1use crate::error::Result;
7use scirs2_core::ndarray::{Array, Dimension, ScalarOperand};
8use scirs2_core::numeric::Float;
9use std::collections::HashMap;
10use std::fmt::Debug;
11
12#[derive(Debug, Clone, PartialEq)]
14pub enum HardwarePlatform {
15 CPU {
17 cores: usize,
19 cache_size: usize,
21 simd_support: SIMDSupport,
23 },
24 GPU {
26 memory: usize,
28 compute_units: usize,
30 memory_bandwidth: f64,
32 architecture: GPUArchitecture,
34 },
35 TPU {
37 version: TPUVersion,
39 matrix_units: usize,
41 hbm_size: usize,
43 },
44 Edge {
46 power_budget: f64,
48 memory_limit: usize,
50 quantization_support: QuantizationSupport,
52 },
53 Distributed {
55 num_nodes: usize,
57 network_bandwidth: f64,
59 node_hardware: Box<HardwarePlatform>,
61 },
62}
63
64#[derive(Debug, Clone, Copy, PartialEq)]
66pub enum SIMDSupport {
67 None,
69 SSE,
71 AVX,
73 AVX512,
75 NEON,
77}
78
79#[derive(Debug, Clone, Copy, PartialEq)]
81pub enum GPUArchitecture {
82 Pascal,
84 Volta,
86 Turing,
88 Ampere,
90 Hopper,
92 RDNA,
94 RDNA2,
96 CDNA,
98 XeHPG,
100 XeHPC,
102}
103
104#[derive(Debug, Clone, Copy, PartialEq)]
106pub enum TPUVersion {
107 V1,
109 V2,
111 V3,
113 V4,
115 V5,
117}
118
119#[derive(Debug, Clone, Copy, PartialEq)]
121pub enum QuantizationSupport {
122 None,
124 Int8,
126 FP16,
128 BF16,
130 Int4,
132 Mixed,
134}
135
136#[derive(Debug, Clone)]
138pub struct HardwareOptimizationConfig<A: Float> {
139 pub batch_size: usize,
141 pub memory_strategy: MemoryStrategy,
143 pub parallelization: ParallelizationStrategy,
145 pub precision: PrecisionStrategy,
147 pub optimizer_params: HashMap<String, A>,
149 pub communication: Option<CommunicationStrategy>,
151}
152
153#[derive(Debug, Clone)]
155pub enum MemoryStrategy {
156 Standard,
158 GradientAccumulation {
160 accumulation_steps: usize,
162 },
163 GradientCheckpointing {
165 checkpoint_ratio: f64,
167 },
168 ParameterSharding {
170 shard_size: usize,
172 },
173 CPUOffloading {
175 offload_ratio: f64,
177 },
178 Mixed {
180 strategies: Vec<MemoryStrategy>,
182 strategy_weights: Vec<f64>,
184 },
185}
186
187#[derive(Debug, Clone)]
189pub enum ParallelizationStrategy {
190 SingleThread,
192 DataParallel {
194 num_workers: usize,
196 },
197 ModelParallel {
199 partition_strategy: PartitionStrategy,
201 },
202 Pipeline {
204 pipeline_stages: usize,
206 micro_batches: usize,
208 },
209 TensorParallel {
211 tensor_parallel_size: usize,
213 },
214 Hybrid {
216 data_parallel: usize,
218 model_parallel: usize,
220 pipeline_parallel: usize,
222 },
223}
224
225#[derive(Debug, Clone)]
227pub enum PartitionStrategy {
228 LayerWise,
230 DepthWise,
232 WidthWise,
234 Custom {
236 partition_points: Vec<usize>,
238 },
239}
240
241#[derive(Debug, Clone)]
243pub enum PrecisionStrategy {
244 FP32,
246 FP16,
248 BF16,
250 Mixed {
252 forward_precision: String,
254 backward_precision: String,
256 loss_scaling: bool,
258 },
259 Quantized {
261 weight_bits: u8,
263 activation_bits: u8,
265 quantization_method: String,
267 },
268}
269
270#[derive(Debug, Clone)]
272pub enum CommunicationStrategy {
273 AllReduce {
275 algorithm: AllReduceAlgorithm,
277 compression: bool,
279 },
280 ParameterServer {
282 num_servers: usize,
284 update_frequency: usize,
286 },
287 Gossip {
289 neighbors: usize,
291 gossip_frequency: usize,
293 },
294 Hierarchical {
296 local_groups: usize,
298 inter_group_strategy: Box<CommunicationStrategy>,
300 },
301}
302
303#[derive(Debug, Clone)]
305pub enum AllReduceAlgorithm {
