Trait opencv::hub_prelude::RICInterpolatorTrait
source · pub trait RICInterpolatorTrait: RICInterpolatorTraitConst + SparseMatchInterpolatorTrait {
Show 28 methods
// Required method
fn as_raw_mut_RICInterpolator(&mut self) -> *mut c_void;
// Provided methods
fn set_k(&mut self, k: i32) -> Result<()> { ... }
fn set_k_def(&mut self) -> Result<()> { ... }
fn set_cost_map(&mut self, cost_map: &Mat) -> Result<()> { ... }
fn set_superpixel_size(&mut self, sp_size: i32) -> Result<()> { ... }
fn set_superpixel_size_def(&mut self) -> Result<()> { ... }
fn set_superpixel_nn_cnt(&mut self, sp_nn: i32) -> Result<()> { ... }
fn set_superpixel_nn_cnt_def(&mut self) -> Result<()> { ... }
fn set_superpixel_ruler(&mut self, ruler: f32) -> Result<()> { ... }
fn set_superpixel_ruler_def(&mut self) -> Result<()> { ... }
fn set_superpixel_mode(&mut self, mode: i32) -> Result<()> { ... }
fn set_superpixel_mode_def(&mut self) -> Result<()> { ... }
fn set_alpha(&mut self, alpha: f32) -> Result<()> { ... }
fn set_alpha_def(&mut self) -> Result<()> { ... }
fn set_model_iter(&mut self, model_iter: i32) -> Result<()> { ... }
fn set_model_iter_def(&mut self) -> Result<()> { ... }
fn set_refine_models(&mut self, refine_modles: bool) -> Result<()> { ... }
fn set_refine_models_def(&mut self) -> Result<()> { ... }
fn set_max_flow(&mut self, max_flow: f32) -> Result<()> { ... }
fn set_max_flow_def(&mut self) -> Result<()> { ... }
fn set_use_variational_refinement(
&mut self,
use_variational_refinement: bool
) -> Result<()> { ... }
fn set_use_variational_refinement_def(&mut self) -> Result<()> { ... }
fn set_use_global_smoother_filter(&mut self, use_fgs: bool) -> Result<()> { ... }
fn set_use_global_smoother_filter_def(&mut self) -> Result<()> { ... }
fn set_fgs_lambda(&mut self, lambda: f32) -> Result<()> { ... }
fn set_fgs_lambda_def(&mut self) -> Result<()> { ... }
fn set_fgs_sigma(&mut self, sigma: f32) -> Result<()> { ... }
fn set_fgs_sigma_def(&mut self) -> Result<()> { ... }
}
Expand description
Mutable methods for crate::ximgproc::RICInterpolator
Required Methods§
fn as_raw_mut_RICInterpolator(&mut self) -> *mut c_void
Provided Methods§
sourcefn set_k(&mut self, k: i32) -> Result<()>
fn set_k(&mut self, k: i32) -> Result<()>
K is a number of nearest-neighbor matches considered, when fitting a locally affine model for a superpixel segment. However, lower values would make the interpolation noticeably faster. The original implementation of Hu2017 uses 32.
C++ default parameters
- k: 32
sourcefn set_k_def(&mut self) -> Result<()>
fn set_k_def(&mut self) -> Result<()>
K is a number of nearest-neighbor matches considered, when fitting a locally affine model for a superpixel segment. However, lower values would make the interpolation noticeably faster. The original implementation of Hu2017 uses 32.
Note
This alternative version of [set_k] function uses the following default values for its arguments:
- k: 32
sourcefn set_cost_map(&mut self, cost_map: &Mat) -> Result<()>
fn set_cost_map(&mut self, cost_map: &Mat) -> Result<()>
Interface to provide a more elaborated cost map, i.e. edge map, for the edge-aware term. This implementation is based on a rather simple gradient-based edge map estimation. To used more complex edge map estimator (e.g. StructuredEdgeDetection that has been used in the original publication) that may lead to improved accuracies, the internal edge map estimation can be bypassed here.
