opensrdk_kernel_method/
mul.rs

1use crate::{KernelAdd, KernelError, PositiveDefiniteKernel};
2use opensrdk_symbolic_computation::Expression;
3use std::ops::Add;
4use std::{fmt::Debug, ops::Mul};
5
6#[derive(Clone, Debug)]
7pub struct KernelMul<L, R>
8where
9    L: PositiveDefiniteKernel,
10    R: PositiveDefiniteKernel,
11{
12    lhs: L,
13    rhs: R,
14}
15
16impl<L, R> KernelMul<L, R>
17where
18    L: PositiveDefiniteKernel,
19    R: PositiveDefiniteKernel,
20{
21    pub fn new(lhs: L, rhs: R) -> Self {
22        Self { lhs, rhs }
23    }
24}
25
26impl<L, R> PositiveDefiniteKernel for KernelMul<L, R>
27where
28    L: PositiveDefiniteKernel,
29    R: PositiveDefiniteKernel,
30{
31    fn params_len(&self) -> usize {
32        self.lhs.params_len() + self.rhs.params_len()
33    }
34    fn expression(
35        &self,
36        x: Expression,
37        x_prime: Expression,
38        params: &[Expression],
39    ) -> Result<Expression, KernelError> {
40        let lhs_params_len = self.lhs.params_len();
41        let fx = self
42            .lhs
43            .expression(x.clone(), x_prime.clone(), &params[..lhs_params_len])?;
44        let gx = self.rhs.expression(x, x_prime, &params[lhs_params_len..])?;
45
46        let hx = fx * gx;
47
48        Ok(hx)
49    }
50}
51
52impl<Rhs, L, R> Add<Rhs> for KernelMul<L, R>
53where
54    Rhs: PositiveDefiniteKernel,
55    L: PositiveDefiniteKernel,
56    R: PositiveDefiniteKernel,
57{
58    type Output = KernelAdd<Self, Rhs>;
59
60    fn add(self, rhs: Rhs) -> Self::Output {
61        Self::Output::new(self, rhs)
62    }
63}
64
65impl<Rhs, L, R> Mul<Rhs> for KernelMul<L, R>
66where
67    Rhs: PositiveDefiniteKernel,
68    L: PositiveDefiniteKernel,
69    R: PositiveDefiniteKernel,
70{
71    type Output = KernelMul<Self, Rhs>;
72
73    fn mul(self, rhs: Rhs) -> Self::Output {
74        Self::Output::new(self, rhs)
75    }
76}
77
78// impl<L, R> ValueDifferentiableKernel for KernelMul<L, R>
79// where
80//     L: ValueDifferentiableKernel,
81//     R: ValueDifferentiableKernel<T>,
82//     T: Value,
83// {
84//     fn ln_diff_value(&self, params: &[f64], x: &T, xprime: &T) -> Result<Vec<f64>, KernelError> {
85//         let diff_rhs = &self
86//             .rhs
87//             .ln_diff_value(params, x, xprime)
88//             .unwrap()
89//             .clone()
90//             .col_mat();
91//         let diff_lhs = &self
92//             .lhs
93//             .ln_diff_value(params, x, xprime)
94//             .unwrap()
95//             .clone()
96//             .col_mat();
97//         let diff = (diff_rhs + diff_lhs.clone()).vec();
98//         Ok(diff)
99//     }
100// }
101
102// impl<L, R, T> ParamsDifferentiableKernel<T> for KernelMul<L, R, T>
103// where
104//     L: ParamsDifferentiableKernel<T>,
105//     R: ParamsDifferentiableKernel<T>,
106//     T: Value,
107// {
108//     fn ln_diff_params(&self, params: &[f64], x: &T, xprime: &T) -> Result<Vec<f64>, KernelError> {
109//         let diff_rhs = &self
110//             .rhs
111//             .ln_diff_params(params, x, xprime)
112//             .unwrap()
113//             .clone()
114//             .col_mat();
115//         let diff_lhs = &self
116//             .lhs
117//             .ln_diff_params(params, x, xprime)
118//             .unwrap()
119//             .clone()
120//             .col_mat();
121//         let diff = (diff_rhs + diff_lhs.clone()).vec();
122//         Ok(diff)
123//     }
124// }