pub trait SVMSGDTrait: SVMSGDTraitConst + StatModelTrait {
// Required method
fn as_raw_mut_SVMSGD(&mut self) -> *mut c_void;
// Provided methods
fn get_weights(&mut self) -> Result<Mat> { ... }
fn get_shift(&mut self) -> Result<f32> { ... }
fn set_optimal_parameters(
&mut self,
svmsgd_type: i32,
margin_type: i32,
) -> Result<()> { ... }
fn set_optimal_parameters_def(&mut self) -> Result<()> { ... }
fn set_svmsgd_type(&mut self, svmsgd_type: i32) -> Result<()> { ... }
fn set_margin_type(&mut self, margin_type: i32) -> Result<()> { ... }
fn set_margin_regularization(
&mut self,
margin_regularization: f32,
) -> Result<()> { ... }
fn set_initial_step_size(&mut self, initial_step_size: f32) -> Result<()> { ... }
fn set_step_decreasing_power(
&mut self,
step_decreasing_power: f32,
) -> Result<()> { ... }
fn set_term_criteria(&mut self, val: TermCriteria) -> Result<()> { ... }
}
Expand description
Mutable methods for crate::ml::SVMSGD
Required Methods§
fn as_raw_mut_SVMSGD(&mut self) -> *mut c_void
Provided Methods§
Sourcefn get_weights(&mut self) -> Result<Mat>
fn get_weights(&mut self) -> Result<Mat>
§Returns
the weights of the trained model (decision function f(x) = weights * x + shift).
Sourcefn get_shift(&mut self) -> Result<f32>
fn get_shift(&mut self) -> Result<f32>
§Returns
the shift of the trained model (decision function f(x) = weights * x + shift).
Sourcefn set_optimal_parameters_def(&mut self) -> Result<()>
fn set_optimal_parameters_def(&mut self) -> Result<()>
Function sets optimal parameters values for chosen SVM SGD model.
§Parameters
- svmsgdType: is the type of SVMSGD classifier.
- marginType: is the type of margin constraint.
§Note
This alternative version of SVMSGDTrait::set_optimal_parameters function uses the following default values for its arguments:
- svmsgd_type: SVMSGD::ASGD
- margin_type: SVMSGD::SOFT_MARGIN
Sourcefn set_svmsgd_type(&mut self, svmsgd_type: i32) -> Result<()>
fn set_svmsgd_type(&mut self, svmsgd_type: i32) -> Result<()>
Sourcefn set_margin_type(&mut self, margin_type: i32) -> Result<()>
fn set_margin_type(&mut self, margin_type: i32) -> Result<()>
Sourcefn set_margin_regularization(
&mut self,
margin_regularization: f32,
) -> Result<()>
fn set_margin_regularization( &mut self, margin_regularization: f32, ) -> Result<()>
Parameter marginRegularization of a %SVMSGD optimization problem.
§See also
setMarginRegularization getMarginRegularization
Sourcefn set_initial_step_size(&mut self, initial_step_size: f32) -> Result<()>
fn set_initial_step_size(&mut self, initial_step_size: f32) -> Result<()>
Parameter initialStepSize of a %SVMSGD optimization problem.
§See also
setInitialStepSize getInitialStepSize
Sourcefn set_step_decreasing_power(
&mut self,
step_decreasing_power: f32,
) -> Result<()>
fn set_step_decreasing_power( &mut self, step_decreasing_power: f32, ) -> Result<()>
Parameter stepDecreasingPower of a %SVMSGD optimization problem.
§See also
setStepDecreasingPower getStepDecreasingPower
Sourcefn set_term_criteria(&mut self, val: TermCriteria) -> Result<()>
fn set_term_criteria(&mut self, val: TermCriteria) -> Result<()>
Termination criteria of the training algorithm. You can specify the maximum number of iterations (maxCount) and/or how much the error could change between the iterations to make the algorithm continue (epsilon).
§See also
setTermCriteria getTermCriteria
Dyn Compatibility§
This trait is not dyn compatible.
In older versions of Rust, dyn compatibility was called "object safety", so this trait is not object safe.