306 Ring,
308 Tree,
310 Butterfly,
312 HalvingDoubling,
314}
315
316#[derive(Debug)]
318pub struct HardwareAwareOptimizer<A: Float, D: Dimension> {
319 platform: HardwarePlatform,
321 config: HardwareOptimizationConfig<A>,
323 profiler: PerformanceProfiler<A>,
325 resource_monitor: ResourceMonitor<A>,
327 adaptive_tuner: AdaptiveTuner<A>,
329 current_state: OptimizationState<A, D>,
331}
332
333#[derive(Debug)]
335pub struct PerformanceProfiler<A: Float> {
336 computation_times: Vec<A>,
338 memory_usage: Vec<usize>,
340 #[allow(dead_code)]
342 communication_overhead: Vec<A>,
343 energy_consumption: Vec<A>,
345 throughput: Vec<A>,
347}
348
349#[derive(Debug)]
351pub struct ResourceMonitor<A: Float> {
352 current_memory: usize,
354 peak_memory: usize,
356 cpu_utilization: A,
358 #[allow(dead_code)]
360 gpu_utilization: Option<A>,
361 power_consumption: A,
363 temperature: A,
365 #[allow(dead_code)]
367 network_utilization: Option<A>,
368}
369
370#[derive(Debug)]
372pub struct AdaptiveTuner<A: Float> {
373 #[allow(dead_code)]
375 tuning_history: Vec<TuningRecord<A>>,
376 #[allow(dead_code)]
378 current_params: HashMap<String, A>,
379 performance_target: A,
381 #[allow(dead_code)]
383 strategy: TuningStrategy,
384}
385
386#[derive(Debug, Clone)]
388pub struct TuningRecord<A: Float> {
389 pub parameters: HashMap<String, A>,
391 pub performance: A,
393 pub resource_usage: A,
395 pub timestamp: u64,
397}
398
399#[derive(Debug, Clone)]
401pub enum TuningStrategy {
402 GridSearch {
404 resolution: usize,
406 },
407 BayesianOptimization {
409 num_samples: usize,
411 },
412 GeneticAlgorithm {
414 population_size: usize,
416 generations: usize,
418 },
419 ReinforcementLearning {
421 exploration_rate: f64,
423 },
424}
425
426#[derive(Debug)]
428pub struct OptimizationState<A: Float, D: Dimension> {
429 parameters: Array<A, D>,
431 #[allow(dead_code)]
433 gradient_accumulator: Option<Array<A, D>>,
434 #[allow(dead_code)]
436 optimizer_state: HashMap<String, Array<A, D>>,
437 #[allow(dead_code)]
439 step_count: usize,
440 #[allow(dead_code)]
442 lr_schedule_state: A,
443}
444
445impl<
446 A: Float
447 + ScalarOperand
448 + Debug
449 + std::iter::Sum
450 + for<'a> std::iter::Sum<&'a A>
451 + Send
452 + Sync,
453 D: Dimension,
454 > HardwareAwareOptimizer<A, D>
455{
456 pub fn new(platform: HardwarePlatform, initialparameters: Array<A, D>) -> Self {
458 let config = Self::default_config_for_platform(&platform);
459 let profiler = PerformanceProfiler::new();
460 let resource_monitor = ResourceMonitor::new();
461 let adaptive_tuner = AdaptiveTuner::new();
462
463 let current_state = OptimizationState {
464 parameters: initialparameters,
465 gradient_accumulator: None,
466 optimizer_state: HashMap::new(),
467 step_count: 0,
468 lr_schedule_state: A::from(0.001).unwrap(),
469 };
470
471 Self {
472 platform,
473 config,
474 profiler,
475 resource_monitor,
476 adaptive_tuner,
477 current_state,
478 }
479 }
480
481 pub fn optimize_for_hardware(&mut self) -> Result<()> {
483 match self.platform.clone() {
484 HardwarePlatform::CPU {
485 cores,
486 cache_size,
487 simd_support,
488 } => {
489 self.optimize_for_cpu(cores, cache_size, simd_support)?;
490 }
491 HardwarePlatform::GPU {
492 memory,
493 compute_units,
494 memory_bandwidth,
495 architecture,
496 } => {
497 self.optimize_for_gpu(memory, compute_units, memory_bandwidth, architecture)?;
498 }
499 HardwarePlatform::TPU {
500 version,
501 matrix_units,
502 hbm_size,
503 } => {
