use num_traits::Zero;
use super::VecN;
pub type Scalar_<T> = VecN<T, 4>;
impl<T> Scalar_<T> {
#[inline]
pub const fn new(v0: T, v1: T, v2: T, v3: T) -> Self {
Self::from_array([v0, v1, v2, v3])
}
#[inline]
pub fn is_real(&self) -> bool
where
T: Zero + PartialEq,
{
self[1] == T::zero() && self[2] == T::zero() && self[3] == T::zero()
}
}
impl<T: Zero> From<T> for Scalar_<T> {
#[inline]
fn from(v0: T) -> Self {
Self::from_array([v0, T::zero(), T::zero(), T::zero()])
}
}
impl From<i32> for Scalar_<f64> {
#[inline]
fn from(v0: i32) -> Self {
Self::from(f64::from(v0))
}
}
impl<T: Zero> From<(T, T)> for Scalar_<T> {
#[inline]
fn from(v: (T, T)) -> Self {
Self::from_array([v.0, v.1, T::zero(), T::zero()])
}
}
impl From<(i32, i32)> for Scalar_<f64> {
#[inline]
fn from(v: (i32, i32)) -> Self {
Self::from((f64::from(v.0), f64::from(v.1)))
}
}
impl<T: Zero> From<(T, T, T)> for Scalar_<T> {
#[inline]
fn from(v: (T, T, T)) -> Self {
Self::from_array([v.0, v.1, v.2, T::zero()])
}
}
impl From<(i32, i32, i32)> for Scalar_<f64> {
#[inline]
fn from(v: (i32, i32, i32)) -> Self {
Self::from((f64::from(v.0), f64::from(v.1), f64::from(v.2)))
}
}
impl<T> From<(T, T, T, T)> for Scalar_<T> {
#[inline]
fn from(v: (T, T, T, T)) -> Self {
Self::from_array([v.0, v.1, v.2, v.3])
}
}
impl From<(i32, i32, i32, i32)> for Scalar_<f64> {
#[inline]
fn from(v: (i32, i32, i32, i32)) -> Self {
Self::from((f64::from(v.0), f64::from(v.1), f64::from(v.2), f64::from(v.3)))
}
}
impl From<VecN<u8, 3>> for Scalar_<f64> {
#[inline]
fn from(v: VecN<u8, 3>) -> Self {
Self::from((f64::from(v[0]), f64::from(v[1]), f64::from(v[2])))
}
}