usize,
528        cache_size: usize,
529        simd_support: SIMDSupport,
530    ) -> Result<()> {
531        // Optimize batch _size for cache efficiency
532        let cache_friendly_batch_size = (cache_size / 4) / self.current_state.parameters.len(); // Rough estimate
533        self.config.batch_size = cache_friendly_batch_size.clamp(16, 512);
534
535        // Configure parallelization based on cores
536        self.config.parallelization = ParallelizationStrategy::DataParallel {
537            num_workers: cores.min(8), // Don't over-parallelize
538        };
539
540        // SIMD-specific optimizations
541        match simd_support {
542            SIMDSupport::AVX512 => {
543                self.config
544                    .optimizer_params
545                    .insert("vectorized_ops".to_string(), A::from(512.0).unwrap());
546            }
547            SIMDSupport::AVX => {
548                self.config
549                    .optimizer_params
550                    .insert("vectorized_ops".to_string(), A::from(256.0).unwrap());
551            }
552            SIMDSupport::SSE => {
553                self.config
554                    .optimizer_params
555                    .insert("vectorized_ops".to_string(), A::from(128.0).unwrap());
556            }
557            SIMDSupport::NEON => {
558                self.config
559                    .optimizer_params
560                    .insert("vectorized_ops".to_string(), A::from(128.0).unwrap());
561            }
562            SIMDSupport::None => {
563                self.config
564                    .optimizer_params
565                    .insert("vectorized_ops".to_string(), A::from(32.0).unwrap());
566            }
567        }
568
569        // Use full precision for CPU
570        self.config.precision = PrecisionStrategy::FP32;
571
572        Ok(())
573    }
574
575    /// GPU-specific optimizations
576    fn optimize_for_gpu(
577        &mut self,
578        memory: usize,
579        compute_units: usize,
580        memory_bandwidth: f64,
581        architecture: GPUArchitecture,
582    ) -> Result<()> {
583        // Optimize batch size for GPU memory
584        let gpu_memory_gb = memory as f64 / (1024.0 * 1024.0 * 1024.0);
585        let optimal_batch_size = if gpu_memory_gb >= 32.0 {
586            256
587        } else if gpu_memory_gb >= 16.0 {
588            128
589        } else if gpu_memory_gb >= 8.0 {
590            64
591        } else {
592            32
593        };
594        self.config.batch_size = optimal_batch_size;
595
596        // Configure parallelization for GPU
597        self.config.parallelization = ParallelizationStrategy::DataParallel {
598            num_workers: compute_units.min(16),
599        };
600
601        // Architecture-specific optimizations
602        match architecture {
603            GPUArchitecture::Ampere | GPUArchitecture::Hopper => {
604                // Use mixed precision for modern architectures
605                self.config.precision = PrecisionStrategy::Mixed {
606                    forward_precision: "fp16".to_string(),
607                    backward_precision: "fp32".to_string(),
608                    loss_scaling: true,
609                };
610                self.config
611                    .optimizer_params
612                    .insert("tensor_cores".to_string(), A::from(1.0).unwrap());
613            }
614            GPUArchitecture::Volta | GPUArchitecture::Turing => {
615                self.config.precision = PrecisionStrategy::FP16;
616                self.config
617                    .optimizer_params
618                    .insert("tensor_cores".to_string(), A::from(1.0).unwrap());
619            }
620            _ => {
621                self.config.precision = PrecisionStrategy::FP32;
622            }
623        }
624
625        // Memory _bandwidth optimizations
626        if memory_bandwidth < 500.0 {
627            // Low _bandwidth
628            self.config.memory_strategy = MemoryStrategy::GradientAccumulation {
629                accumulation_steps: 4,
630            };
631        } else {
632            self.config.memory_strategy = MemoryStrategy::Standard;
633        }
634
635        Ok(())
636    }
637