504 self.optimize_for_tpu(version, matrix_units, hbm_size)?;
505 }
506 HardwarePlatform::Edge {
507 power_budget,
508 memory_limit,
509 quantization_support,
510 } => {
511 self.optimize_for_edge(power_budget, memory_limit, quantization_support)?;
512 }
513 HardwarePlatform::Distributed {
514 num_nodes,
515 network_bandwidth,
516 node_hardware,
517 } => {
518 self.optimize_for_distributed(num_nodes, network_bandwidth, &node_hardware)?;
519 }
520 }
521 Ok(())
522 }
523
524 fn optimize_for_cpu(
526 &mut self,
527 cores: usize,
528 cache_size: usize,
529 simd_support: SIMDSupport,
530 ) -> Result<()> {
531 let cache_friendly_batch_size = (cache_size / 4) / self.current_state.parameters.len(); self.config.batch_size = cache_friendly_batch_size.clamp(16, 512);
534
535 self.config.parallelization = ParallelizationStrategy::DataParallel {
537 num_workers: cores.min(8), };
539
540 match simd_support {
542 SIMDSupport::AVX512 => {
543 self.config
544 .optimizer_params
545 .insert("vectorized_ops".to_string(), A::from(512.0).unwrap());
546 }
547 SIMDSupport::AVX => {
548 self.config
549 .optimizer_params
550 .insert("vectorized_ops".to_string(), A::from(256.0).unwrap());
551 }
552 SIMDSupport::SSE => {
553 self.config
554 .optimizer_params
555 .insert("vectorized_ops".to_string(), A::from(128.0).unwrap());
556 }
557 SIMDSupport::NEON => {
558 self.config
559 .optimizer_params
560 .insert("vectorized_ops".to_string(), A::from(128.0).unwrap());
561 }
562 SIMDSupport::None => {
563 self.config
564 .optimizer_params
565 .insert("vectorized_ops".to_string(), A::from(32.0).unwrap());
566 }
567 }
568
569 self.config.precision = PrecisionStrategy::FP32;
571
572 Ok(())
573 }
574
575 fn optimize_for_gpu(
577 &mut self,
578 memory: usize,
579 compute_units: usize,
580 memory_bandwidth: f64,
581 architecture: GPUArchitecture,
582 ) -> Result<()> {
583 let gpu_memory_gb = memory as f64 / (1024.0 * 1024.0 * 1024.0);
585 let optimal_batch_size = if gpu_memory_gb >= 32.0 {
586 256
587 } else if gpu_memory_gb >= 16.0 {
588 128
589 } else if gpu_memory_gb >= 8.0 {
590 64
591 } else {
592 32
593 };
594 self.config.batch_size = optimal_batch_size;
595
596 self.config.parallelization = ParallelizationStrategy::DataParallel {
598 num_workers: compute_units.min(16),
599 };
600
601 match architecture {
603 GPUArchitecture::Ampere | GPUArchitecture::Hopper => {
604 self.config.precision = PrecisionStrategy::Mixed {
606 forward_precision: "fp16".to_string(),
607 backward_precision: "fp32".to_string(),
608 loss_scaling: true,
609 };
610 self.config
611 .optimizer_params
612 .insert("tensor_cores".to_string(), A::from(1.0).unwrap());
613 }
614 GPUArchitecture::Volta | GPUArchitecture::Turing => {
615 self.config.precision = PrecisionStrategy::FP16;
616 self.config
617 .optimizer_params
618 .insert("tensor_cores".to_string(), A::from(1.0).unwrap());
619 }
620 _ => {
621 self.config.precision = PrecisionStrategy::FP32;
622 }
623 }
624
625 if memory_bandwidth < 500.0 {
627 self.config.memory_strategy = MemoryStrategy::GradientAccumulation {
629 accumulation_steps: 4,
630 };
631 } else {
632 self.config.memory_strategy = MemoryStrategy::Standard;
633 }
634
635 Ok(())
636 }
637
638 fn optimize_for_tpu(
640 &mut self,
641 version: TPUVersion,
642 matrix_units: usize,
643 hbm_size: usize,
644 ) -> Result<()> {
645 let tpu_batch_size = match version {
647 TPUVersion::V1 | TPUVersion::V2 => 128,
648 TPUVersion::V3 => 256,
649 TPUVersion::V4 | TPUVersion::V5 => 512,
