1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
use super::Kernel; use crate::{KernelAdd, KernelError, KernelMul}; use rayon::prelude::*; use std::{error::Error, ops::Add, ops::Mul}; fn weighted_norm_pow(params: &[f64], x: &Vec<f64>, xprime: &Vec<f64>) -> f64 { params .par_iter() .zip(x.par_iter()) .zip(xprime.par_iter()) .map(|((relevance, xi), xprimei)| relevance * (xi - xprimei).powi(2)) .sum() } #[derive(Clone, Debug)] pub struct ARD(pub usize); impl Kernel<Vec<f64>> for ARD { fn params_len(&self) -> usize { self.0 } fn value( &self, params: &[f64], x: &Vec<f64>, xprime: &Vec<f64>, with_grad: bool, ) -> Result<(f64, Vec<f64>), Box<dyn Error>> { if params.len() != self.0 { return Err(KernelError::ParametersLengthMismatch.into()); } if x.len() != self.0 || xprime.len() != self.0 { return Err(KernelError::InvalidArgument.into()); } let fx = (-weighted_norm_pow(¶ms, x, xprime)).exp(); let grad = if !with_grad { vec![] } else { let mut gfx = vec![f64::default(); self.0]; gfx.par_iter_mut() .zip(x.par_iter()) .zip(xprime.par_iter()) .for_each(|((gfxi, &xi), &xprimei)| *gfxi = -(xi - xprimei).powi(2)); gfx }; Ok((fx, grad)) } } impl<R> Add<R> for ARD where R: Kernel<Vec<f64>>, { type Output = KernelAdd<Self, R, Vec<f64>>; fn add(self, rhs: R) -> Self::Output { Self::Output::new(self, rhs) } } impl<R> Mul<R> for ARD where R: Kernel<Vec<f64>>, { type Output = KernelMul<Self, R, Vec<f64>>; fn mul(self, rhs: R) -> Self::Output { Self::Output::new(self, rhs) } }