coordinate_descent_example/
coordinate_descent_example.rs1use nalgebra::DVector;
2use optimization_solvers::{
3 BackTracking, CoordinateDescent, FuncEvalMultivariate, LineSearchSolver, Tracer,
4};
5
6fn main() {
7 std::env::set_var("RUST_LOG", "info");
9 let _ = Tracer::default().with_normal_stdout_layer().build();
10
11 let f_and_g = |x: &DVector<f64>| -> FuncEvalMultivariate {
14 let x1 = x[0];
15 let x2 = x[1];
16 let x3 = x[2];
17
18 let f = x1.powi(2) + 2.0 * x2.powi(2) + 3.0 * x3.powi(2);
20
21 let g1 = 2.0 * x1;
23 let g2 = 4.0 * x2;
24 let g3 = 6.0 * x3;
25 let g = DVector::from_vec(vec![g1, g2, g3]);
26
27 FuncEvalMultivariate::new(f, g)
28 };
29
30 let armijo_factor = 1e-4;
32 let beta = 0.5;
33 let mut ls = BackTracking::new(armijo_factor, beta);
34
35 let tol = 1e-6;
37 let x0 = DVector::from_vec(vec![1.0, 1.0, 1.0]); let mut solver = CoordinateDescent::new(tol, x0.clone());
39
40 let max_iter_solver = 100;
42 let max_iter_line_search = 10;
43
44 println!("=== Coordinate Descent Example ===");
45 println!("Objective: f(x,y,z) = x^2 + 2y^2 + 3z^2 (separable convex)");
46 println!("Global minimum: (0, 0, 0) with f(0,0,0) = 0");
47 println!("Starting point: {:?}", x0);
48 println!("Tolerance: {}", tol);
49 println!();
50
51 match solver.minimize(
52 &mut ls,
53 f_and_g,
54 max_iter_solver,
55 max_iter_line_search,
56 None,
57 ) {
58 Ok(()) => {
59 let x = solver.x();
60 let eval = f_and_g(x);
61 println!("✅ Optimization completed successfully!");
62 println!("Final iterate: {:?}", x);
63 println!("Function value: {:.6}", eval.f());
64 println!("Gradient norm: {:.6}", eval.g().norm());
65 println!("Iterations: {}", solver.k());
66
67 let true_min = DVector::from_vec(vec![0.0, 0.0, 0.0]);
69 let distance_to_min = (x - true_min).norm();
70 println!("Distance to true minimum: {:.6}", distance_to_min);
71 println!("Expected function value: 0.0");
72
73 let gradient_at_solution = eval.g();
75 println!("Gradient at solution: {:?}", gradient_at_solution);
76 println!(
77 "Gradient norm should be close to 0: {}",
78 gradient_at_solution.norm()
79 );
80 }
81 Err(e) => {
82 println!("❌ Optimization failed: {:?}", e);
83 }
84 }
85}