1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
use super::ActivationFunction;
use crate::{Constant, KernelAdd, KernelError, KernelMul, Linear, PositiveDefiniteKernel};
use std::{
fmt::Debug,
ops::{Add, Mul},
};
#[derive(Clone, Debug)]
pub struct DeepNeuralNetwork<'a> {
layers: Vec<&'a dyn ActivationFunction>,
}
impl<'a> DeepNeuralNetwork<'a> {
pub fn new(layers: Vec<&'a dyn ActivationFunction>) -> Self {
Self { layers }
}
}
impl<'a> PositiveDefiniteKernel<Vec<f64>> for DeepNeuralNetwork<'a> {
fn params_len(&self) -> usize {
2 * (1 + self.layers.len())
}
fn value(&self, params: &[f64], x: &Vec<f64>, xprime: &Vec<f64>) -> Result<f64, KernelError> {
if params.len() != self.params_len() {
return Err(KernelError::ParametersLengthMismatch.into());
}
if x.len() != xprime.len() {
return Err(KernelError::InvalidArgument.into());
}
let layer0 = Constant + Constant * Linear;
let mut previous_layer_kernel = (
layer0.value(¶ms[0..2], x, xprime)?,
layer0.value(¶ms[0..2], x, x)?,
layer0.value(¶ms[0..2], xprime, xprime)?,
);
let params = ¶ms[2..];
for (i, &layer) in self.layers.iter().enumerate() {
let sigma_b = params[(i + 1) * 2];
let sigma_w = params[(i + 1) * 2 + 1];
let f = layer.f(previous_layer_kernel);
let fxx = layer.f((
previous_layer_kernel.1,
previous_layer_kernel.1,
previous_layer_kernel.1,
));
let fxpxp = layer.f((
previous_layer_kernel.2,
previous_layer_kernel.2,
previous_layer_kernel.2,
));
previous_layer_kernel = (
sigma_b + sigma_w * f,
sigma_b + sigma_w * fxx,
sigma_b + sigma_w * fxpxp,
);
}
Ok(previous_layer_kernel.0)
}
}
impl<'a, R> Add<R> for DeepNeuralNetwork<'a>
where
R: PositiveDefiniteKernel<Vec<f64>>,
{
type Output = KernelAdd<Self, R, Vec<f64>>;
fn add(self, rhs: R) -> Self::Output {
Self::Output::new(self, rhs)
}
}
impl<'a, R> Mul<R> for DeepNeuralNetwork<'a>
where
R: PositiveDefiniteKernel<Vec<f64>>,
{
type Output = KernelMul<Self, R, Vec<f64>>;
fn mul(self, rhs: R) -> Self::Output {
Self::Output::new(self, rhs)
}
}
#[cfg(test)]
mod tests {
use crate::*;
#[test]
fn it_works() {
let activfunc = ReLU;
let kernel = DeepNeuralNetwork::new(vec![&activfunc]);
let test_value = kernel.value(
&[1.0, 1.0, 3.0, 4.0, 6.0],
&vec![0.0, 0.0, 0.0],
&vec![0.0, 0.0, 0.0],
);
match test_value {
Err(KernelError::ParametersLengthMismatch) => (),
_ => panic!(),
};
}
}