638    /// TPU-specific optimizations
639    fn optimize_for_tpu(
640        &mut self,
641        version: TPUVersion,
642        matrix_units: usize,
643        hbm_size: usize,
644    ) -> Result<()> {
645        // TPUs work best with large batch sizes
646        let tpu_batch_size = match version {
647            TPUVersion::V1 | TPUVersion::V2 => 128,
648            TPUVersion::V3 => 256,
649            TPUVersion::V4 | TPUVersion::V5 => 512,
650        };
651        self.config.batch_size = tpu_batch_size;
652
653        // TPUs prefer BF16 precision
654        self.config.precision = PrecisionStrategy::BF16;
655
656        // Configure for matrix operations
657        self.config.optimizer_params.insert(
658            "matrix_units".to_string(),
659            A::from(matrix_units as f64).unwrap(),
660        );
661
662        // Use all available matrix _units
663        self.config.parallelization = ParallelizationStrategy::TensorParallel {
664            tensor_parallel_size: matrix_units.min(8),
665        };
666
667        // HBM-specific optimizations
668        if hbm_size > 32 * 1024 * 1024 * 1024 {
669            // 32GB+
670            self.config.memory_strategy = MemoryStrategy::Standard;
671        } else {
672            self.config.memory_strategy = MemoryStrategy::GradientCheckpointing {
673                checkpoint_ratio: 0.5,
674            };
675        }
676
677        Ok(())
678    }
679
680    /// Edge device optimizations
681    fn optimize_for_edge(
682        &mut self,
683        power_budget: f64,
684        memory_limit: usize,
685        quantization_support: QuantizationSupport,
686    ) -> Result<()> {
687        // Small batch sizes for memory constraints
688        let edge_batch_size = (memory_limit / (4 * 1024 * 1024)).clamp(1, 32); // Very conservative
689        self.config.batch_size = edge_batch_size;
690
691        // Single-threaded for power efficiency
692        self.config.parallelization = ParallelizationStrategy::SingleThread;
693
694        // Aggressive quantization for edge devices
695        match quantization_support {
696            QuantizationSupport::Int4 => {
697                self.config.precision = PrecisionStrategy::Quantized {
698                    weight_bits: 4,
699                    activation_bits: 8,
700                    quantization_method: "dynamic".to_string(),
701                };
702            }
703            QuantizationSupport::Int8 => {
704                self.config.precision = PrecisionStrategy::Quantized {
705                    weight_bits: 8,
706                    activation_bits: 8,
707                    quantization_method: "static".to_string(),
708                };
709            }
710            QuantizationSupport::FP16 => {
711                self.config.precision = PrecisionStrategy::FP16;
712            }
713            _ => {
714                self.config.precision = PrecisionStrategy::FP32;
715            }
716        }
717
718        // Power-aware optimizations
719        if power_budget < 5.0 {
720            // Very low power
721            self.config
722                .optimizer_params
723                .insert("update_frequency".to_string(), A::from(10.0).unwrap());
724            self.config.memory_strategy = MemoryStrategy::CPUOffloading { offload_ratio: 0.8 };
725        }
726
727        Ok(())
728    }
729
730    /// Distributed system optimizations
731    fn optimize_for_distributed(
732        &mut self,
733        num_nodes: usize,
734        network_bandwidth: f64,
735        node_hardware: &HardwarePlatform,
736    ) -> Result<()> {
737        // Scale batch size with number of _nodes
738        let base_batch_size = match node_hardware {
739            HardwarePlatform::GPU { .. } => 128,
740            HardwarePlatform::CPU { .. } => 64,
741            HardwarePlatform::TPU { .. } => 256, // TPUs can handle larger batches
742            HardwarePlatform::Edge { .. } => 32, // Edge devices have memory constraints
743            HardwarePlatform::Distributed { node_hardware, .. } => {
744                // Use the underlying node hardware type for distributed systems
745                match node_hardware.as_ref() {
746                    HardwarePlatform::GPU { .. } => 128,
