Trait opencv::ml::SVMSGDTrait
source · pub trait SVMSGDTrait: SVMSGDTraitConst + StatModelTrait {
// Required method
fn as_raw_mut_SVMSGD(&mut self) -> *mut c_void;
// Provided methods
fn get_weights(&mut self) -> Result<Mat> { ... }
fn get_shift(&mut self) -> Result<f32> { ... }
fn set_optimal_parameters(
&mut self,
svmsgd_type: i32,
margin_type: i32
) -> Result<()> { ... }
fn set_svmsgd_type(&mut self, svmsgd_type: i32) -> Result<()> { ... }
fn set_margin_type(&mut self, margin_type: i32) -> Result<()> { ... }
fn set_margin_regularization(
&mut self,
margin_regularization: f32
) -> Result<()> { ... }
fn set_initial_step_size(&mut self, initial_step_size: f32) -> Result<()> { ... }
fn set_step_decreasing_power(
&mut self,
step_decreasing_power: f32
) -> Result<()> { ... }
fn set_term_criteria(&mut self, val: TermCriteria) -> Result<()> { ... }
}
Expand description
Mutable methods for crate::ml::SVMSGD
Required Methods§
fn as_raw_mut_SVMSGD(&mut self) -> *mut c_void
Provided Methods§
sourcefn get_weights(&mut self) -> Result<Mat>
fn get_weights(&mut self) -> Result<Mat>
Returns
the weights of the trained model (decision function f(x) = weights * x + shift).
sourcefn get_shift(&mut self) -> Result<f32>
fn get_shift(&mut self) -> Result<f32>
Returns
the shift of the trained model (decision function f(x) = weights * x + shift).
sourcefn set_optimal_parameters(
&mut self,
svmsgd_type: i32,
margin_type: i32
) -> Result<()>
fn set_optimal_parameters( &mut self, svmsgd_type: i32, margin_type: i32 ) -> Result<()>
Function sets optimal parameters values for chosen SVM SGD model.
Parameters
- svmsgdType: is the type of SVMSGD classifier.
- marginType: is the type of margin constraint.
C++ default parameters
- svmsgd_type: SVMSGD::ASGD
- margin_type: SVMSGD::SOFT_MARGIN
sourcefn set_svmsgd_type(&mut self, svmsgd_type: i32) -> Result<()>
fn set_svmsgd_type(&mut self, svmsgd_type: i32) -> Result<()>
sourcefn set_margin_type(&mut self, margin_type: i32) -> Result<()>
fn set_margin_type(&mut self, margin_type: i32) -> Result<()>
sourcefn set_margin_regularization(
&mut self,
margin_regularization: f32
) -> Result<()>
fn set_margin_regularization( &mut self, margin_regularization: f32 ) -> Result<()>
Parameter marginRegularization of a %SVMSGD optimization problem.
See also
setMarginRegularization getMarginRegularization
sourcefn set_initial_step_size(&mut self, initial_step_size: f32) -> Result<()>
fn set_initial_step_size(&mut self, initial_step_size: f32) -> Result<()>
Parameter initialStepSize of a %SVMSGD optimization problem.
See also
setInitialStepSize getInitialStepSize
sourcefn set_step_decreasing_power(
&mut self,
step_decreasing_power: f32
) -> Result<()>
fn set_step_decreasing_power( &mut self, step_decreasing_power: f32 ) -> Result<()>
Parameter stepDecreasingPower of a %SVMSGD optimization problem.
See also
setStepDecreasingPower getStepDecreasingPower
sourcefn set_term_criteria(&mut self, val: TermCriteria) -> Result<()>
fn set_term_criteria(&mut self, val: TermCriteria) -> Result<()>
Termination criteria of the training algorithm. You can specify the maximum number of iterations (maxCount) and/or how much the error could change between the iterations to make the algorithm continue (epsilon).
See also
setTermCriteria getTermCriteria