pub struct HammingDistance;
Expand description

The number of elements that differ between two equal-length datasets.

This metric is sensitive to data ordering. Since this metric counts the number of changed rows, it is a bounded metric (for bounded DP).

Since this metric is bounded, the dataset size must be fixed. Thus we only consider neighboring datasets with the same fixed size: crate::domains::VectorDomain::size.

Proof Definition

d-closeness

For any two datasets $u, v \in \texttt{D}$ and any $d$ of type IntDistance, we say that $u, v$ are $d$-close under the Hamming distance metric (abbreviated as $d_{Ham}$) whenever

d_{Ham}(u, v) = \#\{i: u_i \neq v_i\} \leq d

Note

The distance type is hard-coded as IntDistance, so this metric is not generic over the distance type like many other metrics.

WLOG, most OpenDP interfaces need only consider unbounded metrics. Use crate::transformations::make_metric_unbounded and crate::transformations::make_metric_bounded to convert to/from the symmetric distance.

Compatible Domains

  • VectorDomain<D> for any valid D, when VectorDomain::size.is_some().

Trait Implementations§

source§

impl BoundedMetric for HammingDistance

source§

impl Clone for HammingDistance

source§

fn clone(&self) -> HammingDistance

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl Debug for HammingDistance

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
source§

impl Default for HammingDistance

source§

fn default() -> Self

Returns the “default value” for a type. Read more
source§

impl Metric for HammingDistance

§

type Distance = u32

Proof Definition Read more
source§

impl OrderedMetric for HammingDistance

source§

impl PartialEq<HammingDistance> for HammingDistance

source§

fn eq(&self, _other: &Self) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.

Auto Trait Implementations§

Blanket Implementations§

source§

impl<T> Any for Twhere T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Az for T

source§

fn az<Dst>(self) -> Dstwhere T: Cast<Dst>,

Casts the value.
source§

impl<T> Borrow<T> for Twhere T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for Twhere T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<Src, Dst> CastFrom<Src> for Dstwhere Src: Cast<Dst>,

source§

fn cast_from(src: Src) -> Dst

Casts the value.
source§

impl<T> CheckedAs for T

source§

fn checked_as<Dst>(self) -> Option<Dst>where T: CheckedCast<Dst>,

Casts the value.
source§

impl<Src, Dst> CheckedCastFrom<Src> for Dstwhere Src: CheckedCast<Dst>,

source§

fn checked_cast_from(src: Src) -> Option<Dst>

Casts the value.
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T, U> Into<U> for Twhere U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> OverflowingAs for T

source§

fn overflowing_as<Dst>(self) -> (Dst, bool)where T: OverflowingCast<Dst>,

Casts the value.
source§

impl<Src, Dst> OverflowingCastFrom<Src> for Dstwhere Src: OverflowingCast<Dst>,

source§

fn overflowing_cast_from(src: Src) -> (Dst, bool)

Casts the value.
source§

impl<T> Same<T> for T

§

type Output = T

Should always be Self
source§

impl<T> SaturatingAs for T

source§

fn saturating_as<Dst>(self) -> Dstwhere T: SaturatingCast<Dst>,

Casts the value.
source§

impl<Src, Dst> SaturatingCastFrom<Src> for Dstwhere Src: SaturatingCast<Dst>,

source§

fn saturating_cast_from(src: Src) -> Dst

Casts the value.
§

impl<SS, SP> SupersetOf<SS> for SPwhere SS: SubsetOf<SP>,

§

fn to_subset(&self) -> Option<SS>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
§

fn is_in_subset(&self) -> bool

Checks if self is actually part of its subset T (and can be converted to it).
§

unsafe fn to_subset_unchecked(&self) -> SS

Use with care! Same as self.to_subset but without any property checks. Always succeeds.
§

fn from_subset(element: &SS) -> SP

The inclusion map: converts self to the equivalent element of its superset.
source§

impl<T> ToOwned for Twhere T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<T, U> TryFrom<U> for Twhere U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for Twhere U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
source§

impl<T> UnwrappedAs for T

source§

fn unwrapped_as<Dst>(self) -> Dstwhere T: UnwrappedCast<Dst>,

Casts the value.
source§

impl<Src, Dst> UnwrappedCastFrom<Src> for Dstwhere Src: UnwrappedCast<Dst>,

source§

fn unwrapped_cast_from(src: Src) -> Dst

Casts the value.
§

impl<V, T> VZip<V> for Twhere V: MultiLane<T>,

§

fn vzip(self) -> V

source§

impl<T> WrappingAs for T

source§

fn wrapping_as<Dst>(self) -> Dstwhere T: WrappingCast<Dst>,

Casts the value.
source§

impl<Src, Dst> WrappingCastFrom<Src> for Dstwhere Src: WrappingCast<Dst>,

source§

fn wrapping_cast_from(src: Src) -> Dst

Casts the value.