747                    HardwarePlatform::CPU { .. } => 64,
748                    HardwarePlatform::TPU { .. } => 256,
749                    HardwarePlatform::Edge { .. } => 32,
750                    HardwarePlatform::Distributed { .. } => 64, // Fallback for nested distributed
751                }
752            }
753        };
754        self.config.batch_size = base_batch_size * num_nodes;
755
756        // Configure communication strategy based on network _bandwidth
757        let communication = if network_bandwidth >= 100.0 {
758            // High _bandwidth (100 Gbps+)
759            CommunicationStrategy::AllReduce {
760                algorithm: AllReduceAlgorithm::Ring,
761                compression: false,
762            }
763        } else if network_bandwidth >= 10.0 {
764            // Medium _bandwidth (10 Gbps+)
765            CommunicationStrategy::AllReduce {
766                algorithm: AllReduceAlgorithm::Tree,
767                compression: true,
768            }
769        } else {
770            // Low _bandwidth
771            CommunicationStrategy::ParameterServer {
772                num_servers: (num_nodes / 4).max(1),
773                update_frequency: 10,
774            }
775        };
776        self.config.communication = Some(communication);
777
778        // Configure parallelization strategy
779        if num_nodes >= 64 {
780            self.config.parallelization = ParallelizationStrategy::Hybrid {
781                data_parallel: 8,
782                model_parallel: 4,
783                pipeline_parallel: num_nodes / 32,
784            };
785        } else if num_nodes >= 16 {
786            self.config.parallelization = ParallelizationStrategy::Pipeline {
787                pipeline_stages: 4,
788                micro_batches: 8,
789            };
790        } else {
791            self.config.parallelization = ParallelizationStrategy::DataParallel {
792                num_workers: num_nodes,
793            };
794        }
795
796        Ok(())
797    }
798
799    /// Profile current performance
800    pub fn profile_performance(&mut self, computation_time: A, memoryused: usize, energy: A) {
801        self.profiler.computation_times.push(computation_time);
802        self.profiler.memory_usage.push(memoryused);
803        self.profiler.energy_consumption.push(energy);
804
805        // Calculate throughput (simplified)
806        let throughput = A::from(self.config.batch_size as f64).unwrap() / computation_time;
807        self.profiler.throughput.push(throughput);
808
809        // Keep history bounded
810        const MAX_HISTORY: usize = 1000;
811        if self.profiler.computation_times.len() > MAX_HISTORY {
812            self.profiler.computation_times.remove(0);
813            self.profiler.memory_usage.remove(0);
814            self.profiler.energy_consumption.remove(0);
815            self.profiler.throughput.remove(0);
816        }
817    }
818
819    /// Update resource monitoring
820    pub fn update_resource_monitor(&mut self, memory: usize, cpuutil: A, power: A, temp: A) {
821        self.resource_monitor.current_memory = memory;
822        self.resource_monitor.peak_memory = self.resource_monitor.peak_memory.max(memory);
823        self.resource_monitor.cpu_utilization = cpuutil;
824        self.resource_monitor.power_consumption = power;
825        self.resource_monitor.temperature = temp;
826    }
827
828    /// Adaptive tuning based on performance feedback
829    pub fn adaptive_tune(&mut self, targetperformance: A) -> Result<()> {
830        self.adaptive_tuner.performance_target = targetperformance;
831
832        // Simple adaptive tuning logic
833        let current_performance = self.get_average_performance();
834
835        if current_performance < targetperformance {
836            // Need to improve _performance
837            self.tune_for_performance()?;
838        } else {
839            // Can optimize for efficiency
840            self.tune_for_efficiency()?;
841        }
842
843        Ok(())
844    }
845
846    /// Tune for better performance
847    fn tune_for_performance(&mut self) -> Result<()> {
848        // Increase batch size if memory allows