650 };
651 self.config.batch_size = tpu_batch_size;
652
653 self.config.precision = PrecisionStrategy::BF16;
655
656 self.config.optimizer_params.insert(
658 "matrix_units".to_string(),
659 A::from(matrix_units as f64).unwrap(),
660 );
661
662 self.config.parallelization = ParallelizationStrategy::TensorParallel {
664 tensor_parallel_size: matrix_units.min(8),
665 };
666
667 if hbm_size > 32 * 1024 * 1024 * 1024 {
669 self.config.memory_strategy = MemoryStrategy::Standard;
671 } else {
672 self.config.memory_strategy = MemoryStrategy::GradientCheckpointing {
673 checkpoint_ratio: 0.5,
674 };
675 }
676
677 Ok(())
678 }
679
680 fn optimize_for_edge(
682 &mut self,
683 power_budget: f64,
684 memory_limit: usize,
685 quantization_support: QuantizationSupport,
686 ) -> Result<()> {
687 let edge_batch_size = (memory_limit / (4 * 1024 * 1024)).clamp(1, 32); self.config.batch_size = edge_batch_size;
690
691 self.config.parallelization = ParallelizationStrategy::SingleThread;
693
694 match quantization_support {
696 QuantizationSupport::Int4 => {
697 self.config.precision = PrecisionStrategy::Quantized {
698 weight_bits: 4,
699 activation_bits: 8,
700 quantization_method: "dynamic".to_string(),
701 };
702 }
703 QuantizationSupport::Int8 => {
704 self.config.precision = PrecisionStrategy::Quantized {
705 weight_bits: 8,
706 activation_bits: 8,
707 quantization_method: "static".to_string(),
708 };
709 }
710 QuantizationSupport::FP16 => {
711 self.config.precision = PrecisionStrategy::FP16;
712 }
713 _ => {
714 self.config.precision = PrecisionStrategy::FP32;
715 }
716 }
717
718 if power_budget < 5.0 {
720 self.config
722 .optimizer_params
723 .insert("update_frequency".to_string(), A::from(10.0).unwrap());
724 self.config.memory_strategy = MemoryStrategy::CPUOffloading { offload_ratio: 0.8 };
725 }
726
727 Ok(())
728 }
729
730 fn optimize_for_distributed(
732 &mut self,
733 num_nodes: usize,
734 network_bandwidth: f64,
735 node_hardware: &HardwarePlatform,
736 ) -> Result<()> {
737 let base_batch_size = match node_hardware {
739 HardwarePlatform::GPU { .. } => 128,
740 HardwarePlatform::CPU { .. } => 64,
741 HardwarePlatform::TPU { .. } => 256, HardwarePlatform::Edge { .. } => 32, HardwarePlatform::Distributed { node_hardware, .. } => {
744 match node_hardware.as_ref() {
746 HardwarePlatform::GPU { .. } => 128,
747 HardwarePlatform::CPU { .. } => 64,
748 HardwarePlatform::TPU { .. } => 256,
749 HardwarePlatform::Edge { .. } => 32,
750 HardwarePlatform::Distributed { .. } => 64, }
752 }
753 };
754 self.config.batch_size = base_batch_size * num_nodes;
755
756 let communication = if network_bandwidth >= 100.0 {
758 CommunicationStrategy::AllReduce {
760 algorithm: AllReduceAlgorithm::Ring,
761 compression: false,
762 }
763 } else if network_bandwidth >= 10.0 {
764 CommunicationStrategy::AllReduce {
766 algorithm: AllReduceAlgorithm::Tree,
767 compression: true,
768 }
769 } else {
770 CommunicationStrategy::ParameterServer {
772 num_servers: (num_nodes / 4).max(1),
773 update_frequency: 10,
774 }
775 };
776 self.config.communication = Some(communication);
777
778 if num_nodes >= 64 {
780 self.config.parallelization = ParallelizationStrategy::Hybrid {
781 data_parallel: 8,
782 model_parallel: 4,
783 pipeline_parallel: num_nodes / 32,
784 };
785 } else if num_nodes >= 16 {
786 self.config.parallelization = ParallelizationStrategy::Pipeline {
787 pipeline_stages: 4,
788 micro_batches: 8,
789 };
790 } else {