Parameters
- costMap: a type CV_32FC1 Mat is required.
See also
cv::ximgproc::createSuperpixelSLIC
sourcefn set_superpixel_size(&mut self, sp_size: i32) -> Result<()>
fn set_superpixel_size(&mut self, sp_size: i32) -> Result<()>
Get the internal cost, i.e. edge map, used for estimating the edge-aware term.
See also
setCostMap
C++ default parameters
- sp_size: 15
sourcefn set_superpixel_size_def(&mut self) -> Result<()>
fn set_superpixel_size_def(&mut self) -> Result<()>
sourcefn set_superpixel_nn_cnt(&mut self, sp_nn: i32) -> Result<()>
fn set_superpixel_nn_cnt(&mut self, sp_nn: i32) -> Result<()>
Parameter defines the number of nearest-neighbor matches for each superpixel considered, when fitting a locally affine model.
C++ default parameters
- sp_nn: 150
sourcefn set_superpixel_nn_cnt_def(&mut self) -> Result<()>
fn set_superpixel_nn_cnt_def(&mut self) -> Result<()>
Parameter defines the number of nearest-neighbor matches for each superpixel considered, when fitting a locally affine model.
Note
This alternative version of [set_superpixel_nn_cnt] function uses the following default values for its arguments:
- sp_nn: 150
sourcefn set_superpixel_ruler(&mut self, ruler: f32) -> Result<()>
fn set_superpixel_ruler(&mut self, ruler: f32) -> Result<()>
Parameter to tune enforcement of superpixel smoothness factor used for oversegmentation.
See also
cv::ximgproc::createSuperpixelSLIC
C++ default parameters
- ruler: 15.f
sourcefn set_superpixel_ruler_def(&mut self) -> Result<()>
fn set_superpixel_ruler_def(&mut self) -> Result<()>
sourcefn set_superpixel_mode(&mut self, mode: i32) -> Result<()>
fn set_superpixel_mode(&mut self, mode: i32) -> Result<()>
Parameter to choose superpixel algorithm variant to use:
- cv::ximgproc::SLICType SLIC segments image using a desired region_size (value: 100)
- cv::ximgproc::SLICType SLICO will optimize using adaptive compactness factor (value: 101)
- cv::ximgproc::SLICType MSLIC will optimize using manifold methods resulting in more content-sensitive superpixels (value: 102).
See also
cv::ximgproc::createSuperpixelSLIC
C++ default parameters
- mode: 100
sourcefn set_superpixel_mode_def(&mut self) -> Result<()>
fn set_superpixel_mode_def(&mut self) -> Result<()>
Parameter to choose superpixel algorithm variant to use:
- cv::ximgproc::SLICType SLIC segments image using a desired region_size (value: 100)
- cv::ximgproc::SLICType SLICO will optimize using adaptive compactness factor (value: 101)
- cv::ximgproc::SLICType MSLIC will optimize using manifold methods resulting in more content-sensitive superpixels (value: 102).
See also
cv::ximgproc::createSuperpixelSLIC
Note
This alternative version of [set_superpixel_mode] function uses the following default values for its arguments:
- mode: 100
sourcefn set_alpha(&mut self, alpha: f32) -> Result<()>
fn set_alpha(&mut self, alpha: f32) -> Result<()>
Alpha is a parameter defining a global weight for transforming geodesic distance into weight.
C++ default parameters
- alpha: 0.7f
sourcefn set_alpha_def(&mut self) -> Result<()>
fn set_alpha_def(&mut self) -> Result<()>
Alpha is a parameter defining a global weight for transforming geodesic distance into weight.
Note
This alternative version of [set_alpha] function uses the following default values for its arguments:
- alpha: 0.7f
sourcefn set_model_iter(&mut self, model_iter: i32) -> Result<()>
fn set_model_iter(&mut self, model_iter: i32) -> Result<()>
Parameter defining the number of iterations for piece-wise affine model estimation.
