1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
pub mod params;
pub use params::*;
use crate::*;
use rand::Rng;
use std::ops::{BitAnd, Mul};
#[derive(Clone, Debug)]
pub struct Bernoulli;
#[derive(thiserror::Error, Debug)]
pub enum BernoulliError {
#[error("'p' must be probability.")]
PMustBeProbability,
}
impl Distribution for Bernoulli {
type Value = bool;
type Condition = BernoulliParams;
fn p_kernel(
&self,
_x: &Self::Value,
theta: &Self::Condition,
) -> Result<f64, DistributionError> {
Ok(theta.p())
}
}
impl DiscreteDistribution for Bernoulli {}
impl<Rhs, TRhs> Mul<Rhs> for Bernoulli
where
Rhs: Distribution<Value = TRhs, Condition = BernoulliParams>,
TRhs: RandomVariable,
{
type Output = IndependentJoint<Self, Rhs, bool, TRhs, BernoulliParams>;
fn mul(self, rhs: Rhs) -> Self::Output {
IndependentJoint::new(self, rhs)
}
}
impl<Rhs, URhs> BitAnd<Rhs> for Bernoulli
where
Rhs: Distribution<Value = BernoulliParams, Condition = URhs>,
URhs: RandomVariable,
{
type Output = DependentJoint<Self, Rhs, bool, BernoulliParams, URhs>;
fn bitand(self, rhs: Rhs) -> Self::Output {
DependentJoint::new(self, rhs)
}
}
impl ConditionDifferentiableDistribution for Bernoulli {
fn ln_diff_condition(
&self,
x: &Self::Value,
theta: &Self::Condition,
) -> Result<Vec<f64>, DistributionError> {
let p = theta.p();
let x_f64 = if *x { 1.0 } else { 0.0 };
let f_p = x_f64 / p - (1.0 - x_f64) / (1.0 - p);
Ok(vec![f_p])
}
}
impl SampleableDistribution for Bernoulli {
fn sample(
&self,
theta: &Self::Condition,
rng: &mut dyn rand::RngCore,
) -> Result<Self::Value, DistributionError> {
let u = rng.gen_range(0.0..=1.0);
Ok(u <= theta.p())
}
}