849        if self.resource_monitor.current_memory < self.resource_monitor.peak_memory * 8 / 10 {
850            self.config.batch_size = (self.config.batch_size * 12 / 10).min(1024);
851        }
852
853        // Reduce precision for speed
854        match self.config.precision {
855            PrecisionStrategy::FP32 => {
856                self.config.precision = PrecisionStrategy::FP16;
857            }
858            PrecisionStrategy::FP16 => {
859                self.config.precision = PrecisionStrategy::Mixed {
860                    forward_precision: "fp16".to_string(),
861                    backward_precision: "fp32".to_string(),
862                    loss_scaling: true,
863                };
864            }
865            _ => {}
866        }
867
868        Ok(())
869    }
870
871    /// Tune for better efficiency
872    fn tune_for_efficiency(&mut self) -> Result<()> {
873        // Reduce batch size to save memory
874        self.config.batch_size = (self.config.batch_size * 9 / 10).max(1);
875
876        // Enable gradient accumulation to maintain effective batch size
877        self.config.memory_strategy = MemoryStrategy::GradientAccumulation {
878            accumulation_steps: 2,
879        };
880
881        Ok(())
882    }
883
884    /// Get average performance from recent measurements
885    fn get_average_performance(&self) -> A {
886        if self.profiler.throughput.is_empty() {
887            A::zero()
888        } else {
889            let recent_throughput =
890                &self.profiler.throughput[self.profiler.throughput.len().saturating_sub(10)..];
891            recent_throughput.iter().copied().sum::<A>() / A::from(recent_throughput.len()).unwrap()
892        }
893    }
894
895    /// Get current configuration
896    pub fn get_config(&self) -> &HardwareOptimizationConfig<A> {
897        &self.config
898    }
899
900    /// Get performance statistics
901    pub fn get_performance_stats(&self) -> HardwarePerformanceStats<A> {
902        let avg_computation_time = if self.profiler.computation_times.is_empty() {
903            A::zero()
904        } else {
905            self.profiler.computation_times.iter().sum::<A>()
906                / A::from(self.profiler.computation_times.len()).unwrap()
907        };
908
909        let avg_throughput = if self.profiler.throughput.is_empty() {
910            A::zero()
911        } else {
912            self.profiler.throughput.iter().sum::<A>()
913                / A::from(self.profiler.throughput.len()).unwrap()
914        };
915
916        let avg_energy = if self.profiler.energy_consumption.is_empty() {
917            A::zero()
918        } else {
919            self.profiler.energy_consumption.iter().copied().sum::<A>()
920                / A::from(self.profiler.energy_consumption.len()).unwrap()
921        };
922
923        HardwarePerformanceStats {
924            average_computation_time: avg_computation_time,
925            average_throughput: avg_throughput,
926            peak_memory_usage: self.resource_monitor.peak_memory,
927            average_energy_consumption: avg_energy,
928            hardware_utilization: self.resource_monitor.cpu_utilization,
929            efficiency_score: avg_throughput / (avg_energy + A::from(1e-8).unwrap()), // Avoid division by zero
930        }
931    }
932
933    /// Create default configuration for platform
934    fn default_config_for_platform(platform: &HardwarePlatform) -> HardwareOptimizationConfig<A> {
935        match platform {
936            HardwarePlatform::CPU { .. } => HardwareOptimizationConfig {
937                batch_size: 64,
938                memory_strategy: MemoryStrategy::Standard,
939                parallelization: ParallelizationStrategy::DataParallel { num_workers: 4 },
940                precision: PrecisionStrategy::FP32,
941                optimizer_params: HashMap::new(),
942                communication: None,
943            },
944            HardwarePlatform::GPU { .. } => HardwareOptimizationConfig {
945                batch_size: 128,
946                memory_strategy: MemoryStrategy::Standard,
947                parallelization: ParallelizationStrategy::DataParallel { num_workers: 1 },
948                precision: PrecisionStrategy::FP16,