C++ default parameters
- model_iter: 4
sourcefn set_model_iter_def(&mut self) -> Result<()>
fn set_model_iter_def(&mut self) -> Result<()>
Parameter defining the number of iterations for piece-wise affine model estimation.
Note
This alternative version of [set_model_iter] function uses the following default values for its arguments:
- model_iter: 4
sourcefn set_refine_models(&mut self, refine_modles: bool) -> Result<()>
fn set_refine_models(&mut self, refine_modles: bool) -> Result<()>
Parameter to choose wether additional refinement of the piece-wise affine models is employed.
C++ default parameters
- refine_modles: true
sourcefn set_refine_models_def(&mut self) -> Result<()>
fn set_refine_models_def(&mut self) -> Result<()>
Parameter to choose wether additional refinement of the piece-wise affine models is employed.
Note
This alternative version of [set_refine_models] function uses the following default values for its arguments:
- refine_modles: true
sourcefn set_max_flow(&mut self, max_flow: f32) -> Result<()>
fn set_max_flow(&mut self, max_flow: f32) -> Result<()>
MaxFlow is a threshold to validate the predictions using a certain piece-wise affine model. If the prediction exceeds the treshold the translational model will be applied instead.
C++ default parameters
- max_flow: 250.f
sourcefn set_max_flow_def(&mut self) -> Result<()>
fn set_max_flow_def(&mut self) -> Result<()>
MaxFlow is a threshold to validate the predictions using a certain piece-wise affine model. If the prediction exceeds the treshold the translational model will be applied instead.
Note
This alternative version of [set_max_flow] function uses the following default values for its arguments:
- max_flow: 250.f
sourcefn set_use_variational_refinement(
&mut self,
use_variational_refinement: bool
) -> Result<()>
fn set_use_variational_refinement( &mut self, use_variational_refinement: bool ) -> Result<()>
Parameter to choose wether the VariationalRefinement post-processing is employed.
C++ default parameters
- use_variational_refinement: false
sourcefn set_use_variational_refinement_def(&mut self) -> Result<()>
fn set_use_variational_refinement_def(&mut self) -> Result<()>
Parameter to choose wether the VariationalRefinement post-processing is employed.
Note
This alternative version of [set_use_variational_refinement] function uses the following default values for its arguments:
- use_variational_refinement: false
sourcefn set_use_global_smoother_filter(&mut self, use_fgs: bool) -> Result<()>
fn set_use_global_smoother_filter(&mut self, use_fgs: bool) -> Result<()>
Sets whether the fastGlobalSmootherFilter() post-processing is employed.
C++ default parameters
- use_fgs: true
sourcefn set_use_global_smoother_filter_def(&mut self) -> Result<()>
fn set_use_global_smoother_filter_def(&mut self) -> Result<()>
Sets whether the fastGlobalSmootherFilter() post-processing is employed.
Note
This alternative version of [set_use_global_smoother_filter] function uses the following default values for its arguments:
- use_fgs: true
sourcefn set_fgs_lambda(&mut self, lambda: f32) -> Result<()>
fn set_fgs_lambda(&mut self, lambda: f32) -> Result<()>
sourcefn set_fgs_lambda_def(&mut self) -> Result<()>
fn set_fgs_lambda_def(&mut self) -> Result<()>
Sets the respective fastGlobalSmootherFilter() parameter.
Note
This alternative version of [set_fgs_lambda] function uses the following default values for its arguments:
- lambda: 500.f
sourcefn set_fgs_sigma(&mut self, sigma: f32) -> Result<()>
fn set_fgs_sigma(&mut self, sigma: f32) -> Result<()>
sourcefn set_fgs_sigma_def(&mut self) -> Result<()>
fn set_fgs_sigma_def(&mut self) -> Result<()>
Sets the respective fastGlobalSmootherFilter() parameter.
Note
This alternative version of [set_fgs_sigma] function uses the following default values for its arguments:
- sigma: 1.5f