791 self.config.parallelization = ParallelizationStrategy::DataParallel {
792 num_workers: num_nodes,
793 };
794 }
795
796 Ok(())
797 }
798
799 pub fn profile_performance(&mut self, computation_time: A, memoryused: usize, energy: A) {
801 self.profiler.computation_times.push(computation_time);
802 self.profiler.memory_usage.push(memoryused);
803 self.profiler.energy_consumption.push(energy);
804
805 let throughput = A::from(self.config.batch_size as f64).unwrap() / computation_time;
807 self.profiler.throughput.push(throughput);
808
809 const MAX_HISTORY: usize = 1000;
811 if self.profiler.computation_times.len() > MAX_HISTORY {
812 self.profiler.computation_times.remove(0);
813 self.profiler.memory_usage.remove(0);
814 self.profiler.energy_consumption.remove(0);
815 self.profiler.throughput.remove(0);
816 }
817 }
818
819 pub fn update_resource_monitor(&mut self, memory: usize, cpuutil: A, power: A, temp: A) {
821 self.resource_monitor.current_memory = memory;
822 self.resource_monitor.peak_memory = self.resource_monitor.peak_memory.max(memory);
823 self.resource_monitor.cpu_utilization = cpuutil;
824 self.resource_monitor.power_consumption = power;
825 self.resource_monitor.temperature = temp;
826 }
827
828 pub fn adaptive_tune(&mut self, targetperformance: A) -> Result<()> {
830 self.adaptive_tuner.performance_target = targetperformance;
831
832 let current_performance = self.get_average_performance();
834
835 if current_performance < targetperformance {
836 self.tune_for_performance()?;
838 } else {
839 self.tune_for_efficiency()?;
841 }
842
843 Ok(())
844 }
845
846 fn tune_for_performance(&mut self) -> Result<()> {
848 if self.resource_monitor.current_memory < self.resource_monitor.peak_memory * 8 / 10 {
850 self.config.batch_size = (self.config.batch_size * 12 / 10).min(1024);
851 }
852
853 match self.config.precision {
855 PrecisionStrategy::FP32 => {
856 self.config.precision = PrecisionStrategy::FP16;
857 }
858 PrecisionStrategy::FP16 => {
859 self.config.precision = PrecisionStrategy::Mixed {
860 forward_precision: "fp16".to_string(),
861 backward_precision: "fp32".to_string(),
862 loss_scaling: true,
863 };
864 }
865 _ => {}
866 }
867
868 Ok(())
869 }
870
871 fn tune_for_efficiency(&mut self) -> Result<()> {
873 self.config.batch_size = (self.config.batch_size * 9 / 10).max(1);
875
876 self.config.memory_strategy = MemoryStrategy::GradientAccumulation {
878 accumulation_steps: 2,
879 };
880
881 Ok(())
882 }
883
884 fn get_average_performance(&self) -> A {
886 if self.profiler.throughput.is_empty() {
887 A::zero()
888 } else {
889 let recent_throughput =
890 &self.profiler.throughput[self.profiler.throughput.len().saturating_sub(10)..];
891 recent_throughput.iter().copied().sum::<A>() / A::from(recent_throughput.len()).unwrap()
892 }
893 }
894
895 pub fn get_config(&self) -> &HardwareOptimizationConfig<A> {
897 &self.config
898 }
899
900 pub fn get_performance_stats(&self) -> HardwarePerformanceStats<A> {
902 let avg_computation_time = if self.profiler.computation_times.is_empty() {
903 A::zero()
904 } else {
905 self.profiler.computation_times.iter().sum::<A>()
906 / A::from(self.profiler.computation_times.len()).unwrap()
907 };
908
909 let avg_throughput = if self.profiler.throughput.is_empty() {
910 A::zero()
911 } else {
912 self.profiler.throughput.iter().sum::<A>()
913 / A::from(self.profiler.throughput.len()).unwrap()
914 };
915
916 let avg_energy = if self.profiler.energy_consumption.is_empty() {
