1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
use crate::rand::SeedableRng;
use crate::{
    ContinuousSamplesDistribution, Distribution, DistributionError, RandomVariable,
    SampleableDistribution,
};
use rand::rngs::StdRng;

// Sampling Importance Resampling
pub struct ParticleFilter<Y, X, DY, DX, PD>
where
    Y: RandomVariable,
    X: RandomVariable + PartialEq,
    DY: Distribution<Value = Y, Condition = X>,
    DX: Distribution<Value = X, Condition = X>,
    PD: SampleableDistribution<Value = X, Condition = (Vec<X>, Vec<Y>)>,
{
    observable: Vec<Y>,
    distr_x: DX,
    distr_y: DY,
    proposal: PD,
}

impl<Y, X, DY, DX, PD> ParticleFilter<Y, X, DY, DX, PD>
where
    Y: RandomVariable,
    X: RandomVariable + PartialEq,
    DY: Distribution<Value = Y, Condition = X>,
    DX: Distribution<Value = X, Condition = X>,
    PD: SampleableDistribution<Value = X, Condition = (Vec<X>, Vec<Y>)>,
{
    pub fn new(
        observable: Vec<Y>,
        distr_x: DX,
        distr_y: DY,
        proposal: PD,
    ) -> Result<Self, DistributionError> {
        Ok(Self {
            observable,
            distr_y,
            distr_x,
            proposal,
        })
    }

    pub fn filtering(
        &self,
        particles_initial: Vec<X>,
        thr: f64,
    ) -> Result<Vec<ContinuousSamplesDistribution<X>>, DistributionError> {
        let mut rng = StdRng::from_seed([13; 32]);

        let mut distr_vec = vec![];

        let particles_len = particles_initial.len();

        let mut p_previous = particles_initial.clone();

        let w_initial = vec![1.0 / particles_len as f64; particles_len];

        let mut w_previous = w_initial;

        let mut vecvec_p = (0..particles_len)
            .into_iter()
            .map(|i| -> Result<_, DistributionError> {
                let vec_pi = vec![particles_initial[i].clone()];
                Ok(vec_pi)
            })
            .collect::<Result<Vec<_>, _>>()?;

        for t in 0..self.observable.len() {
            let mut p = (0..particles_len)
                .into_iter()
                .map(|i| -> Result<_, DistributionError> {
                    let pi = self.proposal.sample(
                        &(
                            (&vecvec_p[i][0..t + 1]).to_vec(),
                            (self.observable[0..t + 1]).to_vec(),
                        ),
                        &mut rng,
                    )?;
                    Ok(pi)
                })
                .collect::<Result<Vec<_>, _>>()?;

            loop {
                let w_orig = (0..particles_len)
                    .into_iter()
                    .map(|i| -> Result<_, DistributionError> {
                        let wi_orig = w_previous[i]
                            * self.distr_y.p_kernel(&self.observable[t], &p[i])?
                            * self.distr_x.p_kernel(&p[i], &p_previous[i])?
                            / self.proposal.p_kernel(
                                &p[i],
                                &(
                                    (vecvec_p[i][0..t + 1]).to_vec(),
                                    (self.observable[0..t + 1]).to_vec(),
                                ),
                            )?;
                        Ok(wi_orig)
                    })
                    .collect::<Result<Vec<_>, _>>()?;

                let w = (0..particles_len)
                    .into_iter()
                    .map(|i| -> Result<_, DistributionError> {
                        let wi = w_orig[i] / (w_orig.iter().map(|wi_orig| wi_orig).sum::<f64>());
                        Ok(wi)
                    })
                    .collect::<Result<Vec<_>, _>>()?;

                let eff = 1.0 / (w.iter().map(|wi| wi.powi(2)).sum::<f64>());
                println!("{:#?}", eff);

                let mut p_sample = vec![];