949                optimizer_params: HashMap::new(),
950                communication: None,
951            },
952            HardwarePlatform::TPU { .. } => HardwareOptimizationConfig {
953                batch_size: 256,
954                memory_strategy: MemoryStrategy::Standard,
955                parallelization: ParallelizationStrategy::TensorParallel {
956                    tensor_parallel_size: 8,
957                },
958                precision: PrecisionStrategy::BF16,
959                optimizer_params: HashMap::new(),
960                communication: None,
961            },
962            HardwarePlatform::Edge { .. } => HardwareOptimizationConfig {
963                batch_size: 16,
964                memory_strategy: MemoryStrategy::GradientCheckpointing {
965                    checkpoint_ratio: 0.5,
966                },
967                parallelization: ParallelizationStrategy::SingleThread,
968                precision: PrecisionStrategy::Quantized {
969                    weight_bits: 8,
970                    activation_bits: 8,
971                    quantization_method: "dynamic".to_string(),
972                },
973                optimizer_params: HashMap::new(),
974                communication: None,
975            },
976            HardwarePlatform::Distributed { .. } => HardwareOptimizationConfig {
977                batch_size: 512,
978                memory_strategy: MemoryStrategy::Standard,
979                parallelization: ParallelizationStrategy::DataParallel { num_workers: 8 },
980                precision: PrecisionStrategy::FP16,
981                optimizer_params: HashMap::new(),
982                communication: Some(CommunicationStrategy::AllReduce {
983                    algorithm: AllReduceAlgorithm::Ring,
984                    compression: false,
985                }),
986            },
987        }
988    }
989}
990
991impl<A: Float + Send + Sync> Default for PerformanceProfiler<A> {
992    fn default() -> Self {
993        Self::new()
994    }
995}
996
997impl<A: Float + Send + Sync> PerformanceProfiler<A> {
998    /// Create a new performance profiler
999    pub fn new() -> Self {
1000        Self {
1001            computation_times: Vec::new(),
1002            memory_usage: Vec::new(),
1003            communication_overhead: Vec::new(),
1004            energy_consumption: Vec::new(),
1005            throughput: Vec::new(),
1006        }
1007    }
1008}
1009
1010impl<A: Float + Send + Sync> Default for ResourceMonitor<A> {
1011    fn default() -> Self {
1012        Self::new()
1013    }
1014}
1015
1016impl<A: Float + Send + Sync> ResourceMonitor<A> {
1017    /// Create a new resource monitor
1018    pub fn new() -> Self {
1019        Self {
1020            current_memory: 0,
1021            peak_memory: 0,
1022            cpu_utilization: A::zero(),
1023            gpu_utilization: None,
1024            power_consumption: A::zero(),
1025            temperature: A::zero(),
1026            network_utilization: None,
1027        }
1028    }
1029}
1030
1031impl<A: Float + Send + Sync> Default for AdaptiveTuner<A> {
1032    fn default() -> Self {
1033        Self::new()
1034    }
1035}
1036
1037impl<A: Float + Send + Sync> AdaptiveTuner<A> {
1038    /// Create a new adaptive tuner
1039    pub fn new() -> Self {
1040        Self {
1041            tuning_history: Vec::new(),
1042            current_params: HashMap::new(),
1043            performance_target: A::from(100.0).unwrap(),
1044            strategy: TuningStrategy::BayesianOptimization { num_samples: 50 },
1045        }
1046    }
1047}
1048
1049/// Hardware performance statistics
1050#[derive(Debug, Clone)]
1051pub struct HardwarePerformanceStats<A: Float> {
1052    /// Average computation time per step
1053    pub average_computation_time: A,
1054    /// Average throughput (samples/second)
1055    pub average_throughput: A,
1056    /// Peak memory usage
1057    pub peak_memory_usage: usize,
1058    /// Average energy consumption
1059    pub average_energy_consumption: A,
1060    /// Hardware utilization percentage
1061    pub hardware_utilization: A,
1062    /// Efficiency score (throughput/energy)
1063    pub efficiency_score: A,
1064}
1065
1066#[cfg(test)]
