1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
use super::PositiveDefiniteKernel;
use crate::{KernelAdd, KernelError, KernelMul, ValueDifferentiable, ParamsDifferentiable};
use rayon::prelude::*;
use std::{ops::Add, ops::Mul};
use opensrdk_linear_algebra::*;
const PARAMS_LEN: usize = 0;
#[derive(Clone, Debug)]
pub struct Linear;
impl PositiveDefiniteKernel<Vec<f64>> for Linear {
fn params_len(&self) -> usize {
PARAMS_LEN
}
fn value(&self, params: &[f64], x: &Vec<f64>, xprime: &Vec<f64>) -> Result<f64, KernelError> {
if params.len() != PARAMS_LEN {
return Err(KernelError::ParametersLengthMismatch.into());
}
if x.len() != xprime.len() {
return Err(KernelError::InvalidArgument.into());
}
let fx = x
.par_iter()
.zip(xprime.par_iter())
.map(|(x_i, xprime_i)| x_i * xprime_i)
.sum();
Ok(fx)
}
}
impl<R> Add<R> for Linear
where
R: PositiveDefiniteKernel<Vec<f64>>,
{
type Output = KernelAdd<Self, R, Vec<f64>>;
fn add(self, rhs: R) -> Self::Output {
Self::Output::new(self, rhs)
}
}
impl<R> Mul<R> for Linear
where
R: PositiveDefiniteKernel<Vec<f64>>,
{
type Output = KernelMul<Self, R, Vec<f64>>;
fn mul(self, rhs: R) -> Self::Output {
Self::Output::new(self, rhs)
}
}
impl ValueDifferentiable<Vec<f64>> for Linear {
fn ln_diff_value(
&self,
params: &[f64],
x: &Vec<f64>,
xprime: &Vec<f64>,
) -> Result<(Vec<f64>, f64), KernelError> {
let value = &self.value(params, x, xprime).unwrap();
let diff = (2.0 / value * x.clone().col_mat()).vec();
Ok((diff, *value))
}
}
impl ParamsDifferentiable<Vec<f64>> for Linear {
fn ln_diff_params(
&self,
params: &[f64],
x: &Vec<f64>,
xprime: &Vec<f64>,
) -> Result<(Vec<f64>, f64), KernelError> {
let diff = vec![];
let value = &self.value(params, x, xprime).unwrap();
Ok((diff, *value))
}
}
#[cfg(test)]
mod tests {
use crate::*;
#[test]
fn it_works() {
let kernel = Linear;
let test_value = kernel
.value(&[], &vec![1.0, 2.0, 3.0], &vec![3.0, 2.0, 1.0])
.unwrap();
assert_eq!(test_value, 10.0);
}
}