                for i in 0..w.len() {
                    let num_w = (particles_len as f64 * 100.0 * w[i]).round() as usize;
                    let mut pi_sample = vec![p[i].clone(); num_w];
                    p_sample.append(&mut pi_sample);
                }

                let weighted_distr = ContinuousSamplesDistribution::new(p_sample);

                let mut weighted_distr_vec = vec![weighted_distr.clone()];

                if eff > thr {
                    distr_vec.append(&mut weighted_distr_vec);

                    vecvec_p = (0..particles_len)
                        .into_iter()
                        .map(|i| -> Result<_, DistributionError> {
                            let mut vec_pi = vec![p[i].clone()];
                            vecvec_p[i].append(&mut vec_pi);
                            let vecvec_pi = vecvec_p[i].clone();
                            Ok(vecvec_pi)
                        })
                        .collect::<Result<Vec<_>, _>>()?;
                    p_previous = p;
                    w_previous = w;
                    break;
                }

                p = (0..particles_len)
                    .into_iter()
                    .map(|_i| -> Result<_, DistributionError> {
                        let pi = weighted_distr.sample(&(), &mut rng)?;
                        Ok(pi)
                    })
                    .collect::<Result<Vec<_>, _>>()?;
            }
        }
        Ok(distr_vec)
    }
}

#[cfg(test)]
mod tests {
    use crate::distribution::Distribution;
    use crate::*;
    use rand::prelude::*;
    use sir::ParticleFilter;

    #[test]
    fn it_works() {
        // create test data
        let x_sigma = 2.0;
        let y_sigma = 4.0;
        let time = 30;
        let mut rng = StdRng::from_seed([5; 32]);
        let mut x_series = Vec::new();
        let mut x_pre = 0.0;
        let mut y_series = Vec::new();
        for _i in 0..time {
            let x_params = NormalParams::new(x_pre, x_sigma).unwrap();
            let x = Normal.sample(&x_params, &mut rng).unwrap();
            x_series.append(&mut vec![x]);
            x_pre = x;
            let y_params = NormalParams::new(x.powi(3) * 0.3, y_sigma).unwrap();
            let y = Normal.sample(&y_params, &mut rng).unwrap();
            y_series.append(&mut vec![y]);
        }
        // estimation by particlefilter
        let p_num = 100;
        let fn_x = |x: &f64| NormalParams::new(*x, x_sigma);
        let fn_y = |y: &f64| NormalParams::new(y.powi(3) * 0.3, y_sigma);
        let fn_p = |xy: &(Vec<f64>, Vec<f64>)| NormalParams::new(xy.0[xy.0.len() - 1], x_sigma);
        let distr_x = Normal.condition(&fn_x);
        let distr_y = Normal.condition(&fn_y);
        let proposal = Normal.condition(&fn_p);
        let test = ParticleFilter::new(y_series.clone(), distr_x, distr_y, proposal).unwrap();
        let p_initial = (0..p_num)
            .into_iter()
            .map(|_i| -> Result<_, DistributionError> {
                let p = Normal
                    .sample(&NormalParams::new(x_pre, x_sigma).unwrap(), &mut rng)
                    .unwrap();
                Ok(p)
            })
            .collect::<Result<Vec<_>, _>>()
            .unwrap();
        let thr = p_num as f64 * 0.99;
        let result = &test.filtering(p_initial, thr).unwrap();
        let est_x = (0..time)
            .into_iter()
            .map(|i| -> Result<_, DistributionError> {
                let a: f64 = result[i].samples().iter().sum();
                let b: f64 = result[i].samples().len() as f64;
                let x = a / b;
                Ok(x)
            })
            .collect::<Result<Vec<_>, _>>()
            .unwrap();
        println!("{:#?}", x_series);
        println!("{:#?}", x_series.len());
        println!("{:#?}", y_series);
        println!("{:#?}", y_series.len());
        println!("{:#?}", est_x);
        println!("{:#?}", est_x.len());
    }
}