917 A::zero()
918 } else {
919 self.profiler.energy_consumption.iter().copied().sum::<A>()
920 / A::from(self.profiler.energy_consumption.len()).unwrap()
921 };
922
923 HardwarePerformanceStats {
924 average_computation_time: avg_computation_time,
925 average_throughput: avg_throughput,
926 peak_memory_usage: self.resource_monitor.peak_memory,
927 average_energy_consumption: avg_energy,
928 hardware_utilization: self.resource_monitor.cpu_utilization,
929 efficiency_score: avg_throughput / (avg_energy + A::from(1e-8).unwrap()), }
931 }
932
933 fn default_config_for_platform(platform: &HardwarePlatform) -> HardwareOptimizationConfig<A> {
935 match platform {
936 HardwarePlatform::CPU { .. } => HardwareOptimizationConfig {
937 batch_size: 64,
938 memory_strategy: MemoryStrategy::Standard,
939 parallelization: ParallelizationStrategy::DataParallel { num_workers: 4 },
940 precision: PrecisionStrategy::FP32,
941 optimizer_params: HashMap::new(),
942 communication: None,
943 },
944 HardwarePlatform::GPU { .. } => HardwareOptimizationConfig {
945 batch_size: 128,
946 memory_strategy: MemoryStrategy::Standard,
947 parallelization: ParallelizationStrategy::DataParallel { num_workers: 1 },
948 precision: PrecisionStrategy::FP16,
949 optimizer_params: HashMap::new(),
950 communication: None,
951 },
952 HardwarePlatform::TPU { .. } => HardwareOptimizationConfig {
953 batch_size: 256,
954 memory_strategy: MemoryStrategy::Standard,
955 parallelization: ParallelizationStrategy::TensorParallel {
956 tensor_parallel_size: 8,
957 },
958 precision: PrecisionStrategy::BF16,
959 optimizer_params: HashMap::new(),
960 communication: None,
961 },
962 HardwarePlatform::Edge { .. } => HardwareOptimizationConfig {
963 batch_size: 16,
964 memory_strategy: MemoryStrategy::GradientCheckpointing {
965 checkpoint_ratio: 0.5,
966 },
967 parallelization: ParallelizationStrategy::SingleThread,
968 precision: PrecisionStrategy::Quantized {
969 weight_bits: 8,
970 activation_bits: 8,
971 quantization_method: "dynamic".to_string(),
972 },
973 optimizer_params: HashMap::new(),
974 communication: None,
975 },
976 HardwarePlatform::Distributed { .. } => HardwareOptimizationConfig {
977 batch_size: 512,
978 memory_strategy: MemoryStrategy::Standard,
979 parallelization: ParallelizationStrategy::DataParallel { num_workers: 8 },
980 precision: PrecisionStrategy::FP16,
981 optimizer_params: HashMap::new(),
982 communication: Some(CommunicationStrategy::AllReduce {
983 algorithm: AllReduceAlgorithm::Ring,
984 compression: false,
985 }),
986 },
987 }
988 }
989}
990
991impl<A: Float + Send + Sync> Default for PerformanceProfiler<A> {
992 fn default() -> Self {
993 Self::new()
994 }
995}
996
997impl<A: Float + Send + Sync> PerformanceProfiler<A> {
998 pub fn new() -> Self {
1000 Self {
1001 computation_times: Vec::new(),
1002 memory_usage: Vec::new(),
1003 communication_overhead: Vec::new(),
1004 energy_consumption: Vec::new(),
1005 throughput: Vec::new(),
1006 }
1007 }
1008}
1009
1010impl<A: Float + Send + Sync> Default for ResourceMonitor<A> {
1011 fn default() -> Self {
1012 Self::new()
1013 }
1014}
1015
1016impl<A: Float + Send + Sync> ResourceMonitor<A> {
1017 pub fn new() -> Self {
1019 Self {
1020 current_memory: 0,
1021 peak_memory: 0,
1022 cpu_utilization: A::zero(),
1023 gpu_utilization: None,
1024 power_consumption: A::zero(),
1025 temperature: A::zero(),
1026 network_utilization: None,
1027 }
1028 }
1029}
1030
1031impl<A: Float + Send + Sync> Default for AdaptiveTuner<A> {