1067mod tests {
1068    use super::*;
1069    use scirs2_core::ndarray::Array1;
1070
1071    #[test]
1072    fn test_cpu_optimization() {
1073        let platform = HardwarePlatform::CPU {
1074            cores: 8,
1075            cache_size: 32 * 1024 * 1024, // 32MB cache
1076            simd_support: SIMDSupport::AVX,
1077        };
1078
1079        let initial_params = Array1::from_vec(vec![1.0, 2.0, 3.0]);
1080        let mut optimizer = HardwareAwareOptimizer::new(platform, initial_params);
1081
1082        optimizer.optimize_for_hardware().unwrap();
1083
1084        // Check CPU-specific optimizations
1085        assert!(optimizer.config.batch_size <= 512);
1086        assert!(matches!(
1087            optimizer.config.parallelization,
1088            ParallelizationStrategy::DataParallel { .. }
1089        ));
1090        assert!(matches!(
1091            optimizer.config.precision,
1092            PrecisionStrategy::FP32
1093        ));
1094        assert!(optimizer
1095            .config
1096            .optimizer_params
1097            .contains_key("vectorized_ops"));
1098    }
1099
1100    #[test]
1101    fn test_gpu_optimization() {
1102        let platform = HardwarePlatform::GPU {
1103            memory: 16 * 1024 * 1024 * 1024, // 16GB
1104            compute_units: 80,
1105            memory_bandwidth: 900.0,
1106            architecture: GPUArchitecture::Ampere,
1107        };
1108
1109        let initial_params = Array1::from_vec(vec![1.0, 2.0, 3.0]);
1110        let mut optimizer = HardwareAwareOptimizer::new(platform, initial_params);
1111
1112        optimizer.optimize_for_hardware().unwrap();
1113
1114        // Check GPU-specific optimizations
1115        assert_eq!(optimizer.config.batch_size, 128);
1116        assert!(matches!(
1117            optimizer.config.precision,
1118            PrecisionStrategy::Mixed { .. }
1119        ));
1120        assert!(optimizer
1121            .config
1122            .optimizer_params
1123            .contains_key("tensor_cores"));
1124    }
1125
1126    #[test]
1127    fn test_tpu_optimization() {
1128        let platform = HardwarePlatform::TPU {
1129            version: TPUVersion::V4,
1130            matrix_units: 8,
1131            hbm_size: 32 * 1024 * 1024 * 1024, // 32GB HBM
1132        };
1133
1134        let initial_params = Array1::from_vec(vec![1.0, 2.0, 3.0]);
1135        let mut optimizer = HardwareAwareOptimizer::new(platform, initial_params);
1136
1137        optimizer.optimize_for_hardware().unwrap();
1138
1139        // Check TPU-specific optimizations
1140        assert_eq!(optimizer.config.batch_size, 512);
1141        assert!(matches!(
1142            optimizer.config.precision,
1143            PrecisionStrategy::BF16
1144        ));
1145        assert!(matches!(
1146            optimizer.config.parallelization,
1147            ParallelizationStrategy::TensorParallel { .. }
1148        ));
1149    }
1150
1151    #[test]
1152    fn test_edge_optimization() {
1153        let platform = HardwarePlatform::Edge {
1154            power_budget: 3.0,               // 3 watts
1155            memory_limit: 512 * 1024 * 1024, // 512MB
1156            quantization_support: QuantizationSupport::Int8,
1157        };
1158
1159        let initial_params = Array1::from_vec(vec![1.0, 2.0, 3.0]);
1160        let mut optimizer = HardwareAwareOptimizer::new(platform, initial_params);
1161
1162        optimizer.optimize_for_hardware().unwrap();
1163
1164        // Check edge-specific optimizations
1165        assert!(optimizer.config.batch_size <= 32);
1166        assert!(matches!(
1167            optimizer.config.parallelization,
1168            ParallelizationStrategy::SingleThread
1169        ));
1170        assert!(matches!(
1171            optimizer.config.precision,
1172            PrecisionStrategy::Quantized { .. }
1173        ));
1174    }
1175
1176    #[test]
1177    fn test_distributed_optimization() {
1178        let node_hardware = HardwarePlatform::GPU {
1179            memory: 8 * 1024 * 1024 * 1024, // 8GB per node
1180            compute_units: 40,
1181            memory_bandwidth: 500.0,
1182            architecture: GPUArchitecture::Volta,
1183        };
1184
1185        let platform = HardwarePlatform::Distributed {
