optimization_solvers/quasi_newton/
broyden.rs1use super::*;
2
3#[derive(derive_getters::Getters)]
4pub struct Broyden {
5 approx_inv_hessian: DMatrix<Floating>,
6 x: DVector<Floating>,
7 k: usize,
8 tol: Floating,
9 s_norm: Option<Floating>,
10 y_norm: Option<Floating>,
11 identity: DMatrix<Floating>,
12}
13
14impl Broyden {
15 pub fn next_iterate_too_close(&self) -> bool {
16 match self.s_norm() {
17 Some(s) => s < &self.tol,
18 None => false,
19 }
20 }
21 pub fn gradient_next_iterate_too_close(&self) -> bool {
22 match self.y_norm() {
23 Some(y) => y < &self.tol,
24 None => false,
25 }
26 }
27 pub fn new(tol: Floating, x0: DVector<Floating>) -> Self {
28 let n = x0.len();
29 let identity = DMatrix::identity(n, n);
30 Broyden {
31 approx_inv_hessian: identity.clone(),
32 x: x0,
33 k: 0,
34 tol,
35 s_norm: None,
36 y_norm: None,
37 identity,
38 }
39 }
40}
41
42impl ComputeDirection for Broyden {
43 fn compute_direction(
44 &mut self,
45 eval: &FuncEvalMultivariate,
46 ) -> Result<DVector<Floating>, SolverError> {
47 Ok(-&self.approx_inv_hessian * eval.g())
48 }
49}
50
51impl LineSearchSolver for Broyden {
52 fn k(&self) -> &usize {
53 &self.k
54 }
55 fn xk(&self) -> &DVector<Floating> {
56 &self.x
57 }
58 fn xk_mut(&mut self) -> &mut DVector<Floating> {
59 &mut self.x
60 }
61 fn k_mut(&mut self) -> &mut usize {
62 &mut self.k
63 }
64 fn has_converged(&self, eval: &FuncEvalMultivariate) -> bool {
65 if self.next_iterate_too_close() {
68 warn!(target: "Broyden","Minimization completed: next iterate too close");
69 true
70 } else if self.gradient_next_iterate_too_close() {
71 warn!(target: "Broyden","Minimization completed: gradient next iterate too close");
72 true
73 } else {
74 eval.g().norm() < self.tol
75 }
76 }
77
78 fn update_next_iterate<LS: LineSearch>(
79 &mut self,
80 line_search: &mut LS,
81 eval_x_k: &FuncEvalMultivariate,
82 oracle: &mut impl FnMut(&DVector<Floating>) -> FuncEvalMultivariate,
83 direction: &DVector<Floating>,
84 max_iter_line_search: usize,
85 ) -> Result<(), SolverError> {
86 let step = line_search.compute_step_len(
87 self.xk(),
88 eval_x_k,
89 direction,
90 oracle,
91 max_iter_line_search,
92 );
93
94 let next_iterate = self.xk() + step * direction;
95
96 let s = &next_iterate - &self.x;
97 self.s_norm = Some(s.norm());
98 let y = oracle(&next_iterate).g() - eval_x_k.g();
99 self.y_norm = Some(y.norm());
100
101 *self.xk_mut() = next_iterate;
103
104 if self.next_iterate_too_close() {
107 return Ok(());
108 }
109
110 if self.gradient_next_iterate_too_close() {
111 return Ok(());
112 }
113
114 let hy = &self.approx_inv_hessian * &y;
116 let numerator = ((&s - hy) * s.transpose()) * &self.approx_inv_hessian;
117 let denominator = s.dot(&y);
118 self.approx_inv_hessian += numerator / denominator;
119
120 Ok(())
121 }
122}
123#[cfg(test)]
124mod test_broyden {
125 use super::*;
126 #[test]
127 fn test_outer() {
128 let a = DVector::from_vec(vec![1.0, 2.0]);
129 let b = DVector::from_vec(vec![3.0, 4.0]);
130 let c = a * b.transpose();
131 println!("{:?}", c);
132 }
133
134 #[test]
135 pub fn broyden_morethuente() {
136 std::env::set_var("RUST_LOG", "info");
137
138 let _ = Tracer::default()
139 .with_stdout_layer(Some(LogFormat::Normal))
140 .build();
141 let gamma = 1.;
142 let f_and_g = |x: &DVector<Floating>| -> FuncEvalMultivariate {
143 let f = 0.5 * ((x[0] + 1.).powi(2) + gamma * (x[1] - 1.).powi(2));
144 let g = DVector::from(vec![x[0] + 1., gamma * (x[1] - 1.)]);
145 (f, g).into()
146 };
147
148 let mut ls = MoreThuente::default();
151
152 let tol = 1e-12;
154 let x_0 = DVector::from(vec![180.0, 152.0]);
155 let mut gd = Broyden::new(tol, x_0);
156
157 let max_iter_solver = 1000;
159 let max_iter_line_search = 100000;
160
161 gd.minimize(
162 &mut ls,
163 f_and_g,
164 max_iter_solver,
165 max_iter_line_search,
166 None,
167 )
168 .unwrap();
169
170 println!("Iterate: {:?}", gd.xk());
171
172 let eval = f_and_g(gd.xk());
173 println!("Function eval: {:?}", eval);
174 println!("Gradient norm: {:?}", eval.g().norm());
175 println!("tol: {:?}", tol);
176
177 let convergence = gd.has_converged(&eval);
178 println!("Convergence: {:?}", convergence);
179
180 assert!((eval.f() - 0.0).abs() < 1e-6);
181 }
182
183 #[test]
184 pub fn broyden_backtracking() {
185 std::env::set_var("RUST_LOG", "info");
186
187 let _ = Tracer::default()
188 .with_stdout_layer(Some(LogFormat::Normal))
189 .build();
190 let gamma = 1.;
191 let f_and_g = |x: &DVector<Floating>| -> FuncEvalMultivariate {
192 let f = 0.5 * ((x[0] + 1.).powi(2) + gamma * (x[1] - 1.).powi(2));
193 let g = DVector::from(vec![x[0] + 1., gamma * (x[1] - 1.)]);
194 (f, g).into()
195 };
196
197 let alpha = 1e-4;
199 let beta = 0.5; let mut ls = BackTracking::new(alpha, beta);
202
203 let tol = 1e-12;
205 let x_0 = DVector::from(vec![180.0, 152.0]);
206 let mut gd = Broyden::new(tol, x_0);
207
208 let max_iter_solver = 1000;
210 let max_iter_line_search = 100000;
211
212 gd.minimize(
213 &mut ls,
214 f_and_g,
215 max_iter_solver,
216 max_iter_line_search,
217 None,
218 )
219 .unwrap();
220
221 println!("Iterate: {:?}", gd.xk());
222
223 let eval = f_and_g(gd.xk());
224 println!("Function eval: {:?}", eval);
225 println!("Gradient norm: {:?}", eval.g().norm());
226 println!("tol: {:?}", tol);
227
228 let convergence = gd.has_converged(&eval);
229 println!("Convergence: {:?}", convergence);
230
231 assert!((eval.f() - 0.0).abs() < 1e-6);
232 }
233}