1032 fn default() -> Self {
1033 Self::new()
1034 }
1035}
1036
1037impl<A: Float + Send + Sync> AdaptiveTuner<A> {
1038 pub fn new() -> Self {
1040 Self {
1041 tuning_history: Vec::new(),
1042 current_params: HashMap::new(),
1043 performance_target: A::from(100.0).unwrap(),
1044 strategy: TuningStrategy::BayesianOptimization { num_samples: 50 },
1045 }
1046 }
1047}
1048
1049#[derive(Debug, Clone)]
1051pub struct HardwarePerformanceStats<A: Float> {
1052 pub average_computation_time: A,
1054 pub average_throughput: A,
1056 pub peak_memory_usage: usize,
1058 pub average_energy_consumption: A,
1060 pub hardware_utilization: A,
1062 pub efficiency_score: A,
1064}
1065
1066#[cfg(test)]
1067mod tests {
1068 use super::*;
1069 use scirs2_core::ndarray::Array1;
1070
1071 #[test]
1072 fn test_cpu_optimization() {
1073 let platform = HardwarePlatform::CPU {
1074 cores: 8,
1075 cache_size: 32 * 1024 * 1024, simd_support: SIMDSupport::AVX,
1077 };
1078
1079 let initial_params = Array1::from_vec(vec![1.0, 2.0, 3.0]);
1080 let mut optimizer = HardwareAwareOptimizer::new(platform, initial_params);
1081
1082 optimizer.optimize_for_hardware().unwrap();
1083
1084 assert!(optimizer.config.batch_size <= 512);
1086 assert!(matches!(
1087 optimizer.config.parallelization,
1088 ParallelizationStrategy::DataParallel { .. }
1089 ));
1090 assert!(matches!(
1091 optimizer.config.precision,
1092 PrecisionStrategy::FP32
1093 ));
1094 assert!(optimizer
1095 .config
1096 .optimizer_params
1097 .contains_key("vectorized_ops"));
1098 }
1099
1100 #[test]
1101 fn test_gpu_optimization() {
1102 let platform = HardwarePlatform::GPU {
1103 memory: 16 * 1024 * 1024 * 1024, compute_units: 80,
1105 memory_bandwidth: 900.0,
1106 architecture: GPUArchitecture::Ampere,
1107 };
1108
1109 let initial_params = Array1::from_vec(vec![1.0, 2.0, 3.0]);
1110 let mut optimizer = HardwareAwareOptimizer::new(platform, initial_params);
1111
1112 optimizer.optimize_for_hardware().unwrap();
1113
1114 assert_eq!(optimizer.config.batch_size, 128);
1116 assert!(matches!(
1117 optimizer.config.precision,
1118 PrecisionStrategy::Mixed { .. }
1119 ));
1120 assert!(optimizer
1121 .config
1122 .optimizer_params
1123 .contains_key("tensor_cores"));
1124 }
1125
1126 #[test]
1127 fn test_tpu_optimization() {
1128 let platform = HardwarePlatform::TPU {
1129 version: TPUVersion::V4,
1130 matrix_units: 8,
1131 hbm_size: 32 * 1024 * 1024 * 1024, };
1133
1134 let initial_params = Array1::from_vec(vec![1.0, 2.0, 3.0]);
1135 let mut optimizer = HardwareAwareOptimizer::new(platform, initial_params);
1136
1137 optimizer.optimize_for_hardware().unwrap();
1138
1139 assert_eq!(optimizer.config.batch_size, 512);
1141 assert!(matches!(
1142 optimizer.config.precision,
1143 PrecisionStrategy::BF16
1144 ));
1145 assert!(matches!(
1146 optimizer.config.parallelization,
1147 ParallelizationStrategy::TensorParallel { .. }
1148 ));
1149 }
1150
1151 #[test]
1152 fn test_edge_optimization() {
1153 let platform = HardwarePlatform::Edge {
1154 power_budget: 3.0, memory_limit: 512 * 1024 * 1024, quantization_support: QuantizationSupport::Int8,
1157 };
1158
1159 let initial_params = Array1::from_vec(vec![1.0, 2.0, 3.0]);
1160 let mut optimizer = HardwareAwareOptimizer::new(platform, initial_params);
1161
1162 optimizer.optimize_for_hardware().unwrap();
1163
1164 assert!(optimizer.config.batch_size <= 32);
1166 assert!(matches!(
1167 optimizer.config.parallelization,
