optd_core/heuristics/
optimizer.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
use std::{collections::HashMap, sync::Arc};

use anyhow::{Context, Result};
use itertools::Itertools;
use std::any::Any;

use crate::{
    optimizer::Optimizer,
    property::PropertyBuilderAny,
    rel_node::{RelNode, RelNodeRef, RelNodeTyp},
    rules::{Rule, RuleMatcher},
};

pub enum ApplyOrder {
    TopDown,
    BottomUp,
}

pub struct HeuristicsOptimizer<T: RelNodeTyp> {
    rules: Arc<[Arc<dyn Rule<T, Self>>]>,
    apply_order: ApplyOrder,
    property_builders: Arc<[Box<dyn PropertyBuilderAny<T>>]>,
    properties: HashMap<RelNodeRef<T>, Arc<[Box<dyn Any + Send + Sync + 'static>]>>,
}

fn match_node<T: RelNodeTyp>(
    typ: &T,
    children: &[RuleMatcher<T>],
    pick_to: Option<usize>,
    node: RelNodeRef<T>,
) -> Option<HashMap<usize, RelNode<T>>> {
    if let RuleMatcher::PickMany { .. } | RuleMatcher::IgnoreMany = children.last().unwrap() {
    } else {
        assert_eq!(
            children.len(),
            node.children.len(),
            "children size unmatched, please fix the rule: {}",
            node
        );
    }

    let mut should_end = false;
    let mut pick = HashMap::new();
    for (idx, child) in children.iter().enumerate() {
        assert!(!should_end, "many matcher should be at the end");
        match child {
            RuleMatcher::IgnoreOne => {}
            RuleMatcher::IgnoreMany => {
                should_end = true;
            }
            RuleMatcher::PickOne { pick_to, expand: _ } => {
                // Heuristics always keep the full plan without group placeholders, therefore we can ignore expand property.
                let res = pick.insert(*pick_to, node.child(idx).as_ref().clone());
                assert!(res.is_none(), "dup pick");
            }
            RuleMatcher::PickMany { pick_to } => {
                let res = pick.insert(*pick_to, RelNode::new_list(node.children[idx..].to_vec()));
                assert!(res.is_none(), "dup pick");
                should_end = true;
            }
            _ => {
                if let Some(new_picks) = match_and_pick(child, node.child(idx)) {
                    pick.extend(new_picks.iter().map(|(k, v)| (*k, v.clone())));
                } else {
                    return None;
                }
            }
        }
    }
    if let Some(pick_to) = pick_to {
        let res: Option<RelNode<T>> = pick.insert(
            pick_to,
            RelNode {
                typ: typ.clone(),
                children: node.children.clone(),
                data: node.data.clone(),
            },
        );
        assert!(res.is_none(), "dup pick");
    }
    Some(pick)
}

fn match_and_pick<T: RelNodeTyp>(
    matcher: &RuleMatcher<T>,
    node: RelNodeRef<T>,
) -> Option<HashMap<usize, RelNode<T>>> {
    match matcher {
        RuleMatcher::MatchAndPickNode {
            typ,
            children,
            pick_to,
        } => {
            if &node.typ != typ {
                return None;
            }
            match_node(typ, children, Some(*pick_to), node)
        }
        RuleMatcher::MatchNode { typ, children } => {
            if &node.typ != typ {
                return None;
            }
            match_node(typ, children, None, node)
        }
        _ => panic!("top node should be match node"),
    }
}

impl<T: RelNodeTyp> HeuristicsOptimizer<T> {
    pub fn new_with_rules(
        rules: Vec<Arc<dyn Rule<T, Self>>>,
        apply_order: ApplyOrder,
        property_builders: Arc<[Box<dyn PropertyBuilderAny<T>>]>,
    ) -> Self {
        Self {
            rules: rules.into(),
            apply_order,
            property_builders,
            properties: HashMap::new(),
        }
    }

    fn optimize_inputs(&mut self, inputs: &[RelNodeRef<T>]) -> Result<Vec<RelNodeRef<T>>> {
        let mut optimized_inputs = Vec::with_capacity(inputs.len());
        for input in inputs {
            optimized_inputs.push(self.optimize_inner(input.clone())?);
        }
        Ok(optimized_inputs)
    }

    fn apply_rules(&mut self, mut root_rel: RelNodeRef<T>) -> Result<RelNodeRef<T>> {
        for rule in self.rules.clone().as_ref() {
            // Properties only matter for applying rules, therefore applying it before each rule invoke.
            let matcher = rule.matcher();
            if let Some(picks) = match_and_pick(matcher, root_rel.clone()) {
                self.infer_properties(root_rel.clone());
                let mut results = rule.apply(self, picks);
                assert!(results.len() <= 1);
                if !results.is_empty() {
                    root_rel = results.remove(0).into();
                }
            }
        }
        Ok(root_rel)
    }

    fn optimize_inner(&mut self, root_rel: RelNodeRef<T>) -> Result<RelNodeRef<T>> {
        match self.apply_order {
            ApplyOrder::BottomUp => {
                let optimized_children = self.optimize_inputs(&root_rel.children)?;
                let node = self.apply_rules(
                    RelNode {
                        typ: root_rel.typ.clone(),
                        children: optimized_children,
                        data: root_rel.data.clone(),
                    }
                    .into(),
                )?;
                Ok(node)
            }
            ApplyOrder::TopDown => {
                let root_rel = self.apply_rules(root_rel)?;
                let optimized_children = self.optimize_inputs(&root_rel.children)?;
                let node: Arc<RelNode<T>> = RelNode {
                    typ: root_rel.typ.clone(),
                    children: optimized_children,
                    data: root_rel.data.clone(),
                }
                .into();
                Ok(node)
            }
        }
    }

    fn infer_properties(&mut self, root_rel: RelNodeRef<T>) {
        if self.properties.contains_key(&root_rel) {
            return;
        }

        let child_properties = root_rel
            .children
            .iter()
            .map(|child| {
                self.infer_properties((*child).clone());
                self.properties.get(child).unwrap().clone()
            })
            .collect_vec();
        let mut props = Vec::with_capacity(self.property_builders.len());
        for (id, builder) in self.property_builders.iter().enumerate() {
            let child_properties = child_properties
                .iter()
                .map(|x| x[id].as_ref() as &dyn std::any::Any)
                .collect::<Vec<_>>();
            let prop = builder.derive_any(
                root_rel.typ.clone(),
                root_rel.data.clone(),
                child_properties.as_slice(),
            );
            props.push(prop);
        }
        self.properties.insert(root_rel.clone(), props.into());
    }
}

impl<T: RelNodeTyp> Optimizer<T> for HeuristicsOptimizer<T> {
    fn optimize(&mut self, root_rel: RelNodeRef<T>) -> Result<RelNodeRef<T>> {
        self.optimize_inner(root_rel)
    }

    fn get_property<P: crate::property::PropertyBuilder<T>>(
        &self,
        root_rel: RelNodeRef<T>,
        idx: usize,
    ) -> P::Prop {
        let props = self
            .properties
            .get(&root_rel)
            .with_context(|| format!("cannot obtain properties for {}", root_rel))
            .unwrap();
        let prop = props[idx].as_ref();
        prop.downcast_ref::<P::Prop>()
            .with_context(|| {
                format!(
                    "cannot downcast property at idx {} into provided property instance",
                    idx
                )
            })
            .unwrap()
            .clone()
    }
}