1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
use super::ActivationFunction;
use crate::{
Constant, KernelAdd, KernelError, KernelMul, Linear, ParamsDifferentiableKernel,
PositiveDefiniteKernel, ValueDifferentiableKernel,
};
use std::{
fmt::Debug,
ops::{Add, Mul},
};
#[derive(Clone, Debug)]
pub struct DeepNeuralNetwork<'a> {
layers: Vec<&'a dyn ActivationFunction>,
}
impl<'a> DeepNeuralNetwork<'a> {
pub fn new(layers: Vec<&'a dyn ActivationFunction>) -> Self {
Self { layers }
}
}
impl<'a> PositiveDefiniteKernel<Vec<f64>> for DeepNeuralNetwork<'a> {
fn params_len(&self) -> usize {
2 * (1 + self.layers.len())
}
fn value(&self, params: &[f64], x: &Vec<f64>, xprime: &Vec<f64>) -> Result<f64, KernelError> {
if params.len() != self.params_len() {
return Err(KernelError::ParametersLengthMismatch.into());
}
if x.len() != xprime.len() {
return Err(KernelError::InvalidArgument.into());
}
let layer0 = Constant + Constant * Linear;
let mut previous_layer_kernel = (
layer0.value(¶ms[0..2], x, xprime)?,
layer0.value(¶ms[0..2], x, x)?,
layer0.value(¶ms[0..2], xprime, xprime)?,
);
let params = ¶ms[2..];
for (i, &layer) in self.layers.iter().enumerate() {
let sigma_b = params[(i + 1) * 2];
let sigma_w = params[(i + 1) * 2 + 1];
let f = layer.f(previous_layer_kernel);
let fxx = layer.f((
previous_layer_kernel.1,
previous_layer_kernel.1,
previous_layer_kernel.1,
));
let fxpxp = layer.f((
previous_layer_kernel.2,
previous_layer_kernel.2,
previous_layer_kernel.2,
));
previous_layer_kernel = (
sigma_b + sigma_w * f,
sigma_b + sigma_w * fxx,
sigma_b + sigma_w * fxpxp,
);
}
Ok(previous_layer_kernel.0)
}
}
impl<'a> ValueDifferentiableKernel<Vec<f64>> for DeepNeuralNetwork<'a> {
fn ln_diff_value(
&self,
params: &[f64],
x: &Vec<f64>,
xprime: &Vec<f64>,
) -> Result<Vec<f64>, KernelError> {
todo!()
}
}
impl<'a> ParamsDifferentiableKernel<Vec<f64>> for DeepNeuralNetwork<'a> {
fn ln_diff_params(
&self,
params: &[f64],
x: &Vec<f64>,
xprime: &Vec<f64>,
) -> Result<Vec<f64>, KernelError> {
todo!()
}
}
impl<'a, R> Add<R> for DeepNeuralNetwork<'a>
where
R: PositiveDefiniteKernel<Vec<f64>>,
{
type Output = KernelAdd<Self, R, Vec<f64>>;
fn add(self, rhs: R) -> Self::Output {
Self::Output::new(self, rhs)
}
}
impl<'a, R> Mul<R> for DeepNeuralNetwork<'a>
where
R: PositiveDefiniteKernel<Vec<f64>>,
{
type Output = KernelMul<Self, R, Vec<f64>>;
fn mul(self, rhs: R) -> Self::Output {
Self::Output::new(self, rhs)
}
}
#[cfg(test)]
mod tests {
use crate::*;
#[test]
fn it_works() {
let activfunc = ReLU;
let kernel = DeepNeuralNetwork::new(vec![&activfunc]);
let test_value = kernel.value(
&[1.0, 1.0, 3.0, 4.0, 6.0],
&vec![0.0, 0.0, 0.0],
&vec![0.0, 0.0, 0.0],
);
match test_value {
Err(KernelError::ParametersLengthMismatch) => (),
_ => panic!(),
};
}
}