1168 ParallelizationStrategy::SingleThread
1169 ));
1170 assert!(matches!(
1171 optimizer.config.precision,
1172 PrecisionStrategy::Quantized { .. }
1173 ));
1174 }
1175
1176 #[test]
1177 fn test_distributed_optimization() {
1178 let node_hardware = HardwarePlatform::GPU {
1179 memory: 8 * 1024 * 1024 * 1024, compute_units: 40,
1181 memory_bandwidth: 500.0,
1182 architecture: GPUArchitecture::Volta,
1183 };
1184
1185 let platform = HardwarePlatform::Distributed {
1186 num_nodes: 16,
1187 network_bandwidth: 50.0, node_hardware: Box::new(node_hardware),
1189 };
1190
1191 let initial_params = Array1::from_vec(vec![1.0, 2.0, 3.0]);
1192 let mut optimizer = HardwareAwareOptimizer::new(platform, initial_params);
1193
1194 optimizer.optimize_for_hardware().unwrap();
1195
1196 assert_eq!(optimizer.config.batch_size, 128 * 16); assert!(optimizer.config.communication.is_some());
1199 assert!(matches!(
1200 optimizer.config.parallelization,
1201 ParallelizationStrategy::Pipeline { .. }
1202 ));
1203 }
1204
1205 #[test]
1206 fn test_performance_profiling() {
1207 let platform = HardwarePlatform::CPU {
1208 cores: 4,
1209 cache_size: 8 * 1024 * 1024,
1210 simd_support: SIMDSupport::SSE,
1211 };
1212
1213 let initial_params = Array1::from_vec(vec![1.0, 2.0, 3.0]);
1214 let mut optimizer = HardwareAwareOptimizer::new(platform, initial_params);
1215
1216 optimizer.profile_performance(0.1, 1000000, 5.0);
1218 optimizer.profile_performance(0.12, 1100000, 5.2);
1219 optimizer.profile_performance(0.09, 950000, 4.8);
1220
1221 let stats = optimizer.get_performance_stats();
1222
1223 assert!(stats.average_computation_time > 0.0);
1224 assert!(stats.average_throughput > 0.0);
1225 assert_eq!(stats.peak_memory_usage, 0); }
1227
1228 #[test]
1229 fn test_adaptive_tuning() {
1230 let platform = HardwarePlatform::GPU {
1231 memory: 8 * 1024 * 1024 * 1024,
1232 compute_units: 20,
1233 memory_bandwidth: 300.0,
1234 architecture: GPUArchitecture::Turing,
1235 };
1236
1237 let initial_params = Array1::from_vec(vec![1.0, 2.0, 3.0]);
1238 let mut optimizer = HardwareAwareOptimizer::new(platform, initial_params);
1239
1240 optimizer.profiler.throughput.push(50.0);
1242 optimizer.resource_monitor.current_memory = 1_000_000_000; optimizer.resource_monitor.peak_memory = 4_000_000_000; let initial_batch_size = optimizer.config.batch_size;
1246 optimizer.adaptive_tune(100.0).unwrap(); assert!(optimizer.config.batch_size >= initial_batch_size);
1250 }
1251
1252 #[test]
1253 fn test_hardware_platform_matching() {
1254 let platforms = vec![
1255 HardwarePlatform::CPU {
1256 cores: 8,
1257 cache_size: 16_000_000,
1258 simd_support: SIMDSupport::AVX,
1259 },
1260 HardwarePlatform::GPU {
1261 memory: 12_000_000_000,
1262 compute_units: 60,
1263 memory_bandwidth: 600.0,
1264 architecture: GPUArchitecture::Ampere,
1265 },
1266 HardwarePlatform::TPU {
1267 version: TPUVersion::V3,
1268 matrix_units: 8,
1269 hbm_size: 16_000_000_000,
1270 },
1271 HardwarePlatform::Edge {
1272 power_budget: 2.0,
1273 memory_limit: 256_000_000,
1274 quantization_support: QuantizationSupport::Int4,
1275 },
1276 ];
1277
1278 for platform in platforms {
1279 let initial_params = Array1::from_vec(vec![1.0, 2.0, 3.0]);
1280 let mut optimizer = HardwareAwareOptimizer::new(platform, initial_params);
1281
1282 let result = optimizer.optimize_for_hardware();
1284 assert!(result.is_ok());
1285
1286 let config = optimizer.get_config();
1288 assert!(config.batch_size > 0);
1289 }
1290 }
1291}