Trait opencv::ml::LogisticRegressionTrait

source ·
pub trait LogisticRegressionTrait: LogisticRegressionTraitConst + StatModelTrait {
    // Required method
    fn as_raw_mut_LogisticRegression(&mut self) -> *mut c_void;

    // Provided methods
    fn set_learning_rate(&mut self, val: f64) -> Result<()> { ... }
    fn set_iterations(&mut self, val: i32) -> Result<()> { ... }
    fn set_regularization(&mut self, val: i32) -> Result<()> { ... }
    fn set_train_method(&mut self, val: i32) -> Result<()> { ... }
    fn set_mini_batch_size(&mut self, val: i32) -> Result<()> { ... }
    fn set_term_criteria(&mut self, val: TermCriteria) -> Result<()> { ... }
}
Expand description

Mutable methods for crate::ml::LogisticRegression

Required Methods§

Provided Methods§

source

fn set_learning_rate(&mut self, val: f64) -> Result<()>

Learning rate.

§See also

setLearningRate getLearningRate

source

fn set_iterations(&mut self, val: i32) -> Result<()>

Number of iterations.

§See also

setIterations getIterations

source

fn set_regularization(&mut self, val: i32) -> Result<()>

Kind of regularization to be applied. See LogisticRegression::RegKinds.

§See also

setRegularization getRegularization

source

fn set_train_method(&mut self, val: i32) -> Result<()>

Kind of training method used. See LogisticRegression::Methods.

§See also

setTrainMethod getTrainMethod

source

fn set_mini_batch_size(&mut self, val: i32) -> Result<()>

Specifies the number of training samples taken in each step of Mini-Batch Gradient Descent. Will only be used if using LogisticRegression::MINI_BATCH training algorithm. It has to take values less than the total number of training samples.

§See also

setMiniBatchSize getMiniBatchSize

source

fn set_term_criteria(&mut self, val: TermCriteria) -> Result<()>

Termination criteria of the algorithm.

§See also

setTermCriteria getTermCriteria

Object Safety§

This trait is not object safe.

Implementors§