1186            num_nodes: 16,
1187            network_bandwidth: 50.0, // 50 Gbps
1188            node_hardware: Box::new(node_hardware),
1189        };
1190
1191        let initial_params = Array1::from_vec(vec![1.0, 2.0, 3.0]);
1192        let mut optimizer = HardwareAwareOptimizer::new(platform, initial_params);
1193
1194        optimizer.optimize_for_hardware().unwrap();
1195
1196        // Check distributed-specific optimizations
1197        assert_eq!(optimizer.config.batch_size, 128 * 16); // Scaled by number of nodes
1198        assert!(optimizer.config.communication.is_some());
1199        assert!(matches!(
1200            optimizer.config.parallelization,
1201            ParallelizationStrategy::Pipeline { .. }
1202        ));
1203    }
1204
1205    #[test]
1206    fn test_performance_profiling() {
1207        let platform = HardwarePlatform::CPU {
1208            cores: 4,
1209            cache_size: 8 * 1024 * 1024,
1210            simd_support: SIMDSupport::SSE,
1211        };
1212
1213        let initial_params = Array1::from_vec(vec![1.0, 2.0, 3.0]);
1214        let mut optimizer = HardwareAwareOptimizer::new(platform, initial_params);
1215
1216        // Add some performance measurements
1217        optimizer.profile_performance(0.1, 1000000, 5.0);
1218        optimizer.profile_performance(0.12, 1100000, 5.2);
1219        optimizer.profile_performance(0.09, 950000, 4.8);
1220
1221        let stats = optimizer.get_performance_stats();
1222
1223        assert!(stats.average_computation_time > 0.0);
1224        assert!(stats.average_throughput > 0.0);
1225        assert_eq!(stats.peak_memory_usage, 0); // Not updated in this test
1226    }
1227
1228    #[test]
1229    fn test_adaptive_tuning() {
1230        let platform = HardwarePlatform::GPU {
1231            memory: 8 * 1024 * 1024 * 1024,
1232            compute_units: 20,
1233            memory_bandwidth: 300.0,
1234            architecture: GPUArchitecture::Turing,
1235        };
1236
1237        let initial_params = Array1::from_vec(vec![1.0, 2.0, 3.0]);
1238        let mut optimizer = HardwareAwareOptimizer::new(platform, initial_params);
1239
1240        // Simulate low performance
1241        optimizer.profiler.throughput.push(50.0);
1242        optimizer.resource_monitor.current_memory = 1_000_000_000; // 1GB
1243        optimizer.resource_monitor.peak_memory = 4_000_000_000; // 4GB
1244
1245        let initial_batch_size = optimizer.config.batch_size;
1246        optimizer.adaptive_tune(100.0).unwrap(); // Target 100 samples/sec
1247
1248        // Should have tuned for better performance
1249        assert!(optimizer.config.batch_size >= initial_batch_size);
1250    }
1251
1252    #[test]
1253    fn test_hardware_platform_matching() {
1254        let platforms = vec![
1255            HardwarePlatform::CPU {
1256                cores: 8,
1257                cache_size: 16_000_000,
1258                simd_support: SIMDSupport::AVX,
1259            },
1260            HardwarePlatform::GPU {
1261                memory: 12_000_000_000,
1262                compute_units: 60,
1263                memory_bandwidth: 600.0,
1264                architecture: GPUArchitecture::Ampere,
1265            },
1266            HardwarePlatform::TPU {
1267                version: TPUVersion::V3,
1268                matrix_units: 8,
1269                hbm_size: 16_000_000_000,
1270            },
1271            HardwarePlatform::Edge {
1272                power_budget: 2.0,
1273                memory_limit: 256_000_000,
1274                quantization_support: QuantizationSupport::Int4,
1275            },
1276        ];
1277
1278        for platform in platforms {
1279            let initial_params = Array1::from_vec(vec![1.0, 2.0, 3.0]);
1280            let mut optimizer = HardwareAwareOptimizer::new(platform, initial_params);
1281
1282            // Should not panic and should complete successfully
1283            let result = optimizer.optimize_for_hardware();
1284            assert!(result.is_ok());
1285
1286            // Each platform should have different configurations
1287            let config = optimizer.get_config();
1288            assert!(config.batch_size > 0);
1289        }
1290    }
1291}